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COMBINING FAST MULTIPOLE TECHNIQUES AND AN
APPROXIMATE INVERSE PRECONDITIONER FOR LARGE
ELECTROMAGNETISM CALCULATIONS*

B. CARPENTIERI', I. S. DUFF#, L. GIRAUDS, AND G. SYLVANDY

Abstract. The boundary element method has become a popular tool for the solution of
Maxwell’s equations in electromagnetism. From a linear algebra point of view, this leads to the
solution of large dense complex linear systems, where the unknowns are associated with the edges
of the mesh defined on the surface of the illuminated object. In this paper, we address the iterative
solution of these linear systems via preconditioned Krylov solvers. Our primary focus is on the de-
sign of an efficient parallelizable preconditioner. In that respect, we consider an approximate inverse
method based on the Frobenius-norm minimization. The preconditioner is constructed from a sparse
approximation of the dense coefficient matrix, and the patterns both for the preconditioner and for
the coefficient matrix are computed a priori using geometric information from the mesh. We describe
how such a preconditioner can be naturally implemented in a parallel code that implements the mul-
tipole technique for the matrix-vector product calculation. We investigate the numerical scalability
of our preconditioner on realistic industrial test problems and show that it exhibits some limitations
on very large problems of size close to one million unknowns. To improve its robustness on those
large problems we propose an embedded iterative scheme that combines nested GMRES solvers with
different fast multipole computations. We show through extensive numerical experiments that this
new scheme is extremely robust at affordable memory and CPU costs for the solution of very large
and challenging problems.
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1. Introduction. The analysis of wave propagation phenomena is gaining an
increasing interest in recent years in the simulation of many challenging industrial
processes, including the prediction of the Radar Cross Section (RCS) of arbitrarily
shaped 3D objects such as aircraft, the study of electromagnetic compatibility of elec-
trical devices with their environment, the design of antennae and absorbing materials,
and many others. All these simulations are very demanding in terms of computer re-
sources and require fast and efficient numerical methods to compute an approximate
solution of Maxwell’s equations. Using the equivalence principle, Maxwell’s equations
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can be recast in the form of four integral equations that relate the electric and mag-
netic fields to the equivalent electric and magnetic currents on the surface of the
object.

Among integral formulations, the electric field integral equation (EFIE) is the
most general for electromagnetic scattering problems, as it can handle fairly general
geometries, and thus is widely used in industrial simulations. The EFIE provides a
first-kind integral equation, which is well known to be ill-conditioned and gives rise to
linear systems that are challenging to solve by iterative methods. The discretization
is performed on the surface of the object and gives rise to a linear system

(1.1) Az =0,

where the matrix A is an n X n, dense, complex, symmetric, non-Hermitian ma-
trix. For many years, direct solution methods have been the methods of choice for
solving systems (1.1) because they are reliable and predictable in terms of both ac-
curacy and computing costs. However, for the solution of large-scale problems, direct
methods are infeasible even on large parallel platforms because they require the un-
affordable storage of n? single or double precision complex entries of the coefficient
matrix and O(n3) floating-point operations to compute the factorization. The use
of preconditioned Krylov solvers can be an alternative to direct solution methods,
provided we have fast matrix-free matrix-vector products and robust preconditioners.
Research efforts have recently concentrated on fast methods for performing matrix-
vector products with O(nlog(n)) computational complexity, including strategies for
parallel distributed memory implementations. These methods, generally referred to as
hierarchical methods, were introduced originally in the context of the study of particle
simulations and can be used effectively in boundary element applications.

In this paper, we focus on the design of a parallelizable preconditioner to be used
in conjunction with a parallel distributed fast multipole technique that implements
the matrix-vector calculation. We consider an approximate inverse preconditioner
based on Frobenius-norm minimization with a pattern prescribed in advance. In
section 2, we describe the implementation of the preconditioner within an out-of-core
parallel code that implements the fast multipole method (FMM) for the matrix-vector
product. We investigate the numerical scalability of the preconditioner on a set of
industrial problems of increasing size and show that it becomes less effective when
the problem size becomes very large. To overcome this weakness, we propose in
section 3 an embedded iterative scheme based on the GMRES method that aims at
improving the robustness of the preconditioner on large applications. We illustrate the
numerical efficiency and the cost effectiveness of the proposed scheme on systems of up
to one million unknowns arising from challenging problems from the electromagnetism
community.

