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Abstract

We consider the recovery of smooth 3D region boundaries with piecewise

constant coefficients in optical tomography. The method is based on a

parametrization of the closed boundaries of the regions by spherical harmonic

coefficients, and a Newton type optimization process. A boundary integral

formulation is used for the forward modelling. The calculation of the

Jacobian is based on an adjoint scheme for calculating the corresponding

shape derivatives. We show reconstructions for 3D situations. In addition

we show the extension of the method for cases where the constant optical

coefficients are also unknown. An advantage of the proposed method is the

implicit regularization effect arising from the reduced dimensionality of the

inverse problem.
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1. Introduction

1.1. Optical tomography

In this paper, we explore a technique for the retrieval of the internal boundaries of 3D

regions in frequency domain optical tomography (OT) [4], which seeks the recovery of optical

properties such as light absorption and scattering, given measurements of transmitted light

through biological tissue of several centimetres in thickness. The optical parameter values

{µa, µ
′
s}, where µa is the absorption coefficient and µ′

s the (reduced) scattering coefficient,

are assumed to be piecewise constant in the three-dimensional bounded domain � with jumps

at the interior interfaces. There are several physiologically interesting observations which can

be derived from the knowledge of the absorption and scattering coefficients of light in tissue.

This includes tissue oxygenation, blood volume and blood oxygenation [23, 55]. Primary

applications are the detection and classification of tumourous tissue in the breast, monitoring

of the oxygenation level in infant brain tissue and functional brain activation studies.

Our model for light propagation in biological tissue is the diffusion equation

−∇ · D(r)∇�(r;ω) + µa(r)�(r;ω) +
iω

c
�(r) = s(r;ω), (1)

where �(r;ω) is the photon density, c is the speed of light in the medium and s(r;ω) describes

the source term. It represents the number of photons per unit volume at the source position r;

ω is the modulation frequency. The diffusion coefficient is given by

D =
1

3(µa + µ′
s)

. (2)

In the remainder of the paper we refer to the problem parameters in terms of {µa,D} for

convenience. The appropriate boundary condition is of the Robin type

�(r;ω) + 2αD(r)
∂�(r;ω)

∂ν
= 0, r ∈ ∂�, (3)

where α models the refractive index difference at the boundary ∂�.

A commonly used approach in problems of this type is to discretize the unknown functions

{µa,D} into a finite-dimensional space spanned by local basis functions of voxels or other

small 3D volume elements [45]. Then, the goal is to search this space so as to optimize

the fit of a numerical model of (1) and (3) (such as a finite difference or finite elements) to

measured data. The main difficulties which arise in this situation are as follows: (1) the

geometry of biological tissue is complicated and the construction of a volume element

discretization is cumbersome; (2) a model with sufficient resolution introduces a large number

of parameters and therefore increases the size of the search space for the inverse problem;

(3) the ill-posed nature of the problem together with the noisy data requires for additional

regularization techniques to be incorporated into the reconstruction.

1.2. The shape-based approach

In this paper we propose an alternative shape-based reconstruction method that works with

parametric representations of 3D shapes for overcoming the above-mentioned difficulties.

This approach assumes that the distribution of the optical parameters inside the body � is

arranged into L disjoint regions �ℓ

� =

L
⋃

ℓ=1

�ℓ, (4)
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which are separated by smooth closed interfaces Ŵℓ, and have piecewise constant optical

properties {µa,ℓ,Dℓ}. Then, we may describe the propagation of light (1), (3) by a set of

coupled Helmholtz equations

−∇2�ℓ + k2
ℓ�ℓ = qℓ in �ℓ, (5)

where qℓ = s
Dℓ

, and with boundary conditions

�ℓ+1 = �ℓ, Dℓ+1

∂�ℓ+1

∂ν
= Dℓ

∂�ℓ

∂ν
on Ŵℓ, (6)

�1 + 2αD1

∂�1

∂ν
= 0 on ∂�. (7)

The respective (complex) wavenumbers are

k2
ℓ (ω) =

µa,ℓ + iω
c

Dℓ

. (8)

We use a boundary integral formulation so that the discretization of the volume of the

domain � will be replaced by that of the interfaces Ŵℓ separating the disjoint regions that

comprise �. Moreover, the shapes and locations of these interfaces are described by finite

sets of shape coefficients {γℓ}. The forward problem uses a boundary element method (BEM)

to discretize the mapping from these shape coefficients {γℓ} and the (piecewise constant)

optical parameter values {µa,ℓ,Dℓ} inside the individual subregions to the data g collected on

the surface ∂�. The inverse problem is then to find the representation {γℓ} and the values

{µa,ℓ,Dℓ} from the measurements g. A crucial element in solving this inverse problem is

the determination of shape sensitivities or shape derivatives, which is done here using an

adjoint field technique [9, 44]. Once these quantities have been calculated, a Jacobian matrix

can be constructed from them which will then be used as a component of a classical output

least-squares Gauss–Newton optimization scheme with line-search globalization.

The shape representation employed in our work is based on spherical harmonics, which

allows reasonably complex shapes to be represented with relatively few parameters. By

representing a parametric surface as an (x, y, z) triple in which each coordinate is expanded

independently in a spherical harmonic series, the method is not limited to star-shaped objects.

Moreover, an attractive feature of this technique is the fact that the dimension of the search

space for the inverse problem is much smaller than for classical voxel-based techniques. This

potentially leads to a less ill-posed inverse problem. Furthermore, the construction of a BEM

discretization using surface meshes is typically less costly than constructing volume meshes

for voxel-based techniques.

An approach related to that presented in this paper can be found in [30, 31]. In that work,

2D shapes and piecewise constant coefficients for light absorption and diffusion in OT are

recovered using a Fourier series representation of the closed region boundaries and a finite

element method for solving the forward model. Moreover, a local mesh refinement is used

during the procedure of the shape estimation. These results have only been implemented in

2D but are also promising for 3D situations.

Another approach to the optical tomography problem using shape recovery is presented

in [29]. In that paper inhomogeneities in the absorption parameter are approximated by an

ellipsoidal shape. Discretization of a slab domain into voxels was used and the location and

ellipsoidal shape of objects with absorbing contrast was recovered.

Boundary elements have been used in numerous applications of structural optimization.

