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a b s t r a c t

A fast boundary element method for the analysis of three-dimensional solids with cracks and adhesively

bonded piezoelectric patches, used as strain sensors, is presented. The piezoelectric sensors, as well as the

adhesive layer, are modeled using a 3D state-space finite element approach. The piezoelectric patch

model is formulated taking into account the full electro-mechanical coupling and embodying the suitable

boundary conditions and it is eventually expressed in terms of the interface variables, to allow a straight-

forward coupling with the underlying host structure, which is modeled through a 3D dual boundary ele-

ment method, for accurate analysis of cracks. The technique is computationally enhanced, in terms of

memory storage and solution time, using the hierarchical format in conjunction with a GMRES solver.

An original strategy retaining the advantages of the fast hierarchical solution without increasing the

implementation complexity to take into account the piezoelectric patches is proposed for the solution

of the final system. The presented work is a step towards modeling of structural health monitoring

systems.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Structural reliability and safety are issues of critical relevance in

many civil, mechanical, chemical, aeronautic and aerospace engi-

neering applications. In recent years, structural health monitoring

(SHM) has emerged as a concept in the broader field of investiga-

tion of smart structures [1,2]. Structural systems are usually de-

scribed as smart when they are able to sense and adapt their

response to changing operational or environmental conditions.

Their development relies on the integration of sensors and actua-

tors with the structure and on the combination with appropriate

electronics, modeling and control algorithms.

SHM systems exploit such features to detect the occurrence and

location of damage which may affect the performance and reliabil-

ity of the structure. While conventional non-destructive inspection

procedures investigate directly for damage at scheduled intervals

applying the appropriate technique, in situ SHM systems are gener-

ally based on the real time comparison of the local or global re-

sponse of the damaged structure with the known response of the

undamaged one.

Structural usage and health monitoring can be accomplished by

measuring, through a network of suitably arranged sensors, some

physical variables and fields, such as strain, vibration, electrical

conductivity and acoustic emission, which may be affected by

the changes of material and geometrical conditions in proximity

of the damaged area. Typical sensors for such tasks are strain

gauges, accelerometers, fiber optics, piezoelectric films and piez-

oceramics. A brief overview of sensors and systems from the point

of view of instrumentation can be found in [3].

Piezoelectric materials, in particular, are among the most

widely used smart materials because of their reliability and sensi-

tivity. By taking advantage of the direct piezoelectric effect, which

refers to the generation of an electric displacement field as a con-

sequence of a mechanical load, they are able to sense structural

deformation and signal it through a variation of voltage or rate

of variation of voltage [4]. The measurement of the electrical field,

through the introduction of the piezoelectric coupling in the

structural system, may be seen as an application of the electro-

mechanical impedance method [5]. Piezoelectric sensors for

SHM applications are usually employed in the form of small poly-

vinylidene fluoride (PVDF) patches or thin lead zirconate titanate

(PZT) monolithic wafers. While PVDF elements are mainly used

for sensing applications, stiffer PZT transducers can also be used

for actuation purposes. They can be bonded on the surface of

the structure or embedded into the structure itself and allow

the determination of local values of strains. Due to their small

sizes, the gradient identification for damage detection applica-

tions is often based on the use of arrays of such micro-electro-

mechanical systems (MEMS).

It is then apparent from above that the design of SHM systems

is a strongly multidisciplinary task involving deep understanding

of structural behavior, damage mechanics, sensors characteristics,
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signal processing and optimization theory. One of the key features

enabling the design of such devices is the availability of reliable

mathematical modeling and analysis.

Much research has been carried out about analytical and

numerical modeling and simulation of smart structures and

SHM systems. Many works are devoted to the modeling of single

sensors and actuators. An extended bibliography about FEM and

BEM modeling of sensors and actuators can be found in [6]. Zhang

et al. [7] analyzed the problem of a piezoelectric layer bonded to

an elastic substrate, considering the full coupling between electri-

cal and mechanical fields. Ali et al. [8] developed an analytical

model for constrained piezoelectric thin film sensors and applied

the model to the analysis of the problem of detection of subsur-

face cracks [5]. An analytical solution for the coupled electro-

mechanical dynamic behavior of a piezoelectric actuator bonded

to an infinite orthotropic elastic medium has been developed by

Huang and Sun [9]. Other works focus on the modeling of the

whole SHM system, trying to take into account the various as-

pects comprising the damage identification strategy. Lin and Yuan

[10] proposed an analytical model for an isotropic plate with inte-

grated piezoelectric actuators and sensors for Lamb wave-based

SHM systems. The detection of cracks in plates through piezo-

generated Lamb waves is studied by Tua et al. [11], who consid-

ered several system parameters and proposed a methodology

for locating and quantifying the extent of cracks. Fukunaga et al.

[12] developed a two-stage strategy for damage identification,

using a limited number of piezoelectric devices. Liu et al. [13]

modeled the whole input–output behavior of composite plates

with adhesively bonded piezo-sensors and actuators, using a dy-

namic one-dimensional piezoelectric model, thin plate orthotro-

pic theory and multiple integral transforms. Liang and Hwu [14]

focused on the online identification of holes/cracks in a structure

through static-strain measures and artificial neural networks.

Raghavan and Cesnik [15] proposed a generic procedure to obtain

the guided waves (GWs) field excited by finite dimensions piezo-

electric actuators bonded on an infinite isotropic plate. They also

proposed a model for the response of piezo-sensors in GW fields,

assuming them infinitely compliant. Sumant and Maiti [16] pro-

posed a strain-based technique to detect size and location of

cracks in beam-like components through discrete PZT patches

and validated a BEM for such systems through the experimental

results.

In this work a model for the analysis of three-dimensional dam-

aged solids with adhesively bonded piezoelectric patches used as

strain sensors is presented. The damaged structure is modeled

and analyzed through a fast dual boundary element method

(DBEM) based on the use of hierarchical matrices in conjunction

with a GMRES iterative solver, previously developed by Benedetti

et al. [17] for the analysis of large-scale cracked structures. The

dual boundary element method allows to model the presence of

cracks with accuracy, and its performance in terms of memory

storage and solution time is improved using the hierarchical solver.

