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a b s t r a c t

Time domain boundary element formulations can be established either directly in time domain or via

Laplace or Fourier domain. Somewhere in between are the convolution quadrature based boundary ele-

ment formulations which utilize the Laplace domain fundamental solution but establish a time stepping

procedure. Up to now in applications mostly backward differential formulas of second order are used as

the underlying multistep method. However, in recent mathematical literature also Runge–Kutta methods

have been applied. Here, the use of Runge–Kutta methods is explained in detail and some numerical stud-

ies are given. In these studies the backward difference based procedures are compared to Runge–Kutta

methods for a non-smooth problem. An ‘2 norm of the error is used as the basis of comparison, the con-

vergence of which is investigated theoretically as well. The results confirm that the usage of the new

techniques is preferable with regard to less numerical oscillations in the solution and better representa-

tion of wave fronts.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Boundary Element Method (BEM) in time domain is espe-

cially important for treating wave propagation problems in semi-

infinite or infinite domains. In this application the main advantage

of this method becomes obvious, i.e., its ability to model the radi-

ation condition correctly. Certainly this is not the only advantage of

a time domain BEM but very often the main motivation as, e.g., in

earthquake engineering or scattering problems. The mathematical

background of time-dependent boundary integral equations is

summarized by Costabel [1].

The proposed methodologies to treat time dependent problems

with the BEM can be split in two main groups: direct computation

in time domain (e.g., [2,3]) or inverse transformation combined

with a computation in Laplace domain (e.g., [4]). Not only due to

the dependency of numerical inverse transformations on some

sophisticated parameter, but also due to physical reasons it is more

natural to work in the real time domain and observe the phenom-

enon as it evolves. But, as all time-stepping procedures, such a for-

mulation requires an adequate choice of the time step size. An

improperly chosen time step size leads to instabilities or numerical

damping [5–7]. An improved and stable version of the underlying

integral equation has been published by Bamberger and Ha-Duong

[8] and Aimi and Diligenti [9]. Both rely on an energy principle and

require two temporal integrations.

Beside these improved approaches there exists the possibility to

solve the convolution integral in the boundary integral equation

with the so-called Convolution Quadrature Method (CQM) pro-

posed by Lubich[10,11]. Applications to hyperbolic and parabolic

integral equations can be found in [12,13]. The CQM utilizes the La-

place domain fundamental solution and results not only in a more

stable time stepping procedure but also damping effects in case of

visco- or poroelasticity can be taken into account (see [14–16]).

The motivation to use the CQM in these engineering applications

is that only the Laplace domain fundamental solutions are re-

quired. This fact is also used for BE formulations in cracked aniso-

tropic elastic [17] or piezoelectric materials [18]. Another aspect is

the better stability behavior compared with the above mentioned

formulation. For acoustics this may be found in [19] and for elasto-

dynamics in [20]. Recently work has begun in investigating CQM

for electromagnetism [21]. In the framework of fast BE formula-

tions the CQM is used in a Panel-clustering formulation for the

Helmholtz equation by Hackbusch et al. [22] and in a Multipole

formulation by Saitoh et al. [23]. Recently, some newer mathemat-

ical aspects of the CQM have been published by Lubich [24]. Fur-

ther, interest in high order Runge–Kutta based CQM has lately

increased due to its good performance in applications, see [25]

for numerical experiments in acoustics and [26–28] for conver-

gence results. In this paper, the Runge–Kutta based CQM is de-

scribed in an engineering way and emphasis is put on the

numerical experiences. The mathematical background can be

found in [25,29].

In the following, matrices and vectors are denoted by sans serif

characters, e.g., A, and tensors by bold faced letters. The Laplace
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transform of a function f ðtÞ is denoted by f̂ ðsÞwith the complex La-

place parameter s 2 C s.t. Rs > 0.

2. Convolution quadrature with Runge–Kutta methods

The Convolution Quadrature Method (CQM) approximates a

convolution integral by a finite sum

yðtÞ ¼ f � gðtÞ ¼
Z t

0

f t � sð Þg sð Þds, y nDtð Þ � yn ¼
X

n

k¼0

xDt
n�k f̂
� �

gk

ð1Þ

with the integration weights xDt
n�k f̂
� �

determined by the Laplace

transform of the function f̂ ðsÞ and the underlying multistep method.

The time step size is denoted by Dt, which is assumed to be a uni-

form decomposition of the total time T. An index ðÞn denotes here

and in the following the function at the discrete time step nDt.

The derivation of the formula (1) will be recalled in its essential

steps. Details are given at those points in the derivation which are

different for Runge–Kutta methods. The other details may be found

in [20]. A more abstract derivation avoiding the inverse Laplace

integral can be found for the Runge–Kutta methods in [25].

However, before the CQM is given some notation and the char-

acteristic function of Runge–Kutta methods have to be provided.

2.1. Runge–Kutta methods

A comprehensive presentation of Runge–Kutta methods may be

found in the book by Hairer and Wanner [30]. Here, only the nec-

essary aspects for the CQM will be given.

Let a Runge–Kutta method of (classical) order p and stage order

q be given by its Butcher tableau with A 2 R
m�m; b; c 2 R

m

and m is the number of stages. A Runge–Kutta method is said to be

A-stable if the stability function

RðzÞ ¼ 1þ zbT I� zAð Þ�1
1; 1 :¼ ð1;1; . . . ;1ÞT ð2Þ

is bounded as

jRðzÞj61; for Rz60 and I�zA is non-singular for allRz60:

ð3Þ

The experience with the multistep based CQM in the application on

BEM shows that the assumption of A-stability is necessary (see, e.g.,

[20]). In order to be able to make use of the convergence results

proved in [27], the following assumptions will be made on the Run-

ge–Kutta method.

Assumption 2.1

1. The Runge–Kutta method is A-stable with (classical) order

p P 1 and stage order q 6 p.