In [10], an application of the forward solution for the obstacle recovery problem for 3D

acoustics and traction free cavities in an elastic medium is handled with the use of BEM. The
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parametrization suggested for the unknown boundaries is based on an ellipsoidal, defined by

nine geometric parameters: the three centroid coordinates, the three principal axes and three

Euler angles for the rotation. Our approach slightly generalizes this idea and allows for more

freedom for specifying the complexity of the involved shapes.

An additional aspect that we consider in this paper is the combination of the search

for the unknown interfaces with the simultaneous reconstruction of the piecewise constant

domain optical parameters {µa,ℓ,Dℓ}. This topic is related to the asymptotic techniques for

the reconstruction of small objects such as those developed by [13] for the diffusion parameter

and [5] for the absorption parameter. In these works attention is drawn to the ambiguity or

‘cross-talk’ in the recovery of both shape and contrast. The numerical results presented in this

paper are consistent with these findings and are discussed in more detail in section 5.

We also mention the related work presented in [24]. In that approach, small geometric

inclusions are nucleated inside an acoustic medium using a topological derivative, and the

question of simultaneous determination of the acoustic parameters (density) inside these

nucleated objects is addressed.

Other related shape-based work in the literature includes the application of shape

reconstruction techniques in electrical impedance tomography (EIT) as, for example, reported

in [19, 20, 42], in heat transfer problems as reported in [1, 36, 38], in acoustic problems

as reported in [32] and in potential problems as reported in [26]. Shape reconstruction

techniques based on level sets for diffuse optical tomography are presented in [16, 17, 46].

Level set techniques for shape reconstruction in other applications (including, e.g., inverse

electromagnetic scattering, inverse acoustic scattering and EIT) are reported, for example, in

[12, 14, 15, 22, 21, 28, 33, 34, 41, 43, 44, 51].

In [52, 53], the shape of a 3D perfectly conducting object is reconstructed from

electromagnetic measurements using spherical harmonics as radial basis functions. A

technique for detecting small electromagnetic inclusions by a MUSIC type algorithm is

presented in [3]. A more comprehensive list of shape-based inverse problems and possible

reconstruction techniques can be found in the two recent review papers [18, 39] and in the

various further references given there.

The remainder of the paper is organized as follows. In section 2, we discuss the parametric

representation of the 3D shapes, and we describe the forward and the shape-based inverse

problem for OT. In section 3 we derive an adjoint formulation of the shape derivative.

Section 4 describes practical issues of the implementation of the forward problem using

a BEM. In section 5 we present and discuss numerical results, and in section 6 we give

conclusions.

2. Formulation of the problem

2.1. Parametric representation of surfaces

Our main interest lies in the use of geometric prior information in order to create a sufficiently

realistic model of the different subregions of an anatomical structure. Keeping in mind

applications in head and brain imaging, we decided to use the head geometry as a test bed.

We can use good resolution MRI or CT-scan images as prototypes (figure 1). Both imaging

modalities use voxel maps to create an image. One key component of the surface representation

is the choice to use a harmonic mapping of the surface net onto the sphere’s surface, which

is made possible by the specific representation of each Cartesian component by spherical

harmonics as described in the following.
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Figure 1. Segmented MRI data of a baby’s scalp and as voxel volume (left). The mapping of

the surface on the sphere (middle). The parametric representation with 11 degrees of spherical

harmonics (right).

The surface locations r|Ŵ are given by the representation

r|Ŵ =















xŴ(ϑ, ϕ) =
∑W

l=0

∑l
m=−l C

m
l,xY

m
l (ϑ, ϕ),

yŴ(ϑ, ϕ) =
∑W

l=0

∑l
m=−l C

m
l,yY

m
l (ϑ, ϕ),

zŴ(ϑ, ϕ) =
∑W

l=0

∑l
m=−l C

m
l,zY

m
l (ϑ, ϕ),

(9)

with expansion coefficients
{

Cm
l

}

. Here, the basis functions Ym
l (ϑ, ϕ) are the well-known

(complex-valued) spherical harmonic functions, and W is the maximum degree of spherical

harmonics that we used for the particular representation. In particular, the zeroth degree

coefficients

c =







C0
0,x

C0
0,y

C0
0,z






(10)

are representative of the position for the centre of the object. In general, the higher order

basis functions are roughly assumed to represent more detailed characteristics of the surface,

whereas the lower order ones describe more the overall features such as volume, orientation

etc. As a technical point, since surfaces are defined in real Euclidean space R
3, we define a

basis of real functions as

Ỹm
l (ϑ, ϕ) :=

{

Re
[

Ym
l

]

(ϑ, ϕ), when m � 0,

Im
[

Ym
l

]

(ϑ, ϕ), when m > 0,
(11)

for which the orthogonal condition
∫

S2

Ỹm
l Ỹm′

l′ dS = δmm′δll′

still holds. For simplicity we introduce the notation

γ = {γk} =
{

Cm
l,x, C

m
l,y, C

m
l,z

}

, with l = 1, . . . ,W,m = −l, . . . , l (12)

such that the new index k ranges over k = 1, . . . , 3W 2. {γk} describes the finite set of spherical

harmonic coefficients for the surface Ŵ up to degree W .

We mention here that the mapping rŴ(ϑ, ϕ) of the unit sphere on the surface also provides

a convenient mechanism for producing a reliable quality mesh of the surface as required for

the boundary element method. Starting from an embedded icosahedron and by tessellation a

regular triangular mesh was created on the sphere’s surface and was then constituently mapped

upon the parametric surface using the functional (9). Using this mapping, any regular mesh

V which is defined on the sphere surface can easily be mapped to any parametrically defined

object.
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Figure 2. The experimental setup used in our OT experiments, shown from the back; by circles

we denote the sources q(j) and by triangles the detectors m(i).

2.2. The forward problem

Let us denote the space of fields �1 in region �1 by F, and the space of measurements g by

Z. The space of parameter functions {µa,D} will be denoted by P. The data g are calculated

by a linear measurement operator M : F → Z in the form

g = M�1. (13)

This operator typically calculates a vector of weighted integrals of the (complex-valued) fields

� along a set of surface elements at ∂� where the detectors are located (one surface integral

per detector), with detector-specific weight functions. We denote the set of these weighting

functions by

W = {wi(r)}, r on ∂�, i = 1, . . . ,M. (14)

For our analysis, it is sufficient to assume that this operator is linear and its adjoint measurement

operator M
∗ : Z → F is well defined. It will be used later for defining artificial ‘adjoint

sources’ at the receiver locations for calculating shape sensitivities. We will demonstrate in

section 4 how these operators are modelled in our numerical experiments. Note that the data

g will depend on the frequency ω used in the experiment, on the source location and on the

parameter distribution {µa,D}. The set of source locations and frequencies will be our design

parameters for the experimental setup. In the following we will for simplicity assume that

only one frequency ω is chosen and fixed, even though the method can be generalized in a

straightforward way to a multiple-frequency setup.