The attached sensors, as well as the adhesive layer, are modeled

using a 3D state-space finite element approach [18], taking into ac-

count the full electro-mechanical coupling in the piezoelectric

layer. The suitable boundary conditions are embodied in the sensor

model which is eventually expressed in terms of interface vari-

ables, allowing straightforward coupling with the underlying host

structure. From the numerical point of view, the presence of sen-

sors affects only some columns of the original DBEM collocation

matrix, leaving the overall size of the solution system unchanged.

Based on this consideration, an original strategy for the solution of

the final system is proposed. Such strategy preserves the advanta-

ges related to the use of the fast hierarchical format without

increasing the implementation complexity to take into account

the sensors.

The paper is organized as follows. The piezoelectric patch model

is first described. The basic equations of piezoelectricity are re-

viewed and the state-space approach is recalled. The sensor model

for the considered application is then developed. In Section 3 the

dual boundary element method of the host structure is briefly re-

viewed and the main features of the hierarchical format are re-

vised. In Section 4 the model for the structure with attached

piezoelectric patches is introduced and the strategy for the fast

solution of the complete system is presented. Several numerical

applications complete the work and illustrate the potential use

for design of SHM systems.

2. Piezoelectric sensors modeling

In this section the model for static-strain piezoelectric sensors is

described. The model is based on a generalized hybrid variational

principle expressed in terms of suitable generalized variables,

introduced to extend to the electro-elastic problem some tech-

niques used in classical elasticity.

2.1. Basic equations

Let us consider a three-dimensional piezoelectric sensor with a

plane mid-surface, and constant thickness h, see Fig. 1. The top and

bottom surfaces are perpendicular to the poling direction x3, while

x1x2 is the plane of transverse isotropy. The sensor bottom surface

is bounded on the surface of the host structure, through a thin

adhesive layer. The elastic problem is expressed, in the chosen ref-

erence system, in terms of elastic displacements ui, elastic strains

cij and elastic stresses rij which have to satisfy the strain–displace-

ment equations and the equilibrium equations

cij ¼
1

2
ðui;j þ uj;iÞ; rij;j þ fi ¼ 0; ð1Þ

where fi represents the body force vector.

The electric problem, on the other hand, is described by intro-

ducing the electric potential u, which is a scalar quantity, the elec-

tric field Ei and the electric displacement vector Di. Such variables

are linked by the following relationships:

Ei ¼ �u;i; Di;i � q ¼ 0; ð2Þ

i.e., the relationship between the electric field and potential and

Gauss’ law for electrostatics respectively, with q representing the

free electric charge density.

The constitutive equations for piezoelectric materials can be ex-

pressed in tensor form as

rij ¼ Cijklckl � eijkEk;

Di ¼ eiklckl þ eikEk;
ð3Þ

where Cijkl are the elastic coefficients, eij are the dielectric constants

and eijk are the piezoelectric coefficients.

Fig. 1. Piezoelectric sensor.
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Eqs. (3) can be rearranged and rewritten in matrix form as

Rp

Rz

� �
¼

Rpp Rpz

Rzp Rzz

� �
Cp

Cz

� �
; ð4Þ

where Cp and Rp are generalized in-plane strains and stresses,

respectively, and Cz and Rz are out-of-plane generalized strains

and stresses. The exact definitions of such quantities are given in

Appendix A. This representation separates the generalized in-plane

quantities from the through-thickness generalized variables and it

is useful for the formulation of the state-space equation of elec-

tro-elasticity.

The generalized strain–displacement relationship can be writ-

ten as

Cp

Cz

� �
¼

Da

Db þ I @
@x3

" #
U; ð5Þ

where U ¼ ½u1 u2 u3 u �T are the generalized displacements and

Da and Db are linear matrix differential operators whose expres-

sions are given in Appendix A.

2.2. Elemental state-space equation

The previous definition of the generalized variables is the basis

for the state-space formulation of the piezoelectric problem

[19,20]. The state-space formulation can be deduced starting from

a generalized hybrid functional [18] whose variation with respect

to the generalized variables U and Rz gives the generalized state-

space equation

@Y

@x3
¼

@

@x3

U

Rz

� �
¼

A11 A12

A21 A22

� �
U

Rz

� �
¼ AY: ð6Þ

The expression of the operators Aij appearing in the previous rela-

tionship, together with some other details about its derivation from

variational principles, is given in Appendix B. The state-space repre-

sentation (6), together with the corresponding boundary conditions

given in Appendix, can be used for the analysis of composite lami-

nated plates with piezoelectric layers and allows to build an ana-

lytic solution for some cases. However, to model the attached

electro-elastic sensors, a suitably discretized counterpart of Eq. (6)

is needed. The discretized state-space equation is obtained subdi-

viding the sensor area in a certain number of elements and express-

ing the field variables for each element through appropriate shape

functions Niðx; yÞ and nodal variables diðzÞ. In the present work

eight-node quadrilateral elements are considered to interface the

sensor elements with the mesh of the host structures. Elements

with other shapes and a different number of nodes can however

be used. Each node carries eight degrees of freedom expressing no-

dal generalized displacements and out-of-plane generalized

stresses.

To obtain the elemental state-space equation let us introduce

the following model for the state-space variables:

Y ¼
U

Rz

� �
¼

Nðn;gÞ 0

0 Nðn;gÞ

� � eUðx3Þ

eRðx3Þ

" #
¼ eNðn;gÞeYðx3Þ; ð7Þ

where

eUðx3Þ
T ¼ ~uT

1
~uT
2

~uT
3

~uT
� �

¼ ~uT ~uT
� �

;

eRðx3ÞT ¼ ~rT
13

~rT
23

~rT
33

eDT
3

h i
¼ ~rT eDT

h i ð8Þ

and Nðn;gÞ is the ð4� 32Þ shape functions matrix whose explicit

expression is given in Appendix A. The vector ~u1 in Eq. (8), for in-

stance, contains the displacements of the element nodes along the

first coordinate direction and analogous meaning with respect to

the other variables have the other vectors.