2. The stability function satisfies jRðiyÞj < 1 for all real y– 0.

3. Rð1Þ ¼ 0.

4. The Runge–Kutta coefficient matrix A is invertible.

To simplify expressions assume further that bTA�1 ¼ ð0;0; . . . ;1Þ
holds, i.e., that the method is stiffly accurate [30] or also called

L-stable. This in turn implies that cm ¼ 1. Radau IIA and Lobatto IIIC

are examples of Runge–Kutta methods satisfying all of the above

conditions. In a Runge–Kutta method computations are done not

only at the equally spaced points tn ¼ nDt but also at the stages

tn þ c‘Dt; ‘ ¼ 1;2; . . . ;m. Note that cm ¼ 1 implies tn þ cmDt ¼ tnþ1.

The description of a Runge–Kutta method with one formula is

not straightforward due to the implicit definition of the stages.

Hence, in the following the Runge–Kutta method is given for the

specific differential equation

x0ðtÞ ¼ sxðtÞ þ gðtÞ with x t ¼ 0ð Þ ¼ 0; ð4Þ
which shows up in the derivation of the CQM. An m-stage Runge–

Kutta method for this equation is

xnþ1 ¼ xn þ DtbT sXn þ gnð Þ; ð5aÞ
Xn ¼ xn1þ DtA sXn þ gnð Þ: ð5bÞ

In (5), the right hand side g tn þ ciDtð Þ at the stages ci is collected in

the vector gn. Further, Xn denotes the vector of approximations at

the stages and time step n.

For the derivation of the CQM it is necessary to find the charac-

teristic function of the method. In case of multistep methods it is

the quotient of the characteristic polynomials. For Runge–Kutta

methods a similar expression can be given. For this, (5) is reformu-

lated as difference of stages

1

Dt
Xnþ1 � Xnð Þ ¼ A sXnþ1 þ gnþ1

� �

� A� 1bT
� �

sXn þ gnð Þ ð6Þ

by inserting the solution xnþ1 � xn of (5a) into (5b). Next, a formal z-

transform is performed yielding the infinite series

z�1 � 1

Dt

X

1

n¼0

Xnz
n ¼ z�1 � 1

� �

Aþ 1bT
� �

s
X

1

n¼0

Xnz
n þ

X

1

n¼0

gnz
n

" #

D zð Þ
Dt

X

1

n¼0

Xnz
n ¼ s

X

1

n¼0

Xnz
n þ

X

1

n¼0

gnz
n;

D zð Þ
Dt

� sI

� �

X

1

n¼0

Xnz
n ¼

X

1

n¼0

gnz
n;

ð7Þ

with z 2 C and the assumption that Xn and gn for n 6 0, i.e., t 6 0 is

zero. The characteristic function is defined as

D zð Þ ¼ Aþ z

1� z
1bT

� ��1

: ð8Þ

Under the assumption of A- and L-stability, as mentioned above, the

characteristic function can be simplified to

D zð Þ ¼ A�1 � zA�1
1bTA�1: ð9Þ

The solution of the differential Eq. (4) at tnþ1 is given by the solu-

tions at the stages Xn which can be calculated with

xnþ1 ¼ bTA�1Xn: ð10Þ

This expression can be found by inserting (5b) in (5a).

2.2. Runge–Kutta based convolution quadrature

The explicit formula for computing the integration weights in

(1) is derived in the same manner as in the original work of [10].

The function f ðtÞ in the convolution integral is replaced by the in-

verse Laplace transform of its Laplace transformed function f̂ ðsÞ,
i.e.,

yðtÞ ¼ 1

2pi

Z cþi1

c�i1
f̂ ðsÞ

Z t

0

es t�sð Þg sð Þdsds: ð11Þ

The integral inside the complex integral is a solution of the differen-

tial Eq. (4) and, hence, can be approximated by the Runge–Kutta

solution (10) after the discretisation of the total time T in N equidis-

tant time steps Dt. To insert the discrete solution (10) in (11) as well

a formal z-transform is applied. This yields

X

1

n¼0

ynþ1z
n ¼ 1

2pi

Z cþi1

c�i1
f̂ ðsÞbTA�1 D zð Þ

Dt
� sI

� ��1

ds
X

1

n¼0

gnz
n

¼ bTA�1 f̂
D zð Þ
Dt

� �

X

1

n¼0

gnz
n: ð12Þ
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In the last step, the residue theorem has been applied. Note, differ-

ent to the CQM for a multistep method the argument of the function

f is a matrix and, hence, the expression itself as well. The next step is

the power series expansion

f̂
D zð Þ
Dt

� �

¼
X

1

n¼0

WDt
n f̂
� �

zn ð13Þ

with the computation of the coefficients

WDt
n f̂
� �

¼ 1

2pi

I

jzj¼R

f̂
D zð Þ
Dt

� �

z�n�1dz¼R
�n

2p

Z 2p

0

f̂
D Reiu
� �

Dt

� �

e�inudu

�R
�n

L

X

L�1

‘¼0

f̂
D Rf�‘
� �

Dt

 !

fn‘ with f¼ei
2p
L ; 0<R<1: ð14Þ

The remaining steps are to insert the series (13) into (12), using

Cauchy’s formula for the product of two infinite series, and compar-

ing the coefficients of the final series to obtain

ynþ1 ¼ bTA�1
X

n

k¼0

WDt
n�k f̂
� �

gk: ð15Þ

This is formally the same result as for multistep methods but the

essential difference is that the integration weights are nowmatrices

with the size of the stages. Further, the results are given for time

step nþ 1ð ÞDt and not for nDt. This results from (10) and is, obvi-

ously, the consequence from collecting the results at all stages in

the next time step. Last, it should be recalled that bTA�1 ¼
ð0;0; . . . ;1Þ has been assumed.

3. A simple analytical study

In this section, the convolution

Z t

0

dðt � s� 1ÞgðsÞds ¼ gðt � 1Þ ð16Þ

is considered. Here, dðtÞ is the Dirac delta distribution.