2. Preconditioning boundary integral equations. For large meshes with
many surface details, the density of the discretization mesh is nonuniform, and the
matrix generated by the method of moments can become ill-conditioned. The con-
vergence of Krylov methods depends to a large extent on the eigenvalue distribution
of the coefficient matrix. In Figure 2.1, we plot the eigenvalue distribution in the
complex plane of the matrix associated with a satellite geometry. This distribution is
representative of the general trend; it can be seen that the eigenvalues of the system
are very scattered; many of them have a large negative real part and no clustering
appears. Such a distribution is not at all favorable for the rapid convergence of Krylov
methods. One goal of preconditioning is to improve this distribution by grouping the
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F1a. 2.1. Eigenvalue distribution in the complex plane of the coefficient matrix for a scattering
problem from a satellite that is representative of the general trend.

eigenvalues into a few small clusters.

The design of robust preconditioners for boundary integral equations can be chal-
lenging. Simple preconditioners like the diagonal of A, diagonal blocks, or a band can
be effective only when the coefficient matrix has some degree of diagonal dominance
arising from the integral formulation [30]. Block diagonal preconditioners are generally
more robust than their pointwise counterparts but may require matrix permutations
or renumbering of the grid points to cluster the large entries close to the diagonal. In-
complete factorizations have been successfully used on nonsymmetric dense systems in
[28] and hybrid integral formulations in [24], but for the EFIE the triangular factors
computed by the factorization are often very ill-conditioned due to the indefiniteness
of A. This makes the triangular solves highly unstable and the preconditioner useless.
In [5], we used a small diagonal shift applied to A before computing the factorization
with the intention of moving the eigenvalues along the imaginary axis. This might
avoid a possible eigenvalue cluster close to zero and can help the computation of more
stable factors in some cases. However, this shift is not easy to tune and there is no
way to predict its effect.

Approximate inverse methods are generally less prone to instabilities on indefinite
systems, and several preconditioners of this type have been proposed in electromag-
netism (see for instance [1, 3, 4, 6, 23, 27, 35]). Owing to the rapid decay of the discrete
Green’s function, the location of the large entries in the inverse matrix exhibits some
structure. In addition, only a few of its entries have relatively large magnitude. This
means that a very sparse matrix is likely to retain the most relevant contributions to
the exact inverse. This remarkable property can be effectively exploited in the design
of robust approximate inverses as preconditioners for electromagnetism applications.

2.1. Frobenius-norm minimization preconditioner. In this section, we de-
scribe an approximate inverse preconditioner based on Frobenius-norm minimization.
The original idea, due to Benson and Frederickson [2, 15], is to compute the sparse
approximate inverse as the matrix M which minimizes ||[I — M A||r (or ||I — AM]||F for
right preconditioning) subject to certain sparsity constraints. The Frobenius norm
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is usually chosen since it allows for the decoupling of the minimization problems
into n independent linear least-squares problems, one for each column of M, when
preconditioning from the right (or row of M, when preconditioning from the left). The
independence of these least-squares problems follows immediately from the identity

(2.1) I~ AM|% =" lle; — Ama|3,

Jj=1

where e; is the jth canonical unit vector, m,; is the column vector representing the
jth column of M, and n the dimension of the square matrices. In the case of left
preconditioning, because A is symmetric, the analogous relation

n
(2.2) I = MA|Z = [T = AMT|% = Y lle; — Amya|l3

j=1

holds, where mj, is the column vector representing the jth row of M. Clearly, there
is considerable scope for parallelism in this approach. The main issue is the selection
of the sparsity pattern of M, that is, the set of indices

(2.3) S ={(i,j) € [1,n)? such that m;; = 0}.