Substituting Eq. (7) into the functional (B.1), varying with re-

spect to the nodal variables eU and eR and applying the divergence

theorem, the following equation is obtained:

P
deYðx3Þ
dx3

¼ Q eYðx3Þ ð9Þ

with

P ¼

Z

S

eNTðn;gÞeNðn;gÞJðn;gÞdndg ð10Þ

and

Q ¼

Z

S

Q 11 Q 12

Q 21 Q 22

� �
Jðn;gÞdndg; ð11Þ

where dS ¼ Jðn;gÞdndg denotes the elemental base area of the sen-

sor element. The expressions of the blocks Q ij are reported in

Appendix A.

Eq. (9) can be integrated and the resulting expression can be

written as

eYðx3Þ ¼ expfP�1Qx3geYð0Þ ¼ Lðx3ÞeYð0Þ: ð12Þ

If the sensor is a single-layer piezoelectric element with thickness h,

the previous equation can be written as

~u2

~u2

~r2

eD2

2
6664

3
7775 ¼

LuuðhÞ LuuðhÞ LurðhÞ LudðhÞ

LuuðhÞ LuuðhÞ LurðhÞ LudðhÞ

LruðhÞ LruðhÞ LrrðhÞ LrdðhÞ

LduðhÞ LduðhÞ LdrðhÞ LddðhÞ

2
6664

3
7775

~u1

~u1

~r1

eD1

2
6664

3
7775; ð13Þ

where, to simplify the notation, quantities relative to hi have been

denoted by the subscript i.

Once Eq. (13) has been set, the model for the piezoelectric sen-

sor is obtained by applying suitable bottom and top electrical and

mechanical boundary conditions.

2.3. Sensor model

Let us consider the scheme reported in Fig. 2, representing a

piezoelectric sensor attached on a host structure. To model the re-

sponse of such system it is necessary to interface the sensor model

with the host structure model. The strategy adopted in the present

work is described in the following.

Piezoelectric transducers are usually made of thin sheets of pie-

zoelectric ceramic with top and bottom surfaces covered with a

conductive film serving as an electrode. The top and bottom sur-

faces are then equipotential and it is possible to assume without

loss of generality that ~u1 ¼ 0 and ~u2;i ¼ / ¼ cost 8i. It is worth not-

ing that the last condition may be written as

~u2;i � ~u2;1 ¼ 0; i ¼ 2; . . . ;8 ð14Þ

or, in matrix form as

B~u2 ¼ 0; ð15Þ

where B is a ð7� 8Þ matrix.

Fig. 2. Piezoelectric sensor bonded on the host structure.
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Moreover, applying open-circuit boundary conditions, a com-

plementary equation is given by

Q top ¼

Z

At

D3 dA ¼ 0; ð16Þ

which expresses the conservation of the free electric charge on the

sensor top surface. Expressing the electric displacement by means

of shape functions and nodal values, it is possible to write

Q top ¼

Z

At

Nsðn;gÞJðn;gÞeD2 dndg ¼ b
T eD2 ¼ 0; ð17Þ

where b
T
is the ð1� 8Þ row vector obtained by integrating over the

sensor face the product between the shape functions vector and the

Jacobian.

It is to be noted that, following the introduced notation, the

symbol eD2 used in the previous equations collects the nodal values

of the component D3 of the electric displacement at the top surface.

It is then a vector of nodal values, and it must not be confused with

the component D2 of the electric displacement, that does not enter

the formulation.

The mechanical boundary conditions can be obtained by con-

sidering that the sensor is bonded on the surface of the host struc-

ture. Its top surface is then stress free and then

~r2 ¼ 0: ð18Þ

Note that the previous equation, always following the introduced

notation, expresses the following conditions:

~r2 ¼ ~rðh2Þ ¼

~r13ðh2Þ

~r23ðh2Þ

~r33ðh2Þ

2
64

3
75 ¼ 0: ð19Þ

Using the equipotentiality condition at the bottom face ~u1 ¼ 0 and

the mechanical condition on the top face (19), the following equa-

tions can be written:

Luu~u1 þ Lur ~r1 þ Lud
eD1 ¼ ~u2; ð20Þ

Lru~u1 þ Lrr ~r1 þ Lrd eD1 ¼ 0; ð21Þ

Ldu~u1 þ Ldr ~r1 þ Ldd
eD1 ¼ eD2: ð22Þ

The equipotentiality at the top face is enforced by pre-multiplying

Eq. (20) by B. The condition (17) is enforced by pre-multiplying

Eq. (22) by b
T
. The following equations are thus obtained:

BðLuu~u1 þ Lur ~r1 þ Lud
eD1Þ ¼ 0; ð23Þ

b
T
ðLdu~u1 þ Ldr ~r1 þ Ldd

eD1Þ ¼ 0: ð24Þ

Such conditions allow to express the vector eD1 as a function of ~u1

and ~r1, i.e. the mechanical variables at the bottom surface of the

piezoelectric patch.

Writing

eD1 ¼ bLdu~u1 þ bLdr ~r1; ð25Þ

where bLdu and bLdr are obtained by Eqs. (23) and (24), and substitut-

ing in Eqs. (20) and (21) one gets

bLru~u1 þ bLrr ~r1 ¼ 0; ð26Þ

bLuu~u1 þ bLur ~r1 ¼ ~u2 ð27Þ

with

bLru ¼ Lru þ LrdbLdu;
bLrr ¼ Lrr þ LrdbLdr; ð28Þ

bLuu ¼ Luu þ Lud
bLdu;

bLur ¼ Lur þ Lud
bLdr: ð29Þ

If an adhesive layer with thickness d is considered, an equation

analogous to Eq. (13) can be written as

~u1

~r1

� �
¼

AuuðdÞ AurðdÞ

AruðdÞ ArrðdÞ

� �
~u0

~r0

� �
: ð30Þ

Such equation can be obtained by writing the purely mechanical

version of the elemental state-space equation (9) for the adhesive

layer, and then integrating between h0 and h1. The subscripts 0

and 1 in Eq. (30) refer to h0 and h1. Using the continuity conditions

at the interface between the bottom surface of the sensor and the

top surface of the adhesive layer, from Eqs. (26), (27) and (30)