3.1. Backward Euler discretization

Firstly, the above convolution (16) is discretised with the sim-

plest convolution quadrature based on the backward Euler meth-

od. Note that backward Euler is also often called the backward

differentiation formula of order 1 (BDF 1), but is also equivalent

to the 1-stage Radau IIA Runge–Kutta method. Its characteristic

function is given by

DðfÞ ¼ 1� f

and since the Laplace transform of dðt � 1Þ is e�s, the convolution

weights for (16) are given by the expansion

e�ð1�fÞ=Dt ¼
X

1

j¼0

wDt
j fj; with wDt

j ¼ 1

j!
e�

1
DtDt�j: ð17Þ

To further simplify matters let gðtÞ ¼ HðtÞ, i.e., the Heaviside func-

tion defined by

HðtÞ ¼ 1 if t P 0

0 otherwise:

�

ð18Þ

The convolution quadrature approximation of (16) is then given by

yDtnþ1 ¼
X

n

j¼0

wDt
j Hðtnþ1 � tjÞ ¼

X

n

j¼0

wDt
j ¼ e�

1
Dt

X

n

j¼0

1

j!
Dt�j: ð19Þ

The standard theory of convolution quadrature cannot be applied to

this case, the main reason being that HðtÞ is not a smooth function

of t 2 R. However, the simple setting allows to investigate the

properties of the discrete solution directly. The results are summa-

rized in the following.

Proposition 3.1. Let Dt > 0. Then, with the above definitions, it can

be proved that:

(a) With Dt > 0 fixed,

lim
n!1

yDtn ¼ 1:

(b) wDt
j > 0 for all j P 0 and, hence, with Dt > 0 fixed, yDtn is a

strictly increasing sequence with 0 < yDtn < 1.

(c) For any fixed t 2 ½0;1Þ [ ð1;1Þ,

lim
Dt!0

jyDtt=Dtþ1 � Hðt � 1Þj ¼ 0;

where it is implicitly assumed that Dt is always chosen so that

t=Dt 2 N.

Proof. Part (a) follows directly from (19) and part (b) from (17)

and (a).

To prove (c), let first t ¼ 1þ e for some e > 0 and let

n ¼ ð1þ eÞ=Dt. Then

1� yDtnþ1 ¼ e�
1
Dt e

1
Dt �

X

n

j¼0

1

j!

1

Dtj

 !

¼ e�
1
Dt

X

1

j¼nþ1

1

j!

1

Dtj

6 e�
1
Dt

X

1

j¼nþ1

1
ffiffiffiffiffiffiffiffi

2pj
p

e

jDt

� �j

6
1
ffiffiffiffiffiffiffiffiffi

2pn
p

X

1

j¼nþ1

1

jDt
e1�

1
jDt

� �j

;

where use is made of Stirling’s approximation. It is easy to check that

f ðxÞ ¼ x�1e1�x�1
< 1 is a decreasing function for x > 1 and, hence,

X

1

j¼nþ1

1

jDt
e1�

1
jDt

� �j

6
X

1

j¼nþ1

f ðnDtÞj ¼ f ðnDtÞnþ1

1� f ðnDtÞ ¼
f ð1þ eÞnþ1

1� f ð1þ eÞ ! 0;

as n ! 1. From this it follows that

j1� yDtnþ1j ¼ 1� yDtnþ1 ! 0

as Dt ! 0. With that, the result for t > 1 is proved.

Finally let t ¼ nDt < 1. Then

yDtnþ1 ¼ e�n=t
X

n

j¼0

1

j!

n

t

� �j

6 e�n=t þ e�n=t
X

n

j¼1

ne

jt

� �j

¼ e�n=t þ
X

n

j¼1

n

jt
e1�

n
jt

� �j

¼ e�n=t þ
X

n

j¼1

n

jt
e1�

n
jt

� �jt=n
" #n=t

:

Similarly as above, notice that gðxÞ ¼ ðxe1�xÞ1=x ¼ ex
�1ð1þlog xÞ�1 < 1

and g0ðxÞ < 0 holds for x > 1 and, hence, gðn=ðjtÞÞ 6 gð1=tÞ for

j ¼ 1; . . . ;n and

yDtnþ1 6 e�n=t þ n
e1�1=t

t

� �n

! 0

as n ! 1, i.e., as Dt ! 0. h

The principal reason for such nice properties of the discrete

solution in the above example is the fact that in this case all the

weights are positive. For instance, the consequence of this is that

there is no over or undershoot, the discrete solution remains in

the interval ½0;1�. However, as soon as more complicated methods

are considered this positivity of weights is lost. Such examples are

studied in Section 4, whereas in Fig. 1 only a numerical comparison

between the convolution quadrature based on backward Euler

approximation and the BDF 2 based results is shown. For the latter

method the overshoot is obvious and does not seem to disappear

with decreasing Dt.
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3.2. An L2ðRÞ convergence result

In a weaker norm such as L2ðRÞ, it is possible to prove conver-

gence for a larger family of Runge–Kutta convolution quadratures.

To do this, let gðtÞ 2 L2ðRÞ with gðtÞ � 0 for t < 0 and let

jðLgÞðsÞj 6 Cjsj�l; 8Rs > 0;

with l > 1=2.