As in conventional pixel-based reconstruction we assume multiple sources q(j), j =

1, . . . , S and detectors m(i), i = 1, . . . M , located at the surface ∂� (see figure 2). During

the experiment, light is emitted from one source at a time and the photons leaving the domain

are collected at all the detectors. We denote by gj,i the measurements which correspond to

detector i and source j . The combined measurements for a source j are denoted by g(j).

Combining furthermore the measurements g(j) for all of our chosen sources gives rise to a

stacked measurement vector g.
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z

Figure 3. Schematic view of the forward model.

We can then define the nonlinear forward operator K(γ, µa,D) = M�1 as the mapping

from the optical properties D = {Dℓ}ℓ=1,...,L and µa = {µa,ℓ}ℓ=1,...,L of the individual regions

�ℓ, ℓ = 1, . . . , L, and the geometric parameters γ = {γℓ}ℓ=1,...,L to the measurements on

the surface of �. Combining the measurements from the S independent sources, the forward

mapping takes the form

g =













g(1)

g(j)

...

g(S)













=











K1(γ, µa,D)

K2(γ, µa,D)

...

KS(γ, µa,D)











= K(γ, µa,D). (15)

A schematic view of our forward model is shown in figure 3.

2.3. The inverse problem

The most general inverse problem to be considered in our framework would be the simultaneous

reconstruction of shape parameters γ and optical parameters µa and D from the data g.

However, in most practical applications which we have in mind, good estimates for the

optical parameters µa,ℓ and Dℓ in most of the regions �ℓ are available, and only those optical

parameters which correspond to unknown anomalies need to be recovered. Therefore in this

paper we consider the boundary shape ∂� and optical parameters µa,1,D1 of the outer region

as known and only look for the shape parameters and the optical coefficients of an unknown

embedded anomaly described by the interior regions.

It will be convenient to split the formal derivation of our reconstruction scheme into the

part for recovery of the shape parameters and the part for recovery of the optical parameters,

which will be implemented in an alternating fashion as explained in section 5.3. In the

following we concentrate on the technique for calculating shape sensitivities by an adjoint

scheme which only requires the evaluation of forward and adjoint fields at the interfaces

between subregions, which are readily available in a boundary element method framework.
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Figure 4. The perturbed boundary Ŵδ used for the calculation of the Fréchet derivative.

Starting from a geometric configuration defined by the initial set of shape coefficients γ (0),

we will try to search for the set γ̂ that minimizes the distance between computed K(γ, µa,D)

and measured data g. For this purpose, we define the least-squares functional

(γ ) = ‖g − K(γ, µa,D)‖2. (16)

We solve the inverse problem by a cost minimization procedure:

find γ̂ so that (γ̂ ) = min
γ

‖g − K(γ, µa,D)‖2. (17)

A typical way to minimize such a cost function is a Newton-type method [8, 54], where

we search for a minimum for (γ ) by iterations of local linearization and Taylor expansion

around the current estimate γ (n) as

γ (n+1) = γ (n) +
(

J
T
n Jn + �

)−1
J
T
n (g − K(γ (n), µa,D)). (18)

In (18), the Jacobian matrix J is a derivative of the forward operator K with respect to the

shape coefficients γ ,

J =
∂K(γ, µa,D)

∂γ
, (19)

and � is a Levenberg–Marquandt control term [35]. In our implementation, we take � to be

a constant times the identity.

The modified Newton method (18) for the minimization of the residual (16) produces the

descent direction in the parameter space by providing a step δγ (n) = γ (n+1) −γ (n). In practice,

a quadratic fit line search method [40] is introduced in order to globalize the optimization.

3. Fréchet derivative

In order to determine the descent direction for the cost functional (γ ) we need to calculate its

derivatives with respect to the shape parameters γ . For this purpose we need to calculate the

Fréchet derivative (or shape derivative) of the data with respect to the current shape. We will

discuss in the following the simplified case of two subregions (see figure 4). The extension to

the case of more than two subregions is straightforward.
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3.1. Linearization

Consider the perturbed interface

Ŵ → Ŵ + Ŵδ,

between our two subregions �1 and �2. The perturbation is described by a vector displacement

field

r → r + h(r) for r on a neighborhood of Ŵ.

In our application the interface Ŵ as well as the perturbation vector field h is composed by

using spherical harmonics. This means, we have Ŵ = Ŵ(γ ) with γ defined by (12), and

Ŵ + Ŵδ = (Ŵ + Ŵδ)(γ + δγ ) with δγ being a perturbation. However, the following derivation

of shape sensitivities will be done for the case of more general shape perturbations Ŵδ . We

denote the difference between calculated data M�1(Ŵ), corresponding to the interface Ŵ, and

the physically measured data g by a nonlinear operator

R(Ŵ) = M�1(Ŵ) − g, (20)

which also depends on the optical parameters µa and D and the source position and frequency,

all of them being assumed fixed for the following derivation. The linearized form is denoted

by R
′(Ŵ). In the following we want to derive expressions for this linearized operator R′(Ŵ)

and its adjoint R′∗(Ŵ). The Jacobian J in (19) can then be calculated from this expression

by applying the chain rule with Ŵ = Ŵ(γ ). Practically, this amounts to a projection onto the

chosen set of basis functions. As shown formally in [18], these projections are performed by

calculating weighted surface integrals of the surface sensitivities (as derived here) over the

interfaces between the individual subregions, the weights being given by the corresponding

spherical harmonic functions. For more details see [18].