The idea is to keep M reasonably sparse while trying to capture the “large” entries
of the inverse, which are expected to contribute the most to the quality of the pre-
conditioner. Two different approaches can be followed for this purpose: an adaptive
technique that dynamically tries to identify the best structure for M, and a static
technique, where the pattern of M is prescribed a priori based on some heuristics.
Adaptive methods usually start with a simple initial guess, like a diagonal matrix,
and then improve the pattern until a criterion of the form ||Am,; —e;||2 < e (for each
Jj) is satisfied for a given € > 0 or until a maximum number of nonzeros in m,; is
reached. If the norm is larger than € and the number of nonzeros used is less than
a fixed maximum, the pattern is enlarged according to some heuristics and the jth
column of the approximate inverse is recomputed. The process is repeated until the
required accuracy or storage limit is met (see [7, 21]).

Adaptive strategies can solve fairly general and hard problems but tend to be
very expensive. The use of effective static pattern selection strategies can greatly
reduce the amount of work in terms of CPU time and can substantially improve the
overall setup process. When the coefficient matrix has a special structure or special
properties, efforts have been made to find a pattern that can retain the entries of
A~! having large modulus [10, 11, 12, 32]. If A is row diagonally dominant, then the
entries in the inverse decay columnwise and vice versa [32]. On boundary integral
equations the discrete Green’s function decays rapidly far from the diagonal, and the
inverse of A may have a very similar structure to that of A. The discrete Green’s
function can be considered as a row or as a column of the exact inverse depicted on the
physical computational grid. In this case a good pattern for the preconditioner can
be computed in advance using graph information from fl, a sparse approximation of
the coefficient matrix constructed by dropping all the entries lower than a prescribed
global threshold [1, 4, 22]. When fast methods are used for the matrix-vector products,
all the entries of A are not available and the pattern can be formed by exploiting the
near-field part of the matrix that is explicitly computed and available in the FMM [23].

Since we work in an integral equation context, relevant information for the con-
struction of the pattern of M can be extracted from the mesh. When the object
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geometries are smooth, only the neighboring edges (in the mesh topology sense) in
the mesh can have a strong interaction with each other, while faraway connections are
generally much weaker. Thus an effective pattern for the jth column of the approxi-
mate inverse can be computed by selecting in the mesh edge j and its gth level nearest
neighbors. Three levels generally provide a good pattern for constructing an effective
sparse approximate inverse. Using more levels increases the computational cost but
does not improve the quality of the preconditioner substantially [4]. When the object
geometries are not smooth or have disconnected parts, faraway edges in the mesh
can have a strong interaction and be strongly coupled in the inverse matrix. In this
case, a more robust pattern for the preconditioner can be computed using geometrical
information, that is, selecting for each edge all those edges within a sufficiently large
geometric neighborhood. In [4] we compared pattern selection strategies based on
both algebraic and mesh information on a large set of problems and found that those
exploiting geometric information are the most effective in capturing the large entries
of the inverse.

In order to preserve sparsity, O(1) nonzero locations are computed in the pattern
of the column m,; of M. This makes each QR least-squares solution for each column of
M from (2.1) cost O(n), and the overall construction of M costs approximately O(n?)
arithmetic operations. This cost can be significantly reduced if the preconditioner is
computed using as input a sparse approximation A of the dense coefficient matrix A.
On general problems, this approach can cause a severe deterioration of the quality of
the preconditioner. In an integral equation context, it is likely to be more effective
because the boundary element method generally introduces a very localized strong
coupling among the edges in the underlying mesh. It means that a very sparse matrix
can still retain the most relevant contributions from the singular integrals that give
rise to dense matrices. If the sparsity pattern S of M is known in advance, the nonzero
structure for the jth column of M is automatically determined and defined as

J = {i € [1,n] such that (i,j) € S}.

The least-squares solution involves only the columns of A indexed by J; we indicate
this subset by A(:,J). When A is sparse, many rows in A(:,J) are usually null,
not affecting the solution of the least-squares problems (2.1). Thus if T is the set of
indices corresponding to the nonzero rows in A(:,J), and if we define A= A(1, ),
mj =m;(J), and é; = e;(J), the actual “reduced” least-squares problems are

(2.4) min [|&; — Amlle,  j=1,...,n.