The following definitions will be used

yðtÞ ¼
Z t

0

dðt � s� 1ÞgðsÞds ¼ gðt � 1Þ

and

yDtðtÞ ¼ bTA�1
X

1

j¼0

WDt
j gðt � tj þ ðc� 1ÞDtÞ;

where WDt
j 2 R

m�m are the weights of a Runge-Kutta method with

generating function DðzÞ

e�DðzÞ=Dt ¼
X

1

j¼0

WDt
j zj

and gðt þ cDtÞ 2 R
m denotes the vector

gðt þ cDtÞ ¼ gðt þ c1DtÞ; gðt þ c2DtÞ; . . . ; gðt þ cmDtÞð ÞT 2 R
m;

in particular

gðtn þ cDtÞ ¼ gn;

with gn as in (5). Note that in grid points the definition matches the

CQ approximation of
R t

0
dðt � s� 1ÞgðsÞds as defined in the previous

sections

ynþ1 ¼ bTA�1
X

n

k¼0

WDt
n�kgk ¼ bTA�1

X

1

j¼0

WDt
j gn�j ¼ yDtðtnþ1Þ:

Theorem 3.2. Let DðfÞ be the generating function of an A-stable RK

method of order p, that satisfies the further assumptions listed in

Assumption 2.1. Then, under the above assumptions on g, it holds that

kyDt � ykL2ð½0;T�Þ ¼ OðDtbÞ

with

b ¼ min
ð2l� 1Þp
2ðpþ 1Þ ;p

� 


:

Proof. Clearly yDt and y are L2ð½0; T�Þ functions and their Laplace

transforms are given respectively by

LyDt
� �

ðsÞ ¼ bTA�1
X

1

j¼0

WDt
j e�stj

 !

esDtðc�1ÞðLgÞðsÞ

¼ bTA�1e�Dðe
�sDt Þ=DtesDtðc�1ÞðLgÞðsÞ

(see also (12)) and

Lyð ÞðsÞ ¼ e�sðLgÞðsÞ:

Let s ¼ rþ ix with r > 0 constant and x 2 R. Then by Parseval’s

identity

ky� yDtk2L2 ½0;T� 6 Ce2rT
Z 1

�1

1

jsj2l
e�s � bTA�1e�Dðe�sDtÞ=DtesDtðc�1Þ
�

�

�

�

�

�

2

dx

¼ Ce2rT
Z

jxj6ðDtÞ�p=ðpþ1Þ
�dxþ

Z

jxj>ðDtÞ�p=ðpþ1Þ
�dx

 !

¼ Ce2rTðI1 þ I2Þ:

Fig. 1. In the left column, the weights of the BDF 1 (backward Euler) and the BDF 2 based convolution quadrature weights for the function f̂ ðsÞ ¼ e�s are shown. In the right

column, the respective convolution quadrature approximations of (16) are displayed.
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Due to the assumptions made on the RK method (in particular the

A-stability) the bound

ke�Dðe�sDtÞ=Dtk 6 const

holds in any matrix norm k � k. Therefore integral I2 can be esti-

mated as

I2 6 const

Z

jxj>ðDtÞ�p=ðpþ1Þ

1

jsj2l
dx ¼ OðDtð2l�1Þp=ðpþ1ÞÞ:

To estimate integral I1 the approximation property

bTA�1e�Dðe�sDtÞ=DtesDtðc�1Þ ¼ e�s þ spþ1
OðDtpÞ

proved in [27, Lemma 4] can be used to show that

I1 6 constDt2p
Z

jxj<ðDtÞ�p=ðpþ1Þ
jsj2pþ2�2ldx

¼ OðDtð2l�1Þp=ðpþ1ÞÞ þ OðDt2pÞ:

With this the proof is complete. h

Remark 3.3. The above proof can easily be modified to obtain the

same result for linear multistep methods. Discrete ‘2 error esti-

mates for linear multistep based CQ have been given in [13]. These,

however, require more smoothness of g than the numerical exam-

ples in this paper possess.

Let gðtÞ ¼ HðtÞ, then clearly g satisfies the assumptions of the

theorem with l ¼ 1, therefore the expected convergence order is

p=ð2pþ 2Þ. Numerical experiments confirming this result are illus-

trated in Fig. 2 with one difference: instead of the L2ðRÞ error, the
discrete ‘2 error is computed

eDt ¼ Dt
X

N

j¼0

ðyðtnÞ � yDtn Þ2
 !1=2

; tN ¼ T: ð20Þ

As can be seen from Fig. 2, the numerically computed rates closely

match the rates predicted by the above theorem. Only for the 3-

stage method there is a slight discrepancy. Here the expected rate

is 5=12 � 0:42 and the numerically computed is 0.45. The rate is

however decreasing with Dt so that this does not contradict the

theoretical result.

4. Numerical study for a model convolution integral

To keep the study as simple as possible, only two functions are

convoluted, which have focus on the application in boundary

element formulations for wave propagation problems. Hence, in

principle a wave in time is simulated with the two functions

f ðtÞ ¼ d t � að Þ; gðtÞ ¼ HðtÞ � H t � bð Þ

)
Z t

0

f t � sð Þg sð Þds ¼ H t � að Þ � H t � a� bð Þ: ð21Þ

In the following, the behavior of the CQMwith respect to the chosen

Runge–Kutta method compared to the multistep method Backward

Differential Formula of order two (BDF 2) is numerically studied.

The used Runge–Kutta methods are the 2-stage and 3-stage Radau

IIA and Lobatto IIIC methods. The respective Butcher tableaus can

be found in Table 1.

Before discussing the results a remark must be added on how to

compute the integration weights in (15). The Laplace transform of

function f ðtÞ ¼ d t � að Þ in (21) is an exponential function. Hence,

the expression

e�a
D Rf�‘ð Þ

Dt ¼ Y diag e�
a
Dt
k1 ; . . . ; e�

a
Dt
km

� �

Y�1 ð22Þ

has to be computed. The relation (22) is true if there exists an

invertible matrix Y and a diagonal matrix K ¼ diag k1; . . . ; kmð Þ such
that D Rf�‘

� �

¼ YKY�1 holds. In [25], it has been shown that there is

only a single value of Rf�‘, respectively two such values, for which

D Rf�‘
� �

is not diagonalizable in the case of the 2-stage Radau IIA

method and, respectively, the 3-stage Radau IIA method. These par-

ticular values are very unlikely to be hit during a computation, still

the condition number of the basis of eigenvectors Y should, as a pre-

caution, be examined. In this unlikely case, a slight change of R will

solve the problem.