Since the internal geometry is altered, so are the fields, and we have

�ℓ → �ℓ + �δ
ℓ

for ℓ = 1, 2. Making use of results from [25], we have that �δ
ℓ satisfy

∇2�δ
1 − k2

1�
δ
1 = 0 in �1, (21)

∇2�δ
2 − k2

2�
δ
2 = 0 in �2, (22)

with boundary and interface conditions

�δ
1 − �δ

2 = −hν̂

(

∂�1

∂ν
−

∂�2

∂ν

)

on Ŵ, (23)

D1

∂�δ
1

∂ν
− D2

∂�δ
2

∂ν
= −hν̂

(

D1k
2
1 − D2k

2
2

)

� + ∇‖ · [hν̂(D1∇‖�1 − D2∇‖�2)] on Ŵ, (24)

�δ
1 + 2αD1

∂�δ
1

∂ν
= 0 on ∂�, (25)

where we introduced the notation hν̂ = (h · ν̂) for the normal component of the displacement.

The data are perturbed to

g → g + gδ.

In the above and in the remainder of the text we use the following notation. The quantities

ν̂ℓ, ℓ = 1, 2, denote the outward pointing normal directions with respect to the domains
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�ℓ, ℓ = 1, 2, respectively. Along Ŵ we define furthermore ν̂ = ν̂2 = −ν̂1. Accordingly, we

will have along Ŵ the relation ∂
∂ν

= ∂
∂ν2

= − ∂
∂ν1

. At the outer boundary ∂� we have ν̂ = ν̂1.

3.2. Adjoint formulation

Since expressions (21)–(25) only depend on hν̂ at Ŵ, this will be our quantity of interest for

developing an adjoint formulation. Let ζ be an arbitrary element of the data space Z, and

denote, as defined earlier, the parameter space by P and the space of photon density functions

inside �1 by F. We use canonical L2-spaces for all quantities considered here. We consider

the relation between the inner products

〈R′(Ŵ)hν̂, ζ 〉Z = 〈hν̂,R
′∗(Ŵ)ζ 〉P . (26)

From Green’s theorem, we have for any fields �1 and �2
∫

�1

D1�1

(

∇2�δ
1 − k2

1�
δ
1

)

dr +

∫

�2

D2�2

(

∇2�δ
2 − k2

2�
δ
2

)

dr +
〈

M�δ
1, ζ
〉

Z

=

∫

�1

D1�
δ
1

(

∇2�1 − k2
1�1

)

dr +

∫

�2

D2�
δ
2

(

∇2�2 − k2
2�2

)

dr

+

∫

Ŵ∪∂�

(

�1D1

∂�δ
1

∂ν1

− �δ
1D1

∂�1

∂ν1

)

dS +

∫

Ŵ

(

�2D2

∂�δ
2

∂ν2

− �δ
2D2

∂�2

∂ν2

)

dS

+
〈

�δ
1,M

∗ζ
〉

F
, (27)

where we have used that ∂�2 = Ŵ and ∂�1 = Ŵ ∪ ∂�. We now choose �1 and �2 to be

solutions of the following adjoint equations

∇2�1 − k2
1�1 = −

1

D1

M
∗ζ in �1, (28)

∇2�2 − k2
2�2 = 0 in �2, (29)

with boundary conditions

�2 = �1, D2

∂�2

∂ν
= D1

∂�1

∂ν
on Ŵ, (30)

�1 + 2αD1

∂�1

∂ν
= 0 on ∂�. (31)

Using these relations in Green’s formula (27) and using (21), (22) we get

〈

M�δ
1, ζ
〉

Z
= −

∫

�1

�δ
1M

∗ζ dr +

∫

∂�

(

�1D1

∂�δ
1

∂ν
− �δ

1D1

∂�1

∂ν

)

dS

+

∫

Ŵ

(

−�1D1

∂�δ
1

∂ν
+ �δ

1D1

∂�1

∂ν

)

dS

+

∫

Ŵ

(

�2D2

∂�δ
2

∂ν
− �δ

2D2

∂�2

∂ν

)

dS +
〈

�δ
1,M

∗ζ
〉

F
. (32)

Obviously the first and the last terms on the right-hand side cancel each other. The second

term on the right-hand side disappears because of (7) and (31). Applying to the remaining
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expressions on the right-hand side the conditions (23)–(25) we find that

〈

M�δ
1, ζ
〉

Z
=

∫

Ŵ

(

−�1D1

∂�δ
1

∂ν
+ �δ

1D1

∂�1

∂ν

)

dS +

∫

Ŵ

(

�2D2

∂�δ
2

∂ν
− �δ

2D2

∂�2

∂ν

)

dS

= −

∫

Ŵ

(

D1

∂�δ
1

∂ν
− D2

∂�δ
2

∂ν

)

�1 dS +

∫

Ŵ

D1

∂�1

∂ν

(

�δ
1 − �δ

2

)

dS

= −

∫

Ŵ

(

−hν̂

(

D1k
2
1 − D2k

2
2

)

� + ∇‖ · [hν̂(D1∇‖�1 − D2∇‖�2)]
)

�1 dS

+

∫

Ŵ

D1

∂�1

∂ν
(−hν̂)

(

∂�1

∂ν
−

∂�2

∂ν

)

dS. (33)

Using

−hν̂D1

(

∂�1

∂ν
−

∂�2

∂ν

)

= hν̂

D1

D2

(D1 − D2)
∂�1

∂ν
,

applying the divergence theorem to the second term of the integral in line (33), taking into

account that the spaces where our inner products are defined are complex valued and using

R
′(Ŵ)hν̂ = M�δ

1, we end up with

〈R′(Ŵ)hν̂, ζ 〉Z =

〈

hν̂,
(

D1k
2
1 − D2k

2
2

)

�� + (D1 − D2)

[

D1

D2

∂�1

∂ν

∂�1

∂ν
+ ∇‖� · ∇‖�

]〉

Ŵ

,

(34)

where the notation 〈,〉Ŵ indicates that the considered quantities are actually restricted to the

interface Ŵ, a well-known result from shape sensitivity analysis (see, for example, [50]).

Observing that D1k
2
1 −D2k

2
2 = µa,1 −µa,2 is actually real (due to (8)), and using the definition

of the adjoint (26), we can identify now

R
′∗(Ŵ)ζ = (µa,1 − µa,2)�� + (D1 − D2)

[

D1

D2

∂�1

∂ν

∂�1

∂ν
+ ∇‖� · ∇‖�

]

= (µa,1 − µa,2)�� + (D1 − D2)∇�2 · ∇�1, (35)

which is understood to be evaluated at the interface Ŵ due to (34). (See also the discussion in

[44]: the shape derivative can be interpreted as a surface measure concentrated on the interface

Ŵ. Formally, we can extend (35) to the entire domain P by multiplication with the Dirac delta

distribution concentrated on Ŵ. For more details see [18].) Here we dropped subindices where

the corresponding quantities are continuous (which includes the tangential gradients) at Ŵ and

we used

∇�2 =
∂�2

∂ν
ν̂ + ∇‖�2, (36)

∇�1 =
∂�1

∂ν
ν̂ + ∇‖�1, ν̂ · ∇‖ = 0. (37)

4. Implementation

In this section we give a few more technical details on how we have implemented the forward

problem and its linearization.