Usually problems (2.4) have much smaller size than problems (2.1) and can be effi-
ciently solved by a dense QR factorization. In [1] the same nonzero sparsity pattern
is selected for both A and M; in that case, especially when the pattern is very sparse,
the computed preconditioner may be poor on some geometries. Selecting more entries
in A than in M can provide a more robust preconditioner, and the additional cost in
terms of CPU time is negligible because of the complexity of the QR factorization [4].
Increasing the number of rows ¢, that is, the number of entries of A, affects the CPU
time far less than increasing the density of the preconditioner, that is, the number of
columns p; in the least-squares problems. This is because each least-squares solution
costs O(q;p%).

2.2. Implementation of the preconditioner in the FMM context. The
FMM, introduced by Greengard and Rokhlin in [20], provides an algorithm for com-
puting approximate matrix-vector products for electromagnetic scattering problems.
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The method is fast in the sense that the computation of one matrix-vector product
costs O(nlogn) arithmetic operations instead of the usual O(n?) operations. It re-
quires storage only of the near-field part of the matrix, that is, of O(nlogn) instead
of O(n?) entries. These properties mean that using iterative solvers for the solution
of large problems becomes feasible.

The basic idea of the algorithm is to compute interactions among degrees of free-
dom in the mesh at different levels of accuracy depending on their physical distance.
Single and multilevel variants of the FMM exist. The 3D object is first entirely en-
closed in a large cube that is subdivided into eight cubes. Each cube is recursively
divided until the size is small compared with the wavelength. In the hierarchical
multilevel algorithm, the box-wise partitioning of the obstacle is carried out until the
size of the smallest box is generally half of a wavelength, and tree-structured data is
used at all levels. In particular, only nonempty cubes are indexed and recorded in the
data structure. The resulting tree is called the oct-tree (see Figure 2.2) and its leaves
are referred to as leaf boxes. The oct-tree provides a hierarchical representation of
the computational domain partitioned by boxes: each cube has up to eight children
and one parent in the oct-tree, except for the largest cube which encloses the whole
domain. Obviously, the leaf boxes have no children. Multipole coefficients are com-
puted for all cubes starting from the lowest level of the oct-tree, that is, from the leaf
boxes, and then recursively for each parent cube by summing together multipole coef-
ficients of its children. For each observation cube, an interaction list is defined which
consists of those cubes that are not neighbors of the cube itself but whose parent is
a neighbor of the cube’s parent (see Figure 2.3 for a 2D representation). The inter-
actions of degrees of freedom within neighboring boxes are computed exactly, while
the interactions between cubes that are in the interaction list are computed using the
FMM. All the other interactions are computed hierarchically on a coarser level by
traversing the oct-tree. Both the computational cost and the memory requirement of
the algorithm are of order O(nlogn). Further information on the algorithmic steps
and recent theoretical investigations of the FMM can be found in [8, 9, 31]; also see
[17, 19, 36] for discussions on parallel implementation issues.

Level n (LEAVES)

Fi1G. 2.2. The oct-tree in the FMM algorithm. The mazximum number of children is eight. The
actual number corresponds to the subset that intersects the object.
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Fic. 2.3. Interactions in the multilevel FMM. The interactions for the gray bozxes are computed
directly. We denote by dashed lines the interaction list for the observation box that consists of those
cubes that are not neighbors of the cube itself but whose parent is a neighbor of the cube’s parent.
The interactions of the cubes in the list are computed using the FMM. All the other interactions are
computed hierarchically on a coarser level, denoted by solid lines.

The box-wise decomposition of the domain required by the FMM naturally leads
to an a priori pattern selection strategy for M and A using geometric information, that
is on the spatial distribution of its degrees of freedom. We will adopt the following
criterion: the nonzero structure of the column of the preconditioner associated with
a given edge is defined by retaining all the edges within its leaf box and those in one
level of neighboring boxes, and the structure for the sparse approximation of the dense
coefficient matrix is defined by retaining the entries associated with edges included
in the given leaf box as well as those belonging to the two levels of neighbors. The
approximate inverse has a sparse block structure; each block is dense and is associated
with one leaf box. Indeed the least-squares problems corresponding to edges within
the same box are identical because they are defined using the same nonzero structure
and the same set of entries of A. It means that we need only compute one QR
factorization per leaf box. In our implementation we use two different oct-trees,
and thus two different partitionings, to assemble the approximate inverse and for
the approximate multipole coefficient matrix. The size of the smallest boxes in the
partitioning associated with the preconditioner is a user-defined parameter that can
be tuned to control the number of nonzeros computed per column, that is, the density
of the preconditioner. According to our criterion, the larger the size of the leaf boxes,
the larger the geometric neighborhood that determines the sparsity structure of the
columns of the preconditioner. Parallelism can be exploited by assigning disjoint
subsets of leaf boxes to different processors and performing the least-squares solutions
independently on each processor. We refer to [31] for a complete description of the
parallel code that we use.