First, the above mentioned Runge–Kutta methods are com-

pared, where R
N ¼

ffiffiffiffiffiffiffiffiffiffiffi

10�5
p

is used (see, [10]). The total time is set

to T ¼ tN ¼ 4:5 s and the parameters are chosen with a ¼ 0:5 and

b ¼ 3. The total amount of time steps has been chosen to be

N ¼ 512 for the BDF 2, which results in a time step size of

Dt ¼ 0:0088 s. As for an m-stage Runge–Kutta method the func-

tions have to be evaluated not only at the time steps but also at

the stages, for a fair comparison (results’ quality compared to

effort) in case of the 2-stage method N=2 ¼ 256 time steps and

for the 3-stage method N=3 ¼ 170 time steps are selected. This re-

sults obviously in larger time step sizes. Still, also with this choice

the numerical effort for the Runge–Kutta methods are slightly

higher due to the matrix evaluations.

In Fig. 3, the results for the test functions (21) are displayed for

the BDF 2, the Radau IIA, and Lobatto IIIC method. Both Runge–Kut-

ta methods are displayed for their 2-stage version because the

principal behavior is the same for the 3-stage version. It is obvious

Fig. 2. The convergence of the ‘2 error and the numerically computed rates for m-stage Radau IIA based CQ of non-smooth data; see (16). Note that the order of the m-stage

method is p ¼ 2m� 1.
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that all methods have oscillations around the jump. They differ

only in the influence of these oscillations and when they appear.

In Fig. 3b, a zoom at the jump is displayed for the same setting.

It shows that the oscillations are the smallest in amplitude and

area of influence for Radau IIA. This method has some effects be-

fore and after the jump. The BDF 2 has only some influence after

the jump, however with a large amplitude. Comparable in size of

these disturbances is Lobatto IIIC but in this case the disturbances

are concentrated in front of the jump. The 3-stage variants of both

Runge–Kutta methods have smaller disturbed areas and slightly

smaller amplitudes. This is shown in Fig. 4 again with a zoom at

the jump. The conclusion out of these studies is that Radau IIA

seems to be the preferable method for functions with jumps.

The reason for this result can be found if the complex frequen-

cies used for determining the integration weights are explored. For

the Runge–Kutta methods these weights are defined in (14). Essen-

tially, the eigenvalues of the matrix function
D Rf�‘ð Þ

Dt
determine the

used complex frequencies s‘. In case of the BDF 2 this matrix func-

tion degenerates to a scalar function. These complex values are

plotted in Fig. 5. Obviously, Radau IIA include the highest frequen-

cies and, hence, is better suited to represent such a transient

function as a jump. The 2-stage Lobatto IIIC has the smallest fre-

quencies and this results in the large oscillations. The exception

is the BDF 2. It also has large frequencies but compared to Radau

IIA (3-stage) the relation Rs‘
Is‘

is larger. It may be concluded that

the 3-stage Radau IIA is the best choice. However, having in mind

the application in BEM this might be not the case. In a BE formula-

tion the fundamental solution consists of exponential functions

like g in (21) and must be integrated, i.e., an oscillating function

has to be integrated. Further, thinking on fast methodologies high-

er frequencies may cause problems. Fortunately, the real part of

the complex frequency acts like a damping factor. Consequently,

it is interesting to know how the complex frequencies are distrib-

uted in the area with small real part. A zoom close to Rs ¼ 0 is dis-

played in Fig. 5b. It is observed that the distance to a zero real part

is equal for all methods. This distance is governed by two factors. If

the value of R tends to its limit 1 the graph comes closer to the

imaginary axis. This happens if either N is increased or � tends to

1. The second influencing factor is the time step size Dt. Decreasing

of Dt increases overall the frequencies which is somehow clear if

the CQM is seen as an inverse transformation. Whereas changing

R within some limits (10�40 < � < 1, for � ¼ 10�40 all calculations

broke down) does not influence the final result at all, changing

the time step size must have some influence. In Fig. 6, the solution

of the test example is displayed for different time step sizes Dt (2-

stage Radau IIA). The results confirm the expectation that smaller

time steps resolve the jumps better, however, they influence the

amplitude of the oscillations. It should be remarked that this effect

is much less pronounced for the Runge–Kutta methods compared

to BDF 2. This is directly correlated to the higher imaginary parts

of the frequencies used (see (14) for the scaling of the argument

of f̂ with Dt). Finally, it should be remarked that an increase of N

pushes R ! 1 and has no influence on the results as long as realis-

tic values are chosen.

5. Boundary element formulation with Runge–Kutta methods

Next the application of the Runge–Kutta based CQM in a colloca-

tionboundaryelement formulation is presented. Certainly, the same

can be done for a Galerkin formulation. To keep the presentation as

simple as possible the scalar wave equation is used as model prob-

lem. Obviously, the principle can be transferred to other hyperbolic

problems, e.g., for elastodynamics it can be found in [29].

5.1. Governing equations

Describing with x and t the position in the three-dimensional

Euclidean space R
3 and the time point from the interval ð0;1Þ

the scalar wave equation for the pressure field pðx; tÞ is

Table 1

Butcher tableaus of the used Runge–Kutta methods.
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c2r2p x; tð Þ � @2p

@t2
x; tð Þ ¼ 0 ðx; tÞ 2 X� ð0;1Þ;

pðy; tÞ ¼ gDðy; tÞ ðy; tÞ 2 CD � ð0;1Þ;
qðy; tÞ ¼ gNðy; tÞ ðy; tÞ 2 CN � ð0;1Þ;

pðx;0Þ ¼ @p

@t
ðx;0Þ ¼ 0 ðx; tÞ 2 X� ð0Þ:

ð23Þ

The wave velocity is defined by

c ¼
ffiffiffiffi

K

.

s

; ð24Þ

with the compressibility K and the density . of the inviscid fluid.

The co-normal derivative defines the normal flux

q y; tð Þ ¼ Tpð Þ y; tð Þ ¼ lim
X3x!y2C

½rpðx; tÞ � nðyÞ�; ð25Þ

with the outward normal n. The spatial domain X has the boundary

C which is subdivided into two disjoint sets CD and CN at which

boundary conditions are prescribed. The Dirichlet boundary condi-

tion is given with gD and the Neumann boundary condition with gN .