1520 A D Zacharopoulos et al

4.1. The forward problem: boundary integral equation

Since the boundaries Ŵℓ are the unknowns of the inverse problem under consideration, we

adopt a boundary integral equations (BIE) representation for the forward model. We introduce

the following notation:

Uℓ := �ℓ−1|Ŵℓ
= �ℓ|Ŵℓ

, (38)

Vℓ := Dℓ−1

∂�ℓ−1

∂νℓ−1

∣

∣

∣

∣

Ŵℓ

= −Dℓ

∂�ℓ

∂νℓ

∣

∣

∣

∣

Ŵℓ

≡ Dℓ−1

∂�ℓ−1

∂ν

∣

∣

∣

∣

Ŵℓ

= Dℓ

∂�ℓ

∂ν

∣

∣

∣

∣

Ŵℓ

. (39)

As in section 3 we consider the simplified case of only two regions. For a more general

implementation we refer to [47]. For homogeneous region �1,�2, making use of the definition

of the normals in section 3, Green’s second theorem provides the following:

�1(r;ω) +

∫

∂�

(

∂G1(r, r′;ω)

∂ν
+

G2(r, r′;ω)

2αD1

)

U1(r
′;ω) dS(r′)

−

∫

Ŵ

(

∂G1(r, r′;ω)

∂ν
U2(r

′;ω) −
G1(r, r′;ω)

D1

V2(r
′;ω)

)

dS(r′) = Q1(r;ω)

(40)

�2(r;ω) +

∫

Ŵ

(

∂G2(r, r′;ω)

∂ν
U2(r

′;ω) −
G2(r, r′;ω)

D2

V2(r
′;ω)

)

dS(r′) = Q2(r;ω), (41)

where

Qℓ(r;ω) =

∫

�ℓ

Gℓ(r, r′;ω)qℓ(r
′) dnr′ (42)

and the fundamental solutions Gℓ are the three-dimensional Green’s functions of the diffusion

equation in an infinite medium which take the form of spherical waves

Gℓ(r, r′, ω) =
1

4π |r − r′|
e−kℓ|r−r′|. (43)

Taking the limit as r ∈ �1 → ∂�, r ∈ �1 → Ŵ and r ∈ �2 → Ŵ results in three coupled

BIEs in the three unknown functions

{f} = {U1, U2, V2}, (44)

whose form is given by

ξ+
1 (r)U1(r;ω) +

∫

(∂�−σ +
ε )

(

∂G1(r, r′;ω)

∂ν
+

G1(r, r′;ω)

2αD1

)

U1(r
′;ω) dS(r′)

−

∫

Ŵ

(

∂1G1(r, r′;ω)U2(r
′;ω) −

G1(r, r′;ω)

D1

V2(r
′;ω)

)

dS(r′) = Q1(r;ω)

(45)

ξ−
1 (r)U2(r;ω) +

∫

∂�

(

∂G1(r, r′;ω)

∂ν
+

G1(r, r′;ω)

2αD1

)

U1(r
′;ω) dS(r′)

−

∫

(Ŵ−σ−
ε )

(

∂1G1(r, r′;ω)U2(r
′;ω) −

G1(r, r′;ω)

D1

V2(r
′;ω)

)

dS(r′)

= Q1(r;ω) (46)

ξ+
2 (r)U2(r;ω) +

∫

(Ŵ−σ +
ε )

(

∂G2(r, r′;ω)

∂ν
U2(r

′;ω) −
G2(r, r′;ω)

D2

V2(r
′;ω)

)

dS(r′) = 0,

(47)
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where we assumed that the source term is only in �1. The extra function ξ±
ℓ (r) in (45)–(47)

arises due to singularities on the boundary. These terms can be calculated by surrounding the

point r, which lies on the boundary, by a small hemisphere σε of radius ε and taking the limit

when ε → 0. However, as shown in [6, 9], this term can be obtained indirectly by utilizing

some simple physical considerations. In particular, we have ξ+
i (r) = ξ−

i (r) = 1
2

when the

observation point lies on a smooth surface, which is the case considered here.

4.2. Discretization by a boundary element method

The interfaces Ŵℓ are discretized to meshes

Vℓ = {Tℓ, Nℓ, Uℓ}

where Tℓ is the set of Pℓ surface elements τℓ,e; e = 1, . . . , Pℓ, Nℓ is the set of Nℓ

vertices Nℓ,p;p = 1, . . . , Nℓ and Uℓ is the set of Nℓ locally supported basis functions

ψℓ,p(r);p = 1, . . . , Nℓ. Then functions (38), (39) are represented as

Uℓ(r;ω) ≈

Nℓ
∑

p=1

Uℓ,p(ω)ψℓ,p(r), Vℓ(r;ω) ≈

Nℓ
∑

p=1

Vℓ,p(ω)ψℓ,p(r). (48)

Using the representation (48) in the BIE system (45)–(47) followed by sampling at the nodal

points, we obtain a discrete system known as collocation boundary element method [2, 6, 7,

48, 49] to construct a linear matrix equation








1
2
I + A

(1)
11 + 1

2α
B

(1)
11 −A

(1)
12 B

(1)
12

A
(2)
11 + 1

2α
B

(2)
11

1
2
I − A

(2)
12 B

(2)
12

0 1
2
I + A

(2)
22 −B

(2)
22















U1

U2

V2






=







Q1|∂�

Q1|Ŵ

0






(49)

with Uℓ, Vℓ being the vectors of coefficients Uℓ,p(ω), Vℓ,p(ω) in (48), and matrix elements

given by

A
(j)

11 (p, p′) =

∫

∂�

∂G1(Nj,p, r′;ω)

∂ν
ψ1,p′(r′) dS(r′)

A
(j)

12 (p, p′) =

∫

Ŵ

∂G1(Nj,p, r′;ω)

∂ν
ψ2,p′(r′) dS(r′)

A
(j)

22 (p, p′) =

∫

Ŵ

∂G2(Nj,p, r′;ω)

∂ν
ψ2,p′(r′) dS(r′)

B
(j)

11 (p, p′) =

∫

∂�

G1(Nj,p, r′;ω)

D1

ψ1,p′(r′) dS(r′)

B
(j)

12 (p, p′) =

∫

Ŵ

G1(Nj,p, r′;ω)

D1

ψ2,p′(r′) dS(r′)

B
(j)

22 (p, p′) =

∫

Ŵ

G2(Nj,p, r′;ω)

D2

ψ2,p′(r′) dS(r′).