one gets

Sru~u0 þ Srr ~r0 ¼ 0; ð31Þ

Suu~u0 þ Sur ~r0 ¼ ~u2 ð32Þ

with

Sru ¼ bLruAuu þ bLrrAru; Srr ¼ bLruAur þ bLrrArr; ð33Þ

Suu ¼ bLuuAuu þ bLurAru; Sur ¼ bLuuAur þ bLurArr: ð34Þ

Eqs. (31) and (32) can be further manipulated to give

~r0 ¼ �S�1
rrSru~u0; ð35Þ

~u2 ¼ ðSuu � SurS
�1
rrSruÞ~u0: ð36Þ

Eq. (35) coupled with the boundary element method of the host

structure allows the computation of the unknowns ~u0. Once their

values are known, Eq. (36) can be used for computing the sensor

top surface electric potential ~u2.

However, before coupling Eq. (35) with the 3D boundary ele-

ment method of the host structure, some further consideration

must be done. First, the components of the vector ~r0 are stresses,

not tractions, and it is then necessary to take it into account. More-

over, the sensor equations have been written with respect to a local

reference system and it is then necessary to transform them

according to a suitable law to get the equations in the global or

host structure reference systems. Once such operations have been

performed for the single sensor element it is possible to write

th0 ¼ Wuh
0; u2 ¼ Uuh

0 ð37Þ

with

W ¼ K
�1S�1

rrSruK; U ¼ ðSuu � SurS
�1
rrSruÞK; ð38Þ

where K is the rotation matrix and uh
0 and th0 are nodal displace-

ments and tractions in the host structure reference system.

3. Dual boundary element method of the host structure

In the previous section the sensor model was expressed in

terms of displacements and tractions at the interface with the host

structure. Such quantities are unknown and their determination

requires the solution of the damaged structure/bonded sensors

system. It is then necessary to couple the sensor equations with

the host structure model. In the present work, the host structure

is modeled using the dual boundary element method.

The dual boundary element method is a general and efficient

technique for modeling both two-dimensional [21,22] and three-

dimensional [23,24] crack problems in the framework of the BEMs

[25,26]. The method is based on the use of two independent

boundary integral equations, namely the displacement integral

equations, collocated on the external boundary and on one of the

crack surfaces, and the traction integral equations, collocated on

the other crack surface and introduced to overcome the problems

originating from the coincidence of the crack nodes.

Assuming continuity of displacements at the boundary nodes,

the boundary integral representation for the displacements uj is

given by
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cijðx0Þujðx0Þ þ

Z
--
C

T ijðx0; xÞujðxÞdC ¼

Z

C

Uijðx0; xÞtjðxÞdC; ð39Þ

whereUij and T ij represent the Kelvin displacement and traction fun-

damental solutions at the boundary point x when collocating at the

point x0; cij are coefficients depending on the boundary geometry

and computed through rigid body considerations and the symbolZ
-- stands for Cauchy principal value integral, whose presence is a

consequence of the Oðr�2Þ strength of the T ij integrands.

The displacement equation (39) is collocated on the boundary C

and on one of the crack surfaces. When collocated at the crack node

x�0 , it assumes the form

cijðx
�
0 Þujðx

�
0 Þ þ cijðx

þ
0 Þujðx

þ
0 Þ þ

Z
--
C

T ijðx
�
0 ; xÞujðxÞdC

¼

Z

C

Uijðx
�
0 ; xÞtjðxÞdC; ð40Þ

where x�
0 and xþ0 are the two coincident crack nodes. For smooth

crack surfaces at the point x�0 , it is cijðx
�
0 Þ ¼ cijðx

þ
0 Þ ¼ ð1=2Þdij.

The traction integral equation collocated at the point xþ0 , where

continuity of strains is assumed, is given by

cijðx
þ
0 Þtjðx

þ
0 Þ � cijðx

�
0 Þtjðx

�
0 Þ þ njðx

þ
0 Þ

Z
----
C

T ijkðx
þ
0 ; xÞukðxÞdC

¼ njðx
þ
0 Þ

Z
--
C

Uijkðx
þ
0 ; xÞtkðxÞdC; ð41Þ

where the kernels Uijk and T ijk contain derivatives of Uij and T ij,

respectively, nj are the components of the outward normal at the

point xþ0 and

Z
---- stands for Hadamard principal value integral, origi-

nating from the presence of the Oðr�3Þ kernel T ijk.

Eqs. (39)–(41) provide the boundary integral model for the

analysis of general crack problems. The discrete model is built on

them starting from a suitable discretization of the external bound-

ary and the crack surfaces into a set of boundary elements over

which the displacements and the tractions, as well as the geome-

try, are expressed by means of suitable shape functions and nodal

values [26].

Care must be taken in the choice of suitable boundary elements,

in order to fulfill the conditions for the existence of the singular

integrals. In particular the existence of Cauchy and Hadamard prin-

cipal values requires Hölder continuity of the displacements and

their derivatives at the collocation points. Such restrictions can

be satisfied through the use of special boundary elements. In this

work the same modeling strategy as that adopted by Mi and

Aliabadi [23,24] is used. The continuity of the displacement deriv-

atives, which is the stronger constraint required for the existence

of the integrals in the traction equation, is guaranteed by using dis-

continuous eight-node quadratic elements for the modeling of both

the crack surfaces. The boundary, on which only the displacement

equation is collocated, is modeled by using continuous eight-node

quadratic elements. Further information on slightly different dis-

cretization procedures can be found in [27,28].

The DBEM leads to a linear system of the form

Ax ¼ y; ð42Þ

where x is the vector of unknowns and the right-hand side y stems

from the application of the boundary conditions. The collocation

matrix A contains the influence coefficients and has some interest-

ing features that must be taken into account for the development of

fast solvers based on the use of the hierarchical representation [17].