The boundary conditions have to hold for all times. In the last state-

ment of (23), the condition of a quiescent past is given which im-

plies homogeneous initial conditions.

For the wave Eq. (23), a representation formula can be derived

(see, e.g., [31]) and the trace to the boundary yields the boundary

integral equation. Using operator notation, this boundary integral

equation reads

ðVqÞðx; tÞ ¼ CðxÞpðx; tÞ þ ðKpÞðx; tÞ ðx; tÞ 2 C� ð0;1Þ: ð26Þ

The introduced operators are the single layer operator V, the inte-

gral-free term C, and the double layer operator K which are de-

fined as

ðVqÞðx; tÞ ¼
Z t

0

Z

C

Pðx� y; t � sÞqðy; sÞdCyds; ð27aÞ

CðxÞ ¼ Iþ lim
e!0

Z

@BeðxÞ\X
ðTyPstaticÞðx� yÞdCy; ð27bÞ

ðKpÞðx; tÞ ¼ lim
e!0

Z t

0

Z

CnBeðxÞ
ðTyPÞðx� y; t � sÞpðy; sÞdCyds: ð27cÞ

The surface measure dCy carries its subscript in order to emphasize

that the integration variable is y. Similarly, Ty indicates that the

normal derivative involved in the computation of the surface flux

is taken with respect to the variable y. The function Pðx� y; t � sÞ
denotes the fundamental solution for the wave Eq. (23). In the

expressions (27), BeðxÞ denotes a ball of radius e centered at x and

@BeðxÞ is its surface. In (27b), the integral free term is only deter-

mined by the static counterpart of the operator, i.e., Pstatic ¼ 1
4pr with

r ¼ jx� yj. It corresponds to the solid angle at the boundary point

with the value 1
2
for smooth boundaries. Note that the single layer

operator (27a) involves a weakly singular integral over C. Further,

it should be remarked that the operator notation in (27a) and

(27c) includes the convolution operator in time.

a

b

Fig. 3. Convolution f � g from (21) for different Runge–Kutta methods and the

multistep method BDF 2. (a) Complete time range, (b) Zoom at the jump.

Fig. 4. Approximations for different stages of the Runge–Kutta methods.

a

b

Fig. 5. Real part versus the imaginary part of the used complex frequencies s‘ for

the data in the above study. (a) Overall picture, (b) Zoom for small real parts.
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5.2. Semi-discrete equations

Let the boundary C of the considered domain be represented in

the computation by an approximation Ch which is the union of

geometrical elements

Ch ¼
[

E

e¼1

se: ð28Þ

se denote boundary elements, e.g., surface triangles as in this work,

and their total number is E. Now, the boundary data p and q are

approximated with continuous shape functions ui or discontinuous

shape functions wj, which are defined with respect to the geometry

partitioning (28), and time dependent coefficients piðtÞ and qjðtÞ.
This yields

pðy; tÞ ¼
X

Me

i¼1

piðtÞuiðyÞ and qðy; tÞ ¼
X

Ne

j¼1

qjðtÞwjðyÞ: ð29Þ

Inserting these spatial shape functions in the boundary integral

equations (26) and applying a collocation method results in the

semi-discrete equation system

V � q ¼ Cpþ K � p: ð30Þ

In the Eq. (30), the time is still continuous and the convolution has

to be performed. Further, the notation of matrices/vectors with sans

serif letters denotes that in these matrices the data at all nodes and

all degrees of freedom are collected.

5.3. Application of CQM

Next, the temporal discretization by the CQM has to be intro-

duced. The CQM is used for the time discretisation of the semi-

discrete equation system (30), i.e., for Runge–Kutta methods (15)

is used or for multistep methods the respective counterpart (1).

This results in the time stepping procedure

bTA�1
X

n

k¼0

WDt
n�k V̂
� �

q kDtð Þ¼C~p nþ1ð ÞDtð ÞþbTA�1
X

n

k¼0

WDt
n�k K̂
� �

p kDtð Þ;

ð31Þ

where the vectors q (size mNe) and p (size mMe) now contain all the

data at each node and at each stage of the Runge–Kutta method. Eq.

(31) is formulatedat thefinal stageof each time step and, consequently,

in the vector ~p (size Me) only the results at each node are collected.

Using (10), the first term on the right hand side in (31) can be

written as

C~p nþ 1ð ÞDtð Þ ¼ CbTA�1p nDtð Þ ¼ bTA�1~Cp nDtð Þ; ð32Þ

i.e., by a proper arrangement of C into ~C this term can as well be

written at the stages. Taking this representation into account and

separating the actual time step from the time history, the represen-

tation of the time stepping algorithm at the stages of the Runge–

Kutta method is given with

WDt
0 V̂
� �

q nDtð Þ ¼ ~Cp nDtð Þ þWDt
0 K̂
� �

p nDtð Þ

þ
X

n�1

k¼0

WDt
n�k K̂
� �

p kDtð Þ �WDt
n�k V̂
� �

q kDtð Þ
h i

: ð33Þ

Second, in the actual time step the boundary data are sorted in un-

known and given boundary data, where the latter are approximated

by the shape functions. The collocation is performed on the Dirich-

let boundary CD at the center of the element (for constant shape

functions) and on the Neumann boundary CN at the nodes. This

yields the quadratic block system

WDt
0 V̂DD

� �

�WDt
0 K̂DN

� �

WDt
0 V̂ND

� �

� ~CþWDt
0 K̂NN

� �� �

2

6

4

3

7

5

qD

pN

� 


nDtð Þ ¼ fD

fN

� 


nDtð Þ; ð34Þ

where the vectors fD and fN contain the product of the given bound-

ary data with the weights of the first time step and the complete

history. Certainly, instead of computing the above formula the

reformulated version of the CQM as presented in [32] can be used.