Note that appropriate numerical techniques for handling the singularity of the kernels are

required for the diagonal elements of these matrices [47]. We represent (49) as

Tf = Q, (50)

where f = [U1, U2, V2] is the discrete version of {f} in (44). The matrix T takes the form of a

dense un-symmetric block matrix. The corresponding system is solved using a preconditioned

GMRES solver. For each source position qj we construct the right-hand side vector Q(j) and

solve the linear system (50) and use the measurement operator M : C
N1 → C

M from (13) to

get the measurements g(j).
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4.3. Construction of the Jacobian

The component Jij,k of the Jacobian represents the variation of the ith measurement of the j th

source with respect to the kth shape basis function. We take q(j) to be the source distributions

and ζ to be the sampling functions wi from (14), whence the BIE formulation to the forward

problem yields a set of functions (cf (44))

{f (j)} =
{

U
(j)

1 , U
(j)

2 , V
(j)

2

}

and to the adjoint problem yields a set

{f +(i)} =
{

U
+(i)
1 , U

+(i)
2 , V

+(i)
2

}

,

where we introduced the notation (cf (38), (39))

U+
2 := �2|Ŵ = �1|Ŵ, (51)

V +
2 := D2

∂�2

∂ν

∣

∣

∣

∣

Ŵ

= D1

∂�1

∂ν

∣

∣

∣

∣

Ŵ

. (52)

Making use of (34) we write

Jij,k = −〈R′
j [γk], wi〉Z =

〈

γk,−(µa,1 − µa,2)U
(j)

U+(i)

− (D1 − D2)

[

1

D1D2

V
(j)

2 V
+(i)

2 + ∇‖U
(j)

2 · ∇‖U
+(i)
2

]〉

Ŵ

. (53)

Using the same representation (48) for the adjoint functions we get

Jij,k = −(µa,1 − µa,2)
∑

p,p′

U
(j)

2,pU
+(i)
2,p′

∫

Ŵ

γkψ2,pψ2,p′ dS

− (D1 − D2)
1

D2D1

∑

p,p′

V
(j)

2,pV
+(i)

2,p′

∫

Ŵ

γkψ2,pψ2,p′ dS

− (D1 − D2)U
(j)

2,pU
+(i)
2,p′

∫

Ŵ

γk∇‖ψ2,p · ∇‖ψ2,p′ dS (54)

and introducing a similar vector notation as in (49) we get

Jij,k = −(µa,1 − µa,2)U
+(i)

2 · E
(k)U

(j)

2 − (D1 − D2)
1

D2D1

V
+(i)

2 · E
(k)V

(i)
2

− (D1 − D2)U
+(i)

2 · F
(k)U

(j)

2 . (55)

The matrices E
(k) and F

(k) are sparse having non-zero elements only where the basis functions

ψ2,p and ψ2,p′ have overlapping support. They are given by

E
(k)
pp′ =

∫

Ŵ

γkψ2,pψ2,p′ dS, (56)

F
(k)
pp′ =

∫

Ŵ

γk∇‖ψ2,p · ∇‖ψ2,p′ dS. (57)

They can be constructed element wise using the same machinery for the construction of the

BEM matrices, and are constant at each iteration of the inverse problem, before Ŵ is updated

and re-meshed.



Three-dimensional reconstruction of piecewise constant regions 1523

We note here that we can write an equivalent expression

Jij,k = −f
+(i)

·





0 0 0

0 δµaE
(k) + δDF

(k) 0

0 0 δD
D1D2

F
(k)



 f(j)

= −(T−1w(i)) ·
∂T

∂γk

T
−1Q(j), (58)

where the component δµaE
(k) + δDF

(k) of the discrete derivative ∂T

∂γk
is identical to expressions

(31), (32) of [30]. The extra term δD
D1D2

F
(k) arises because of the discontinuity in the normal

derivatives which is explicitly represented in the BEM framework.

4.4. Data rescaling

In practice the measurements in the frequency domain experiment for DOT are complex

numbers, that is g ∈ C
MS , where M is the total number of detectors and S is the total number

of the sources. We use the following representation for g:

g = Re[g] + i Im[g] = ‖g‖ exp{i arg(g)}, (59)

where

‖g‖ = (Re[g]2 + Im[g]2)
1
2 (60)

is the amplitude of the data, and

arg(g) = arctan

(

Im[g]

Re[g]

)

(61)

is the phase. Then, by taking the log of (59), we get

log(g) = log(‖g‖) + i arg(g). (62)

Finally, we assemble the data as

g̃ =

(

log(‖g‖)

arg(g)

)

. (63)

This logarithmic scaling reduces the difference in the magnitude of the values for amplitude

and phase data. Taking the residual in the scaled data results in

̃(γ ) = ‖log(g) − log(K(γ ))‖2. (64)

The scaled and split Jacobian J̃ will then be

J̃(γ ) =

(

Re
[

diag
(

1
K(γ )

)

J(γ )
]

Im
[

diag
(

1
K(γ )

)

J(γ )
]

)

. (65)

5. Numerical results from 3D simulations

We consider numerical results of the proposed method for three-dimensional reconstructions

in diffusive optical tomography with frequency domain data. In the following subsections we

will discuss the capabilities and the weaknesses of the proposed method with an emphasis on

medical applications. In particular, we will begin the reconstruction of a small inclusion for

a realistic head geometry. Then, the reconstruction of a large, non-convex inclusion will be

attempted in order to address the problem of the extraction of structural information for tissue

from optical measurements on the surface. Finally, an attempt is made to test the simultaneous

recovery of both optical and shape coefficients.
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Figure 5. Example 1: recovery of inhomogeneity shape from OT measurements on the surface

with known a priori optical parameters. The target is the green shape described with 48 spherical

harmonic parameters, and the reconstructed shape is red. The reconstruction starts with 12 spherical

harmonics and continues by increasing it up to 48.