3.1. Fast solution of large DBEM system

When computations involve large systems, memory storage

and time requirements, besides solution accuracy, become key

elements for the choice of the numerical technique to be em-

ployed. In this context, the use of hierarchical matrices [29–31]

for the representation of BEM systems of equations, in conjunc-

tion with Krylov subspace methods [32–35], constitutes a recent

and interesting development. Such a technique allows to speed

up the computation maintaining the required accuracy and sav-

ing the storage memory needed for the collocation matrix

treatment.

The hierarchical representation of boundary element matrices is

based on a previous subdivision of the collocation matrix into a

collection of blocks, some of which, called low rank blocks, admit

a special compressed representation, while others, said full rank

blocks are represented entirely. Such subdivision and the subse-

quent classification is built starting from the boundary element

mesh and is based on the grouping of the discretization nodes

and elements into clusters of close nodes and elements. A block

populated by integrating over a cluster of elements whose dis-

tance, suitably defined, from the cluster of collocation nodes is

above a certain threshold is called admissible and it can be repre-

sented in low rank format. The remaining blocks are generated

and stored entirely. Low rank blocks constitute an approximation

of suitably selected blocks of the discrete integral operator based,

from the analytical point of view, on a suitable expansion of the

kernel of the continuous integral operator [36–39]. This expansion,

and consequently the existence of low rank approximants, is based

on the asymptotic smoothness of the kernel functions [40], i.e. on

the fact that the kernels Uijðx0; xÞ and T ijðx0; xÞ are singular only

when x0 ¼ x. Asymptotic smoothness represents a sufficient condi-

tion for the existence of low rank approximants and it does not ex-

clude strongly or hyper-singular kernels, such as Uijkðx0; xÞ and

T ijkðx0; xÞ. Moreover, the regularity of the boundary over which

the approximation is carried out is not requested.

The low rank blocks are built by computing and storing only

some of the entries of the original blocks. Such entries are com-

puted through suitable algorithms, known as adaptive cross

approximation (ACA) [38,39], that allow to reach the selected accu-

racy in terms of Frobenius norm.

Once the hierarchical representation of the collocation matrix

has been built, the solution of the system can be conveniently com-

puted through iterative solvers with or without preconditioners.

When the condition number is high and slows down the conver-

gence rate, as is often the case when dealing with BEM systems,

a preconditioner can be computed taking full advantage of the rep-

resentation in the hierarchical format. If Ax = y is the system to be

solved, then a left preconditioner is an easily invertible matrix P

such that the condition number of the system P�1Ax ¼ P�1y results

lower than the original one, improving thus the convergence rate

of the iterative solver.

In the present work a GMRES iterative solver [41] with a

preconditioner is used for the solution of the system of equations.

The hierarchical representation offers the opportunity of naturally

building an effective preconditioner [42,43]. A coarse precondi-

tioner can be obtained by first generating a coarse approximation

AðepÞ of the original collocation matrix AðecÞ, where the relation-

ship ep > ec holds, e denoting the selected accuracy for the hierar-

chical representation. This coarse approximation, with reduced

memory storage, can then be decomposed through the hierarchi-

cal LU decomposition to give the preconditioner P. The resulting

system

ðLUÞ�1Ax ¼ ðLUÞ�1
y ð43Þ

has a lower condition number and the convergence rate of iterative

solvers is noticeably improved. Manipulations of the system require

the use of a suitably defined arithmetic able to deal with matrices in

hierarchical form [29–31].
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4. Analysis of damaged structures with bonded piezoelectric

sensors

The presence of sensors attached on the host structure affects

the system (42) and their presences must be suitably addressed.

When integrating over the boundary of the host structure, consid-

ering that at the interface between the structure itself and the at-

tached sensors both displacements and tractions can be

simultaneously different from zero, the following equation is

obtained:

Huþ
X

k

eHk~u
h
k ¼ Gtþ

X

k

eGk
~thk ; ð44Þ

where nodal displacements and tractions have been partitioned

into two sets, depending on whether they refer to nodes belonging

to the interface with the sensors, ~u and ~t, or to the remaining sur-

faces, u and t. More precisely ~uh
k and ~thk denote displacements and

tractions at the nodes of the host structures belonging to the inter-

face with the kth piezoelectric sensor. Continuity conditions require

~us
k ¼ ~uh

k ;

~tsk ¼ �~thk ;
ð45Þ

where the superscript s refers to nodes belonging to sensors. Using

such conditions and Eqs. (37a) and (44) it is then possible to write

Huþ
X

k

ðeHk þ eGkWkÞ~u
h
k ¼ Gt: ð46Þ

In the previous equation, the other boundary conditions have not

yet been applied. After completing the application of the boundary

conditions, the previous system assumes the form

eAxþ
X

k

ðeHk þ eGkWkÞ~u
h
k ¼ y; ð47Þ

which represents the BEM–FEM for the structure with bonded pie-

zoelectric sensors. It is to be noted that the matrix eA is not the same

as the matrix A of the original structure. However Eq. (47) can also

be rewritten:

Axþ
X

k

eGkWk~u
h
k ¼ y; ð48Þ

where the original collocation matrix appears and where it is appar-

ent that the presence of the piezoelectric patches affects such ma-

trix only through the terms eGkWk, which modify only some bands

of the original collocation matrix itself. Eq. (48) can be also ex-

pressed as

AxþUpzxpz ¼ y: ð49Þ

The vector xpz collects all the unknown displacements that multiply

the columns belonging to the matrixUpz introduced by the presence

of the sensors. It is worth noting that the vector x itself can be rear-

ranged in two parts, one of which is xpz. The form of Eq. (49) is

particularly appropriate to be used for the iterative solution of

the system. Once the displacements are obtained from the solution

of Eq. (49), Eq. (37) allows the determination of the electric

potential k.

4.1. Fast iterative system solution

As seen in the previous sections, a fast solution of DBEM sys-

tems of equations can be obtained by using Krylov iterative solvers

in conjunction with a hierarchical representation of the collocation

matrix.