This is discussed in more detail and from a mathematical point of

view in [29].

A remark must be made on computing the matrix valued inte-

gration weights WDt
n V̂
� �

. For acoustics the fundamental solution

in Laplace domain is P̂ r; sð Þ ¼ 1
4pr e

�rs
c with the distance r ¼ jx� yj.

Hence, the integration weight for the collocation point xi is

WDt
n V̂½i; j�
� �

¼ R
�n

L

X

L�1

‘¼0

fn‘
Z

suppðwjÞ

1

4pr
e�

r
c

D Rf�‘ð Þ
Dt wj yð ÞdCy: ð35Þ

To compute the exponential function of a matrix the same decom-

position as discussed in (22) is used.

The remaining part is the numerical realization of the above gi-

ven procedure. All regular integrals are performed with Gaussian

quadrature formulas. The weakly singular integrals are solved with

the formulas by Erichsen and Sauter [33]. Finally, the block equa-

tion system (34) is solved by inserting the first equation into the

second to obtain the Schur complement. Solving this system gives

the pressure data and subsequently the data for the flux are com-

puted. This procedure can be performed by a nested iterative solu-

tion with GMRES or with direct solvers (see, e.g. [37]).

6. Numerical studies

The above sketched solution procedure is tested with different

Runge–Kutta and multistepmethods using a 3-d benchmark exam-

ple with known analytical 1-d solution for comparison. All compu-

tations were performed by using the HyENA C++ library for the

numerical solution of partial differential equations using the

Boundary Element Method [34]. For the Fourier like transforma-

tions the FFTW routines [35] are taken. To speed up the calculation

the fast methodology based on the Adaptive Cross Approximation

(ACA) as presented in [36] for a symmetric Galerkin formulation is

used. In contrast to this publication, here as discussed above, a col-

location approach is used.

A 3-d column of size ‘1 ¼ 3:0 m and ‘2 ¼ ‘3 ¼ 1:0 m, as depicted

in Fig. 7, is considered. It has zero pressure on one end and on the

other end the normal flux q ¼ �1HðtÞ N=m2 is prescribed. The

material parameters of air (c ¼ 346 m=s) are taken. The column

shown in Fig. 7 is discretised with 12032 triangular boundary ele-

ments of mesh size h ¼ 0:05 m on 5529 nodes. The pressure and

flux are approximated by piecewise constant and continuous linear

polynomials, respectively. In order to compare different time dis-

cretizations the dimensionless valueFig. 6. Convolution f � g from (21) for different time step sizes (2-stage Radau IIA).
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b ¼ cDt

mh
ð36Þ

is introduced. The parameter m denotes as in the previous sections

the number of stages, i.e., for the Runge–Kutta methods b repre-

sents a time step size related to the stages and not to the time steps.

This is introduced to have a fair comparison with the multistep

method with regard to the numerical effort (see the discussion of

this aspect in Section 4).

6.1. Behavior of Runge–Kutta CQM

The first comparison is performed for the BDF 2, 2-stage Radau

IIA, and 3-stage Radau IIA. The flux results at that end where the

pressure is set to zero are displayed in Fig. 8 versus time. The cho-

sen time step size is a nearly optimal choice for all three methods.

Obviously, all methods produce good results, however, the BDF 2

has large overshoots at the jumps, i.e., at the wave fronts. These

oscillations are also visible for the Runge–Kutta methods but with

much smaller values and in a narrower region. This is in accor-

dance with the experiences of Section 4. Further, it can be stated

that the 3-stage Radau IIA method produces the best results. This

corresponds obviously to the higher frequencies which are used

during the calculation (see Fig. 5).

It can be as well observed that the solution of the 3-stage meth-

od is not a straight line but it slightly oscillates. This indicates that

the time step size is for this method close to the instability limit,

i.e., this method does not allow very small time steps. A study con-

cerning the time step sizes is presented in Fig. 9 for both Radau IIA

methods. Overall, it can be observed that the time step size has not

too much influence. Certainly, a smaller time step resolves the

jumps better than a larger one. Contrary to the experiences with

the BDF 2, the overshoots at the jumps show no clear dependence

on the time step size. However, as already noted above, the 3-stage

Radau IIA can not go much beyond b ¼ 0:3, whereas the 2-stage

Radau IIA can still compute with a b ¼ 0:2. At this point it must

be recalled that the used b (36) is related to the stage size and

not to the time step size which is by a factor of m larger.

To have a deeper insight in the influence of the time step size a

closer look on the last third of the plots in Fig. 9 is presented in

Fig.10. There, additionally, the results for aBDF2solutionareplotted

to compare. The zooms confirm the observations from above. The

higher the order of the Runge–Kutta method, the better are the re-

sults, i.e., the area of the oscillations becomesnarrower. On theother

hand the method becomes more sensitive on the lower limit for the

time step size. An overall observation is that the Runge–Kutta based

solutions are not such affected by a too coarse time step size as the

BDF 2 based solutions. In principle the solutions suggest that for

Runge–KuttabasedCQMthesensitivityon the timestep size is smal-

ler than for multistep based CQM. Certainly, the time step must be

small enough to resolve the physical effect in time.

Summarizing, the quality of the BEM results is improved by the

Runge–Kutta method. However, it is clear that one Runge–Kutta

time step is more expensive than a BDF 2 step. Hence, the question

arise whether the numerical costs are as well better or not.

6.2. Computational cost

The comparison of numerical costs is a difficult task because it

is not obvious what has to be measured. Beside, in the authors

opinion a BEM formulation without fast methods is not suitable

for real world problems. Consequently, a study on numerical costs

must take a fast method into account, though an additional

approximation is introduced. In the following, first the influence

of this approximation is shown and the efficiency of the fast algo-

rithm is studied, i.e., the performance of the ACA is presented.

Further, the convergence behavior compared to the specific analy-

sis in Section 3 is presented. Last, the numerical costs are

compared.