M An AVI movie of this figure is available from stacks.iop.org/IP/22/1509

5.1. Example 1: region recovery inside homogeneous medium

In this experimental setup, a geometric model for an infant’s head is created and treated as a

homogeneous domain. We use a mesh of 362 nodes and 180 surface elements to model the

external surface of the head. The optical parameters chosen for the homogeneous background

are set to µa = 0.01 mm−1 and µ′
s = 1 mm−1.

In the interior of the head an arbitrary-shaped inhomogeneity �2 with optical properties

of µa = 0.02 mm−1 and µ′
s = 2 mm−1 is embedded. Its surface is described by 16 spherical

harmonic coefficients γ ⋄ for each Cartesian coordinate x, y, z. This defines a parametric

surface using up to third degree spherical harmonics. A regular mesh with 180 elements and

362 nodes is mapped onto that surface to create the discrete approximation necessary for the

BEM calculation, see figure 5.

Using this geometric setup, we assign 20 sources and 20 detector positions on the surface

of the head as shown in figure 2. The modulation frequency of the sources is set to 100 MHz.

Synthetic data are then collected at the 20 detectors using the forward model K
(

γ ⋄, µ⋄
a ,D

⋄
)

with one source illuminated at a time. Gaussian random noise with a standard deviation of

1% of the measured signal is added to these data.

As the initial guess for the inverse problem we select a closed surface centred at a random

position. In this case, we start with four parameters for each direction in a first degree spherical

harmonic description. This choice leads to a search space of dimension 3 × 4 = 12. The

optimization continues until a local minimum has been reached and then an extra degree of

spherical harmonics is added to the description. The addition of degrees is continued until

the final shape is constructed with third degrees of spherical harmonics which matches the

degrees used for the simulated data object.

In figure 5 we can observe the reconstruction procedure. The initial iterations worked

towards the recovery of the centre of the object and the shape, while further iterations and the

addition of the higher degrees of spherical harmonics drive the recovery of finer details.
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Figure 6. Example 1: evolution of different measures with iteration. Shown from top to bottom are

the data residual of the optimization, the volume ratios between target and reconstructed shape, the

Hausdorff measure for the mismatch between the surfaces of the shapes and the distance between

the centre of the target object and the reconstructed one.

To assess the success of the recovery of the inhomogeneity we measure the residual of the

data ‖log(g) − log(K(γ, µa,D))‖2 which can be seen in the top row of figure 6 plotted in a

log scale. The residual is decreased during the first iterations until a local minimum is reached

and then the addition of further degrees of spherical harmonics allows it to reduce further.

The volume of the object recovered is the second measure that we used. To calculate the

volume the object is divided into tetrahedra based on the mapped mesh and the volume of all

the tetrahedra is added to calculate the total volume of the object. The initial volume of the

target object is 109.8159 mm3 while the volume of the starting shape for the reconstructed

object is 30.0728 mm3. The second row of the figure shows the ratio of the volume of the

reconstruction shape in each iteration to the volume of the target shape. The final reconstructed

shape has a volume of 110.5494 mm3 giving a good approximation of the target volume.

The next row of figure 6 shows the Hausdorff distance H(Ŵ⋄, Ŵ(n)) between the target

surface Ŵ⋄ and the estimated surface Ŵ(n) in iteration n. The Hausdorff distance measures the

degree of mismatch between the two sets N
⋄, N

(n), as the distance of the point of N
⋄ that is

farthest from any point of N
(n) and is defined as

H(Ŵ⋄, Ŵ(n)) = max
N∈Ŵ⋄

min
N′∈Ŵ(n)

|N − N′|.

Finally, the zeroth degree of the spherical harmonic representation, which represents the

centre of the objects, is used in the fourth row of figure 6. The plot is of the distance between

the centre of the target and reconstructed object.

C0
0(Ŵ

⋄, Ŵ(n)) = |c⋄ − c(n)|

with c given by (10).

As can be seen, the location and the approximate shape of the simple 3D inclusion can

be recovered with good accuracy from noisy data. The centre and the size of the object is

reconstructed within the first iterations as the C0
0 and Hausdorff distance indicate, and the

optimization continues with the finer details.
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Figure 7. Example 2: target shape.

5.2. Example 2: recovery of large non-convex object

As a second example we consider the larger object shown in figure 7. The volume of

this object is 1082.5 mm3 making it more than ten times bigger than that in the example

of section 5.1. In this case a non-convex object was chosen to show the capabilities of the

spherical harmonic representation. The complexity of the object was described by 48 spherical

harmonic parameters for the third degree description. For the mapping we used a larger mesh

of 500 elements and 1002 nodes. Position of sources and detectors, modulation frequency and

added noise in the data was as in the example of section 5.1.

In figures 8 and 9 we show the evolution of the shape and the corresponding metrics as in

figures 5 and 6. To show more clearly the higher order shape recovery we show in figure 10

the approximations of the reconstructed shape to first, second and third degrees.

5.3. Example 3: recovery of optical coefficients and shape parameters

This experiment extends the shape recovery method to the situation where the values of µa and

µ′
s are also considered as unknown variables. More precisely, the simulated data are created

assuming the optical properties µ⋄
a = 0.02 mm−1 and µ′⋄

s = 2 mm−1 for the region �2, and

µ⋄
a = 0.01 mm−1 and µ′⋄

s = 1 mm−1 for the homogeneous background. The geometric setup

is as given in section 5.1. There was no added noise in this example.

In this case we allow the reconstruction to use only first degree spherical harmonics

leading to a search space of 12 parameters for the shape and 2 parameters for the optical

properties. The strategy that we decided to use combines four iterations of shape optimization

alone and then one of optimizing the optical parameters on their own. This alternation strategy

prevents the optical properties to move far from the desired value while the shape is still far

from the correct one.

For the derivatives ∂K(γ,µa,D)

∂µa
and ∂K(γ,µa,D)

∂µs
of the forward operator with respect to the

absorption and scattering coefficients for the subregion �2 we use a straightforward finite

differencing scheme, running two additional forward problems on slightly perturbed optical

parameter values inside this subregion.

We chose the initial optical parameters as seen in the first two columns of table 1 so that

they represent all possible situations for underestimation or overestimation of one or both of
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Figure 8. Example 2: recovery of shape of a large non-convex object. The reconstruction scheme

is as in figure 5.