The BEM analysis of the damaged structures with attached pie-

zoelectric sensors can be carried out by using Eq. (49), where the

terms Upzxpz are due to the presence of the sensors. The form of

such equation is particularly advantageous for the hierarchical-

iterative solution of the problem. In the present model, a single

sensor modeled with an eight-node element modifies 24 columns

of the original collocation matrix. Since it can be reasonably as-

sumed that the number of elements related to piezoelectric sen-

sors is considerably less than the total number of boundary

elements, the fast hierarchical DBEM can be employed as follows.

The hierarchical counterpart of Eq. (49) is

AxþUpzxpz ¼ y; ð50Þ

where A is the collocation matrix of the damaged structure without

sensors expressed in hierarchical format, Upz is the matrix, ex-

pressed in full format, collecting the contributions related to the

sensors and xpz is a suitably rearranged subset of the vector of un-

knowns x, collecting the components of displacements of the nodes

at the interface between the host structure and the sensors. Since

the matrix in full format Upz contains a number of columns consid-

erably less than that of the original collocation matrix, its presence

does not affect significantly the performance of the GMRES solver.

In the present work, to accelerate the convergence of the iterative

solver, a hierarchical LU preconditioner is used. The GMRES is then

used for the rapid solution of the following system:

ðLUÞ�1ðAxþUpzxpzÞ ¼ ðLUÞ�1
y; ð51Þ

where ðLUÞ is a coarse hierarchical LU decomposition of A.

It is worth noting that since the presence of the sensors does not

affect considerably the response of the structure, ðLUÞ is close to

the LU decomposition of the matrix of the whole structure, i.e. of

the matrix of the damaged structure including the bonded sensors.

The proposed solution strategy allows to analyze the structure

with bonded sensors using the fast numerical scheme developed

in [17], without reducing the performances of the fast hierarchical

GMRES.

5. Numerical results

In this section the results of some numerical experiments, per-

formed using the above-mentioned BEM approach, are reported.

First, the sensor numerical model is validated against a simple

benchmark. An isolated sensor with electrode surfaces is consid-

ered and the output voltage following the application of prescribed

strains at the base of the piezoelectric patch is measured. Strains

are imposed through prescribed displacements at the base of the

sensor, such variables being the quantities directly entering the

model. The output is compared with the results of some simplified

analytical model, as the one used for example by Lin and Yuan [10],

which showed good agreement with the experimental results.

Such model predicts

Vout ¼
d31Ephpcp
k33ð1� mpÞ

; ð52Þ

where Ep ¼ C11 ¼ C22 and mp are the in-plane Young’s modulus and

Poisson’s ratio of the piezoelectric material, hp is the thickness of

the piezoelectric patch, k33 is the dielectric permittivity along the

thickness direction and d31 is the piezoelectric constant relating

c11 to E3 or D3 to r11 in the constitutive equations

c

D

� �
¼

S d
T

d e

" #
r

E

� �
ð53Þ

and whose value can be easily obtained by manipulating Eqs. (3). cp
is the value of the strain at the center of the piezoelectric patch, as-

sumed constant over all the sensor in the simplified analytical mod-

el, due to the small sensor size.
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The output voltage is computed for various values of the thick-

ness h of a sensor ð10 mm� 10 mm� hÞ subjected to strains

c11 ¼ c22 ¼ 10�4 at the basis. The considered material is PZT4 and

material constants are reported in Table 1.

Table 1

Material constants for PZT4.

C11 C22 C33 C12 C13 C23 C44 C55 C66

GPa 139 139 115 77.80 74.30 74.30 25.60 25.60 30.60

e31 e32 e33 e24 e15
C/m2 �5.20 �5.20 15.08 12.72 12.72

k11 k22 k33
nFa/m 13.06 13.06 11.51
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Fig. 3. Comparison between output voltages of numerical and analytical sensor for a benchmark configuration.

Fig. 4. Single sensor bonded on an elastic substrate and boundary element mesh.

Fig. 5. FEM deformed patch detail with considered check points.

Table 2

FEM–BEM displacement comparison.

Ux (corner) Uy (corner) Ux (mid) Uy (mid)

FEM 0.450 � 10�3 0.450 � 10�3 0.445 � 10�3 0.445 � 10�3

Standard BEM 0.447 � 10�3 0.447 � 10�3 0.444 � 10�3 0.444 � 10�3

Hierarchical BEM 0.447 � 10�3 0.447 � 10�3 0.444 � 10�3 0.444 � 10�3
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Fig. 6. Output voltage for a single sensor adhesively bonded on an elastic substrate.
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The results are shown in Fig. 3 together with the results ob-

tained by a full 3D FEM analysis performed with Abaqus. The com-

puted output voltage matches very well with the analytical model

for small values of h, being the simplified solution of a two-dimen-

sional model. For higher values of the thickness, the effects of shear

become more relevant and the simplified 2D model does not cap-

ture them, while the two 3D models predict the same output

voltage.

After testing the electro-elastic coupling for the isolated sensor,

the attachment conditions provided by Eq. (45), and then the mod-

el given by Eq. (48), are verified through comparison with finite

element results. A single anisotropic patch bonded on an elastic

substrate through an adhesive layer is studied. Only the mechani-

cal behavior is considered and the electro-elastic coupling is ne-

glected, forcing the piezoelectric constants to zero in BEM–FEM.

The patch is attached on a small square aluminum plate substrate,

subjected to a uniform traction acting over the four sides, as de-

picted in Fig. 4, which reports also the boundary element mesh

used in the analysis. The patch surfaces have dimensions

ð10 mm� 10 mmÞ and the patch thickness is hpz ¼ 0:5 mm. The

substrate size is ð50 mm� 50 mm� 4 mmÞ and it is subjected to

uniform tractions tx ¼ ty ¼ r ¼ 10:0 MPa on the vertical sides.

The elastic constants for the substrate are Ep ¼ 72:5 GPa and

mp ¼ 0:33, while for the adhesive the constants are G ¼ 85 MPa

and m ¼ 0:33. A FEM detail of the 3D deformed patch is reported

in Fig. 5. For comparison purposes some points at the interface be-

tween the patch-adhesive and the plate are considered. The patch

corner point and the mid points, colored in red1 in Fig. 5, are con-

sidered and the computed displacements are reported in Table 2.