2.3. Numerical scalability of the preconditioner. In this section, we study
the numerical scalability of the Frobenius-norm minimization preconditioner. The
optimal behavior would be to get frequency independent numerical behavior that
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would result in convergence independent of the problem size. We show results on the
following geometries:
e an industrial civil aircraft from a European company (see Figure 2.4(a)), a
real-life model problem in an industrial context;
e an almond (see Figure 2.4(b)) that is also a typical test case in electromagnetic
simulations;
e a Cetaf (see Figure 2.4(c)), a typical test case in electromagnetic simulations;
e a Cobra (see Figure 2.4(d)), a complex geometry that represents an air intake.

(a) Aircraft (b) Almond

(c) Cetaf (d) Cobra

FiG. 2.4. Mesh associated with test examples.

In all the numerical experiments, the surface of the object is always discretized
using 10 points per wavelength; larger discretizations are obtained by increasing the
frequency of the illuminating wave. In all the experiments, we consider a right pre-
conditioned GMRES method [26] and the threshold for the stopping criterion is set
to 1073 on the normwise backward error HZH, where r denotes the residual and b

the right-hand side of the linear system. This tolerance is accurate for engineering
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purposes, as it enables the correct construction of the radar cross section of the ob-
ject. The initial guess is the zero vector. All the runs have been performed in single
precision on eight processors of a Compaq Alpha server. The Compaq Alpha server is
a cluster of symmetric multiprocessors. Each node consists of four DEC Alpha pro-
cessors (EV 6, 1.3 GFlops peak) that share 512 MB of memory. On that computer,
the temporary disk space that can be used by the out-of-core solver is around 189
GB. Among all the possible right-hand sides for each geometry, we have selected those
that are the most difficult to solve in order to better illustrate the robustness and the
efficiency of our preconditioner.

In Table 1, we show the numerical behavior of the preconditioner observed on the
four geometries when the size of the problems is increased. In this table “d” means day,
“h” hour, and “m” minute. We see that the numerical behavior of the preconditioner
does not scale well with the size of the problems, expecially GMRES(120) on the
Cetaf, and there is no convergence on the largest aircraft problems. For GMRES(c0)
the increase in the iteration count is less significant, even though on the Cetaf and
the aircraft convergence cannot be obtained because we exceed either the memory
limits of our computer or the time limit allocated to a single run. From a timing
point of view, we see that the solution time of full GMRES is strongly affected by the
orthogonalization involved in the Arnoldi procedure. On the Cetaf problem discretized
with 531900 points, the number of iterations of GMRES(120) is twice as large with

TABLE 1
Number of matriz-vector products and elapsed time required to converge on the four problems
on eight processors of the Compaq machine, except those marked with (), that were run on k pro-
cessors. Tolerance for the iterative solution was 1073, Acronyms: N.A. = not available. M.L.E. =
memory limits exceeded.