In the proposed BEM formulation ACA is used to speed up the

calculation. This algebraic technique allows to compute only the

necessary matrix entries to achieve a pre-selected accuracy �ACA.
As shown in [36], an �ACA ¼ 10�3 results in a deviation of the results

for larger times. The same holds if Runge–Kutta methods are used

as displayed in Fig. 11. In the same paper, the results suggest that

Fig. 7. System, boundary conditions, and mesh.
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�ACA ¼ 10�5 is sufficient for good long-time behavior. This holds as

well for the Runge–Kutta based formulation. In Fig. 12, the long-

time behavior is studied for the 3-stage Radau IIA using b ¼ 1:1.

Even for this long observation time the result follows closely the

analytical solution. Based on this study all other results have been

computed with �ACA ¼ 10�5.

An essential criterion for the numerical costs is the compression

rate, i.e., the size relation of the usedH-matrix to the dense matrix

without using ACA. In the CQM based BEM, ACA is applied in each

frequency step. Hence, the compression rate is different at each

complex frequency s‘. For the largest matrix block K̂NN (the double

layer operator for the Neumann boundary) the compression rate is

plotted in Fig. 13 for the Radau IIA methods compared to the BDF 2.

On the horizontal axis half of the used complex frequencies s‘ have

been plotted starting from small real parts to larger real parts.

These are the only ones to be calculated because the other half

are the complex conjugate (see Fig. 5). Obviously, the compression

rate is large in the beginning and then decreases to a nearly con-

stant value. In view of Fig. 5 such a behavior has to be expected.

The bad compression rates correspond to small real parts but large

imaginary parts. As seen on the frequency distribution in Fig. 5b

the Radau IIA methods has a larger ratio Is‘=Rs‘ and, hence, a

worse compression compared to the BDF 2.

Certainly, if a larger time step size would have been used for

Fig. 13 the compression rates would have been better. This effect

is studied in Fig. 14. In this figure, the overall compression is plot-

ted versus the time step size for the Radau IIA methods and the

BDF 2. Overall compression means the summed compression rates

over all frequencies. It is in principle a measure of the computing

Fig. 8. Flux at the free end versus time for the 2- and 3-stage Radau IIA method

compared to the BDF 2 solution.

a

b

Fig. 9. Flux at the free end versus time: influence of the time step size. (a) 2-stage

Radau IIA, (b) 3-stage Radau IIA.

a

b

c

Fig. 10. Flux at the free end versus time: zoom on the last third of Fig. 9. (a) BDF 2,

(b) 2-stage Radau IIA, (c) 3-stage Radau IIA.

Fig. 11. Flux at the free end versus time: reduced accuracy (�ACA ¼ 10�3) of the

approximation (ACA) and solver.

Fig. 12. Flux at the free end versus time: long time behavior of the 3-stage Runge–

Kutta method.
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time because the used memory corresponds in ACA directly to the

computed matrix entries. Hence, the storage is proportional to the

computing time. The strongest effect can be observed for the 3-

stage Radau IIA method, whereas nearly no effect can be seen for

the BDF 2. As discussed above the used frequencies cause this

behavior. In combination with the experience on the sensitivity

of the different methods on b the Radau IIA method seems to be

promising. In principle the higher order of this method becomes

visible here.

Collecting all studied effects the question arise which method is

the best? The above results show different effects and overall the

Radau IIA (3-stage) seems to be the method of choice. However,

it is clear that this method is the most expensive one if the time

step size and precision is fixed in a comparison. But, it is clear as

well that a fair comparison should check the relation numerical

effort to quality of the results. Unfortunately, a measure for the

quality of the results is difficult. In Section 3, it has been proven

that for the test convolution (16) the L2 error converges. As the

acoustic problem under consideration has a similar form, i.e., the

fundamental solution in time domain is also a Dirac distribution

with a retarded argument, the L2 error may converge as well. The

discrete ‘2 error (20) is plotted in Fig. 15 versus b in a logarithmic

scale. Additionally, as dashed lines the theoretical convergence rate

for the Runge–Kutta methods of Section 3 are presented. Two

observations can be made: First, the error converges and, second,

the theoretical values are nearly obtained. Further, the BDF 2

seems to have the worst convergence rate and the Radau IIA (3-

stage) the best. This fits to the presented results from above.

To answer the questionwhichmethod is themost cost efficient, all

three methods are compared in their numerical costs for the same

quality. The quality can now be measured with the above plotted ‘2

error. The horizontal dotted line in Fig. 15 indicates an error

�Dt � 10�1. In Table 2, the costs for the different methods are com-

pared for computations with this error. Additionally, the b-values

which are required to achieve the error and the necessary number

of time stepsNb are given. As discussed above, the number of frequen-

cies to be computed is half of the time step number. That iswhy in the

fourth row Nb=2 is displayed. The last row compares the numerical

costs of the different methods, where the BDF 2 calculation is used

as basis. In this measure the matrix entries necessary for the ACA

are counted and summedupover allNb=2 time (frequency) steps. This

determines in principle the necessary storage but as well the speed

because the CPU time is proportional to the amount of necessaryma-

trix entries to be computed. The preferable feature of these numbers

is their independence of the used CPU. Evidently, the Radau IIA in its

3-stage version is the most efficient technique.

7. Conclusions

The application of Runge–Kutta methods in the Convolution

Quadrature Method has been discussed. The principal behavior is

studied with two specific functions representing a wave front.

The proposed methodology is applied on a collocation BEM.

The results of both, the test example and the BEM, show that

the Runge–Kutta methods improve the behavior at the jumps at

wave fronts. The oscillations around these fronts become smaller

and the area of influence decreases as well. There is still a lower

stability limit which increases slightly for higher order Runge–Kut-

ta methods. The sensitivity on the time step size is slightly im-

proved compared to the BDF 2. Finally, it can be concluded that

the usage of Runge–Kutta methods pays off but the BDF 2 results

are still good. Nevertheless, there are possible examples where

the use of Runge–Kutta methods is necessary.
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