Very good agreement between FEM and BEM results is found.

After testing both the electro-elastic coupling for the isolated

sensor and the mechanical attachment conditions for an aniso-

tropic patch bonded on the elastic substrate, the output voltage

of a piezoelectric sensor bonded on an elastic substrate is studied.

The system has the same dimensions as those used for checking

the attachment conditions, but now the piezoelectric constants

are not forced to zero and the electro-elastic coupling is then taken

into account. Moreover two different values of thickness are con-

sidered for the piezoelectric patch, hpz ¼ 0:5 mm and hpz ¼ 1:0

mm, and the adhesive layer thickness is varied between zero (no

adhesive) and the thickness of the piezo-patch. The output voltage

for the various adhesive thicknesses is computed and the test re-

sults are reported in Fig. 6. The diagram reports the ratio between

the computed output voltage Vout and the output voltage V0 ob-

tained when no adhesive is considered for different values of the

ratio between the adhesive layer thickness and the piezoelectric

layer thickness. It is evident that the output voltage drops at

increasing adhesive thickness, as the strain transfer from the plate

to the sensor is deteriorated by the bonding layer.

After checking the single bonded sensor, a plate with a set of

four piezo-patches at different locations over the plate is tested,

to asses the independence of the output voltage from the sensor

position, analogously to what is done in the work of Leme et al.

[44]. Four different configurations are analyzed. The four single

patches maintain the same relative position, but they are moved

to different positions over the plate. The plate is subjected to a uni-

form traction along the vertical sides with tx ¼ ty ¼ 10:0 MPa. Test

results are shown in Fig. 7. For each position sensor 1 is the one
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Fig. 7. Sensors response at different positions over the plate.

Table 3

Fast solver performances for the plate with four bonded sensors.

Standard assembly time (s) 259

Hierarchical assembly time (s) 190

Assembly speed up ratio 0.73

Standard solution time (s) 903

Hierarchical solution time (s) 393

Solution speed up ratio 0.44

Matrix memory storage (%) 37.36

Preconditioner memory storage (%) 10.68

Config. A

Config. B

Fig. 8. Cracked plate with attached sensors.

1 For interpretation of color in Figs. 3, 5–11, the reader is referred to the web

version of this article.
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closer to the lower side of the plate shown in Fig. 7. The sensors are

then counted counterclockwise. The output voltage of the set of

patches does not depend on the position over the plate. It is worth

noting, moreover, that the reported values resemble those reported

by Leme et al. [44], who used a simple 1D sensor model.

From the computational point of view, the solution for all the

considered cases has been computed by standard and hierarchical

BEMs. The plate is modeled with 880 eight-node elements, corre-

sponding to 2642 nodes. The two solution techniques give the

same results in terms of output voltage, confirming the effective-

ness of the solution strategy presented in Section 4.1. The hierar-

chical solution was computed by setting the prescribed accuracy

for the collocation matrix to ec ¼ 10�5, the preconditioner accuracy

to ep ¼ 10�2, the cardinality to nmin ¼ 36, see [17] for more details.

The GMRES relative accuracy was 10�8. With these settings, on an

Intel� CoreTM 2 Duo Processor T5500 (1.66 GHz) and 2 GB of RAM,

the computational performances reported in Table 3 have been ob-

tained. The collocation matrix assembly time for both the standard

and hierarchical BEMs and the solution time for both techniques

are reported. Also the memory requirements for the hierarchical

solver are reported in terms of percentage memory storage with

respect to the full format collocation matrix.
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Fig. 9. Sensitivity of the sensors to the presence of cracks.

Fig. 10. Cracked beam with arrays of piezoelectric sensors.
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Fig. 11. Voltage output for the two beam sensor arrays.
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The sensitivity of the bonded sensors to the presence of cracks

is then numerically investigated. A square 3D plate subjected to

a uniform traction acting over the four vertical sides is considered.

A set of four sensors is bonded on the plate. The plate sizes are

200 mm� 200 mm� 4 mm. Each sensor covers an area Spz ¼

1 cm2 and has a thickness hpz ¼ 0:5 mm. The adhesive thickness

is had ¼ 0:125 mm. Two different sensors configurations are con-

sidered, as illustrated in Fig. 8. The output of the sensors with

and without crack is computed. The through the thickness crack

has length a ¼ 2 cm. The relative position between crack and sen-

sors for the two different configurations can be inferred from Fig. 8.

As it is apparent from Fig. 9, the sensor output can actually be used

for structural monitoring purposes. The presence of cracks can be

detected by comparing the output voltage profiles before and after

the introduction of damage. An issue to be addressed is however

the sensor sensitivity, since static sensors appear to be able to de-

tect a crack when they are relatively close to it.

Finally a prismatic beam with two different arrays of piezoelec-

tric sensors is analyzed. The beam is illustrated in Fig. 10, where

both the undeformed and deformed configurations are drawn

(the deformation is exaggerated for illustrative purposes). The

beam transverse section is A ¼ 30 mm� 30 mm and the height is

h ¼ 32 cm. An edge-normal crack of depth a ¼ 1 cm is considered.

The beam is clamped at two points at each end section and is

loaded by a normal pressure p ¼ 15 MPa acting over the grey ele-

ments in Fig. 10. Two different configurations for the arrays of sen-

sors are tested separately. The output voltages from the two sensor

arrays, with and without crack, are reported in Fig. 11. The sensors

are counted starting from the bottom of the beam. The slight loss of

symmetry in sensor output when the crack is present is due to

their high sensitivity to strains, which amplifies small numerical

differences in computed displacements. It can be observed that,

for this kind of damage, both the sensor arrays are able to detect

the presence of the crack and suggest its location. However, for

configuration A, in the absence of damage, the sensors appear less

loaded and this can be beneficial for their service life.

Table 4 reports time and memory requirements for the standard

and hierarchical scheme. Also if the beam is not a very large-scale

system, meaningful memory and time savings are achieved.