Aircraft
Size |Density FROB Time FROB GMRES(c0) GMRES(120)
Iter Time Iter Time
94704 0.28 11m 746 2h 9m 1956 3h 13m
213084 0.13 31m 973 7h 19m | +2000 7h 56m
591900 0.09 1h 30m 1461 16h 42m% | +2000 1d 57m
1160124 0.02 3h 24m M.L.E.(64) N.A. 42000 > 4d
Almond
Size |Density FROB Time FROB GMRES(c0) GMRES(120)
Iter Time Iter Time
104793 0.19 6m 234 20m 253 17m
419172 0.05 21m 413 2h 44m 571 2h 26m
943137 0.02 49m 454 3h 35m(®2) | 589 5h 55m
Cetaf
Size |Density FROB Time FROB GMRES(c0) GMRES(120)
Iter Time Iter Time
86256 0.18 4m 656 1h 25m 1546 1h 44m
134775 0.11 6m 618 1h 45m 1125 1h 55m
264156 0.06 13m 710 9h 1373 4h 46m
531900 0.03 20m 844 1d 18m 1717 14h 8m
1056636 0.01 37m +750 +9h(32) [ 42000 > 1d
Cobra
Size |Density FROB Time FROB GMRES(0) GMRES(120)
Iter Time Iter Time
60695 0.24 2m 369 26m 516  23m
179460 0.09 7m 353 1h 11h 406  1h 2m
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respect to full GMRES, but GMRES(120) is about twice as cheap. Provided we get
convergence, the use of a large restart often reduces the solution time even though it
significantly deteriorates the convergence. On the Cetaf geometry, the solution time
for the GMRES method increases superlinearly for small and medium problems, but
nearly quadratically for large problems. On the largest test case, discretized with
one million unknowns, unrestarted GMRES does not converge after 750 iterations
requiring more than nine hours of computation on 32 processors. The aircraft is very
difficult to solve because the mesh has many surface details and the discretization
matrices become ill-conditioned. On small and medium problems, the number of
GMRES iterations increases with the problem size, and the solution time increases
superlinearly. On the largest test case, discretized with one million unknowns, full
GMRES exceeds the memory limit on 64 processors. In this case, the use of large
restarts (120 in this table) does not enable convergence within 2000 iterations except
on a small mesh of size 94704.

We see in Table 1 that our strategy for adjusting the leaf box dimension for
increasing frequencies causes the density of the sparse approximate inverse to decrease
for increasing problem size. The number of unknowns per box remains constant,
but the number of boxes increases, leading to a decrease in density and to poorer
preconditioners. In Table 2, we investigate the influence of the density on the quality
of the preconditioner on the Cobra using GMRES with a large restart (120). We
adopt the same criterion described in section 2 to define the sparsity patterns, but we
increase the size of the leaf boxes in the oct-tree associated with the preconditioner.
The best trade-off between cost and performance is obtained for a radius of around
0.12 wavelengths, the default value set in the code. If the preconditioner is used
to solve systems with the same coeflicient matrix and multiple right-hand sides, it
might be worth computing more nonzeros if we have sufficient disk space, because
the construction cost can be quickly amortized. However, significantly enlarging the
density of the preconditioner is not feasible on the largest problems because we would
exceed the memory and disk capacity of our computer. As mentioned already, our
main focus is on linear systems arising from EFIE. The advantages of this formulation
are numerous; in particular, it does not require any hypothesis on the geometry of
the objects. We should nevertheless mention that for closed geometries the CFIE
(combined field integral equation) can also be used. The linear systems arising from
the CFIE formulation are much easier to solve. For instance the solution of the
problem associated with the aircraft with 213084 degrees of freedom requires only
129 iterations of unpreconditioned full GMRES, and 22 iterations of preconditioned
full GMRES. Furthermore, preconditioned full GMRES converges in 24 iterations on
the aircraft with more than a million degrees of freedom. Because the linear systems
arising from the CFIE are not challenging from a linear algebra point of view, we do
not consider them further in this paper.

Finally, in Table 3, we show the parallel scalability of the implementation of
the FMM code [31]. We solve problems of increasing size on a larger number of
processors, keeping the number of unknowns per processor constant. It can be seen
that the construction of the preconditioner scales perfectly. This is a benefit from
keeping the size of the leaf box constant. Its use requires some communication but
it still scales reasonably well. The scalability of the matrix-vector product is also
satisfactory, as the increase in the elapsed time is due not only to the amount of data
exchanges but also to the log(n) effect of its computational complexity.
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TABLE 2
Number of matriz-vector products and elapsed time to build the preconditioner and to solve the
problem using GMRES(120) on a Cobra problem of size 179460, varying the parameters controlling
the density of the preconditioner. The runs were performed on eight processors of the Compaq
machine.