M An AVI movie of this figure is available from stacks.iop.org/IP/22/1509
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Figure 9. Example 2: evolution of the reconstruction metrics for the large non-convex object. The

measures are the same as figure 6.

the µa, µ
′
s. The next two columns of the table show the reconstructed values after the evolution

of the shape and then the centres’ distances, the Hausdorff distance, and the volume ratios at

the last iteration of the evolution.
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Figure 10. Example 2: the reconstructed shape using up to first, second and third degrees of

spherical harmonics.

Table 1. Example 3: some experiments with simultaneous reconstruction for shape and optical

parameters.

µ
(0)
a µ

′(0)
s µ̂a µ̂s C0

0 (Ŵ⋄, Ŵ̂) H(Ŵ⋄, Ŵ̂) Vol. Cµa CD

0.015 2 0.017 138 1.6738 0.995 64 0.945 78 1.3403 0.956 68 0.903 59

0.017 1.7 0.018 049 1.7492 0.959 31 0.918 63 1.2204 0.982 31 0.914 97

0.017 2.2 0.018 037 1.7602 0.937 94 0.872 08 1.2138 0.975 57 0.923 25

0.02 2.5 0.019 817 1.9459 0.829 36 0.850 07 1.032 1.0131 0.976 51

0.022 1.7 0.020 002 1.963 0.848 96 0.898 94 1.0156 1.0158 0.978 36

0.022 2.2 0.020 628 2.017 0.842 45 0.946 01 0.971 19 1.0322 0.988 12

0.025 2 0.022 298 2.1742 0.811 04 1.0684 0.868 07 1.0675 1.0197

0.025 2.5 0.023 267 2.2886 0.767 08 1.1753 0.815 21 1.0816 1.0508

The last two columns of table 1 represent measures of the product of volume and contrast

as used for example in [5, 13]. We define

Cµa
=

V̂ol(�2)(µa,1 − µ̂a,2)

Vol⋄(�2)
(

µa,1 − µ⋄
a,2

) (66)

CD =
V̂ol(�2)

D1

D̂2
(D1 − D̂2)

Vol⋄(�2)
D1

D⋄
2

(

D1 − D⋄
2

) . (67)

As can be seen, in table 1 the optical parameters and the object volumes are not recovered

with complete accuracy. However, the contrast volume products given by (66) and (67) are

almost constant regardless of the initial starting values. This is consistent with the predictions

for diffusion coefficient contrast of [13] and for absorption coefficient contrast of [5]. However,

to the best of our knowledge there are no formal results for the simultaneous reconstructions

demonstrated here. Figure 11 shows the reconstructed shape (in red) for a variety of different

initial guesses for the optical properties µa and µ′
s , together with the target shape (green). We

note the small variation of the shape due to the different optical properties. For illustration

purposes the measurements of the evolution for the case of µa = 0.022 and µ′
s = 1.7 are

presented in figure 12.

6. Conclusions and future work

In the paper we proposed a novel reconstruction scheme for a shape-based three-dimensional

inverse problem for optical tomography. In our method the search space for the solution of

the inverse problem is defined in terms of a spherical harmonic expansion of the unknown
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Figure 11. Example 3: the reconstructed shape (red) and the target (in green) for different cases

of simultaneous recovery of shape and optical parameters.
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Figure 12. Example 3: the measures for the convergence of the algorithm for the example with

initial µa = 0.022 and µ′
s = 1.7.
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region surfaces. In doing so we incorporate in our scheme an implicit regularization where

the regularization parameter is the degree of spherical harmonics used for representing the

surfaces. An adjoint formulation of the parameter or shape sensitivities has been derived. In

our numerical experiments we have demonstrated that our scheme is able to reconstruct in

a stable and efficient way low-parametric approximations of quite complicated shapes from

few given data, both for relatively small, and for relatively large regions. The simultaneous

reconstruction of shape and optical parameters however is more difficult to achieve, and

requires longer iteration of the reconstruction. In those situations, the shape is usually

recovered well, but the final values of the reconstructed optical are not completely accurate.

These findings are consistent with the predictions of asymptotic approaches which suggest

that the product of recovered volume and a parameter dependent contrast function is the best

that can be achieved.

Possible directions for future research are the comparison of the presented scheme with

alternative shape-based techniques which use geometric penalization terms (as, for example,

surface measure) instead for regularizing the inversion. More complex examples such as the

reconstruction of multiple nested surfaces are also of interest, as is the application to measured,

rather than simulated data.
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[11] Brechbühler C, Gerig G and Kübler O 1995 Parametrization of closed surfaces for 3-D shape description

Comput. Vis. Image Underst. 61 154–70

[12] Burger M 2001 A level set method for inverse problems Inverse Problems 17 1327–55



Three-dimensional reconstruction of piecewise constant regions 1531

[13] Cedio-Fengya D J, Moskow S and Vogelius M S 1998 Identification of conductivity imperfections of small

diameter by boundary measurements. Continuous dependence and computational reconstruction Inverse

Problems 14 553–95

[14] Chan T F and Tai X-C 2003 Level set and total variation regularization for elliptic inverse problems with

discontinuous coefficients J. Comput. Phys. 193 40–66

[15] Dorn O, Miller E and Rappaport C 2000 A shape reconstruction method for electromagnetic tomography using

adjoint fields and level sets Inverse Problems 16 1119–56

[16] Dorn O 2004 Shape reconstruction in scattering media with voids using a transport model and level sets

Can. Appl. Math. Q. 10 239–75

[17] Dorn O 2004 Shape reconstruction for an inverse radiative transfer problem arising in medical imaging Springer

Series Computational Science and Engineering (vol Numerical Methods for Multidimensional Radiative

Transfer Problems) ed R Rannacher (Berlin: Springer) at press

[18] Dorn O and Lesselier 2006 Level set methods for inverse scattering Inverse Problems 22 R67–R131

[19] Duraiswami R, Chanine G L and Sarkar K 1997 Boundary element techniques for efficient 2-D and 3-D electrical

impedance tomography Chem. Eng. Sci. 52 2185–96

[20] Duraiswami R, Sarkar K and Chanine G L 1998 Efficient 2D and 3D electrical impedance tomography using

dual reciprocity boundary element techniques Eng. Anal. Bound. Elem. 22 13–31
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