6. Conclusions

An effective model for the analysis of cracked structures with

adhesively bonded piezoelectric patches has been developed. The

cracked structure has been modeled using the dual boundary ele-

ment method, which allows accurate analysis of crack parameters.

The sensors have been modeled using a state-space finite element

approach. The sensors and the host structures have been coupled

naturally, expressing the sensor model in terms of interface vari-

ables and incorporating their equations in the DBEM of the under-

lying structure. The technique performance has been sped up using

a hierarchical solver. The performed numerical experiments have

shown that the sensor model offers accurate predictions of the

output voltage. Medium size systems have been analyzed and

the performance of the technique has been demonstrated. The pro-

posed strategy constitutes a first step towards the modeling of

SHM systems.

Appendix A. Definitions

The generalized electro-elastic quantities are defined as

Cp ¼ c11 c22 c12 �E1 �E2½ �
T
; ðA:1Þ

Rp ¼ r11 r22 r12 D1 D2½ �T ; ðA:2Þ

Cz ¼ c13 c23 c33 �E3½ �
T
; ðA:3Þ

Rz ¼ r13 r23 r33 D3½ �T : ðA:4Þ

The matrix differential operators appearing in the formulation are

given by

Da ¼

@=@1 0 0 0

0 @=@2 0 0

@=@2 @=@1 0 0

0 0 0 @=@1

0 0 0 @=@2

2
6666664

3
7777775
; Db ¼

0 0 @=@1 0

0 0 @=@2 0

0 0 0 0

0 0 0 0

2
6664

3
7775:

ðA:5Þ

The shape functions matrix appearing in Eq. (7) is defined as

follows:

Nðn;gÞ ¼

Ns 0 0 0

0 Ns 0 0

0 0 Ns 0

0 0 0 Ns

2
6664

3
7775 ðA:6Þ

with

Nsðn;gÞ ¼ N1 N2 N3 N4 N5 N6 N7 N8½ �: ðA:7Þ

In the formulation also the shape functions derivatives are used

Nxðn;gÞ ¼
@

@x
Nsðn;gÞ; Nyðn;gÞ ¼

@

@y
Nsðn;gÞ: ðA:8Þ

Appendix B. State-space equation derivation

In this appendix some details about the derivation of the sensor

equations are given. The state-space equation for piezoelectric

laminates can be derived starting from the following hybrid gener-

alized functional [18,20]:

P ¼

Z

X

xðCp;RzÞdX�

Z

C

TTðU� UÞdC�

Z

C

UTTdC; ðB:1Þ

where

x ¼ R
T
z Db þ I

@

@x3

� �
Uþ

1

2
C

T
pUppCp �

1

2
R

T
zUzzRz þ R

T
zUzpCp ðB:2Þ

and T ¼ ½ t1 t2 t3 Dn �
T is the generalized traction vector. Over-

lined variables denote assigned values. The matrices appearing in

Eq. (B.2) are defined as follows:

Table 4

Computational requirements for the beam with piezo-sensors.

No crack Crack

Standard assembly time (s) 60 75

Hierarchical assembly time (s) 53 67

Assembly speed up ratio 0.89 0.89

Standard solution time (s) 88 104

Hierarchical solution time (s) 39 82

Solution speed up ratio 0.45 0.80

Matrix memory storage (%) 44.26 48.07

Preconditioner memory storage (%) 17.97 19.62
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Uzz ¼ R�1
zz ¼

k1 0 0 0

0 k2 0 0

0 0 k3 k4

0 0 k4 k5

2
666664

3
777775
; ðB:3Þ

Uzp ¼ R�1
zz Rzp ¼

0 0 0 k6 0

0 0 0 0 k7

k8 k9 0 0 0

k10 k11 0 0 0

2
666664

3
777775
; ðB:4Þ

Upp ¼ Rpp � RpzR
�1
zz Rzp ¼

k12 k13 0 0 0

k13 k14 0 0 0

0 0 k15 0 0

0 0 0 k16 0

0 0 0 0 k17

2
666666664

3
777777775

; ðB:5Þ

where the constants ki are constitutive quantities whose expres-

sions can be obtained, after some manipulations, from Eq. (4) and

correspond to the definitions given in [18].

The stationarity of the functional (B.1) with respect to U and Rz,

considering that Cp ¼ DaU, after applying Gauss’ theorem, pro-

duces the following relationships:

@

@x3

U

Rz

� �
þ

ðDb þUzpDaÞ �Uzz

D
T
aUppDa ðDT

b þD
T
aU

T
zpÞ

" #
U

Rz

� �
¼

0

0

� �
ðB:6Þ

and the following boundary conditions:

T ¼ D
T
aUppDaUþ ðDT

aU
T
zp þD

T
b þ n3IÞRz; ðB:7Þ

where Da and Db are obtained by Da and Db by substituting @=@xi
with ni, which represents the ith component of the unit outward

normal vector at the considered boundary point. Eqs. (B.6) and

(B.7) express the piezoelectric problem in terms of state-space

equation [18–20]. The matrices Q ij in Eq. (11) are defined as

follows:

Q 11¼

0 0 �NT
sNx �k6N

T
sNx

0 0 �NT
sNy �k7N

T
sNy

�k8N
T
sNx �k9N

T
sNy 0 0

�k10N
T
sNx �k11N

T
sNy 0 0

2
66664

3
77775
; ðB:8Þ

Q 12¼

k1N
T
sNs 0 0 0

0 k2N
T
sNs 0 0

0 0 k3N
T
sNs k4N

T
sNs

0 0 k4N
T
sNs k5N

T
sNs

2
66664

3
77775
; ðB:9Þ

Q 21¼

k12N
T
xNxþk15N

T
yNy k13N

T
xNyþk15N

T
yNx 0 0

k13N
T
yNxþk15N

T
xNy k14N

T
xNxþk15N

T
yNy 0 0

0 0 0 0

0 0 0 k16N
T
xNxþk17N

T
yNy

2
66664

3
77775

ðB:10Þ

and Q 22 ¼ �Q T
11.
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