Radius Density # mat-vec Construction  Solution  Overall

in GMRES(120) time time time
0.08 0.039 430 218 3562 3780
0.10 0.062 383 294 3008 3302
0.12 0.091 406 434 2954 3388
0.14 0.120 380 640 2873 3513
0.18 0.204 351 1863 3122 4985
0.24 0.358 280 4947 2583 7531

TABLE 3

Tests on the parallel scalability of the code with respect to the construction and application of
the preconditioner and to the matriz-vector product operation on problems of increasing size. The
test example is the aircraft.

Problem Construction time | Elapsed time  Elapsed time
. Nb procs

size (sec) precond (sec) mat-vec (sec)
112908 8 513 0.39 1.77
161472 12 488 0.40 1.95
221952 16 497 0.43 2.15
288300 20 520 0.45 2.28
342732 24 523 0.47 3.10
393132 28 514 0.47 3.30
451632 32 509 0.48 2.80
674028 48 504 0.54 3.70
900912 64 514 0.60 3.80

3. Improving the preconditioner robustness using embedded iterations.
The numerical results shown in the previous section indicate that the Frobenius-
norm minimization preconditioner tends to become less effective when the problem
size increases, especially on difficult problems. By its nature the sparse approximate
inverse is inherently local because each degree of freedom is coupled to only a very few
neighbors. Because the exact inverse is dense the compact support used to define the
preconditioner may not allow an exchange of global information and on large problems
the lack of a global approximation may have a severe impact on the convergence. In
our implementation, the overall number of computed nonzeros decreases for increasing
values of the frequency. When the preconditioner becomes very sparse, information
related to the far-field is completely lost. In this case, some suitable mechanism has to
be introduced to recover global information for the numerical behavior of the discrete
Green’s function.

In this section, we describe an embedded iterative scheme, combined with mul-
tipole techniques, that is designed to meet the goals of robustness, scalability, and
parallelism of the iterative solver. The basic idea is to carry out a few steps of an
inner Krylov method for the preconditioning operation. The overall algorithm re-
sults in the inner-outer scheme depicted in Figure 3.1. The outer solver must be
able to work with variable preconditioners. Amongst various possibilities, we mention
FGMRES [25] and GMRESx [33, p. 91]; this latter reduces to GMRESR [34] when
the inner solver is GMRES. The efficiency of the proposed algorithm relies on two
main factors: the inner solver has to be preconditioned so that the residual in the
inner iterations can be significantly reduced in a few steps, and the matrix-vector
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products within the inner and the outer solvers can be carried out with a different
accuracy. The motivation that naturally leads us to consider inner-outer schemes
is to try to balance the locality of the preconditioner with the use of the multipole
approach. Experiments conducted in [18] with inner-outer schemes combined with
multipole techniques on the potential equation were not entirely successful. In that
case, no preconditioner was used in the inner solver. The desirable feature of using
different accuracies for the matrix-vector products is enabled by the use of the FMM.
In our scheme, a highly accurate FMM is used within the outer solver, as it governs
the final accuracy of the computed solution. A less accurate FMM is used within
the inner solver, as it is a preconditioner for the outer scheme; in this respect the
inner iterations attempt only to give a rough approximation of the solution and con-
sequently do not require an accurate matrix-vector calculation. In fact, we solve a
nearby system for the preconditioning operation that enables us to save considerable
computational effort during the iterative process, as the less accurate matrix-vector
calculation requires about half of the computing time of the accurate one. In Ta-
ble 4, we show the average elapsed time in seconds observed on eight processors for a
matrix-vector product using the FMM with different accuracy levels.

Outer solver — FGMRES, GMRES*

Dok=1,2,...
e Matrix-vector product: FMM with high accuracy
e Preconditioning: Inner solver (GMRES, TFQMR,...)

Doi=1,2,...
e Matrix-vector product: FMM with low accuracy
e Preconditioning: Mp;op
End Do
End Do

Fic. 3.1. Inner-outer solution schemes in the FMM context. Sketch of the algorithm.

TABLE 4
Average elapsed time observed on eight processors in seconds for a matriz-vector product using
the FMM with different levels of accuracy.

Geometry Inner FMM  Outer FMM
Aircraft 94704 3.5 4.8
Aircraft 213084 6.9 11.8
Aircraft 591900 17.4 30.2
Aircraft 1160124 34.5 66.5
Almond 104793 1.8 3.0
Almond 419172 6.2 11.2
Almond 943137 14.3 25.5
Cetaf 86256 1.9 3.7
Cetaf 134775 3.2 5.2
Cetaf 264159 5.6 11.4
Cetaf 539100 11.5 19.3
Cetaf 1056636 20.6 38.2
Cobra 60695 1.1 2.0
Cobra 179460 3.2 5.6
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Fic. 3.2. Conwvergence history of GMRES for different values of restarts on an aircraft dis-
cretized with 94704 points.

3.1. Numerical results. In this section, we conduct experiments using the
FGMRES method as the outer solver with an inner GMRES iteration preconditioned
with the Frobenius-norm minimization method described in section 2. It is possible
to vary the accuracy of the inner solver as the solution converges. However, in this
paper, we present preconditioning results for a constant number of inner GMRES
iterations. For the inner scheme we do not restart and perform only a prescribed
number of full GMRES iterations or equivalently one step of restarted GMRES with
the same prescribed restart. For the GMRES and FGMRES methods, we consider
the implementations described in [14] and [13], respectively. The convergence history
of GMRES depicted in Figure 3.2 for different values of the restart gives us some clues
as to the numerical behavior of the proposed scheme. The residual of GMRES tends
to decrease very rapidly in the first few iterations independently of the restarts, then
decreases much more slowly, and finally tends to stagnate to a value that depends
on the restart; the larger the restart, the lower the stagnation value. It suggests
that a few steps in the inner solver could be very effective for obtaining a significant
reduction of the initial residual. A different convergence behavior was observed when
using other Krylov methods as an inner solver, for example, the TFQMR solver [3].
In this case, the residual at the beginning of the convergence is nearly constant or
decreases very slowly. The use of TFQMR as an inner solver is ineffective.

In Table 5, we describe the results of experiments on an aircraft with 213084
degrees of freedom using different combinations of restarts for the inner and outer
solvers. If the number of inner steps is too small, the preconditioning operation is
poor and the convergence slows down, while too large restarts of GMRES tend to
increase the overall computational cost but do not cause further reduction of the
normwise backward error at the beginning of convergence. The choice of the restart
for the outer solver depends to a large extent on the available memory of the target
machine and the difficulty of the problem at hand, an issue that is also related to the
illuminating direction of the incident wave that defines the right-hand side. Among
the various possibilities, we select FGMRES(30) and GMRES(60) on the aircraft and
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TABLE 5
Global elapsed time and total number of matriz-vector products required to converge on an
asrcraft with 213084 points varying the inner restart parameter. The runs have been performed on
eight processors of the Compaq machine.

Restart Restart # total inner # total outer Times
FGMRES GMRES mat-vec mat-vec

30 40 1960 51 4h 58m

30 50 1900 40 4h 53m

30 60 1920 34 4h 55m

30 70 2030 30 5h 13m

30 80 2240 29 5h 50m

the Cetaf problem, and FGMRES(15) and GMRES(30) on the Cobra and the Almond.
These combinations are a good trade-off.

In Table 6 we show the results of experiments on the same geometries that we
considered in section 2. We show the number of inner and outer matrix-vector prod-
ucts and the elapsed time needed to achieve convergence using a tolerance of 1072 on
eight processors of the Compaq machine. For comparison purposes, we show again in
this table the results obtained with the restarted GMRES method. The comparison
between the two solvers made in the tables is fair because GMRES has exactly the
same storage requirements as the combination FGMRES/GMRES. In fact, for the
same restart value, the storage requirements for the FGMRES algorithm are twice
that for the standard GMRES algorithm, because it also stores the preconditioned
vectors of the Krylov basis. It can be seen that the combination FGMRES/GMRES
remarkably enhances the robustness of the preconditioner especially on large prob-
lems. The increase in the number of outer iterations is fairly modest except on the
largest aircraft test cases. Nevertheless, the scheme is the only one that enables us
to get the solution of this challenging problem since classical restarted GMRES does
not converge and full GMRES exceeds the memory of our computer. Similarly, on
the Cetaf discretized with one million points, the embedded scheme enables us to
get convergence in 22 outer iterations, whereas GMRES(120) does not converge in
2000 iterations. The savings in time is also noticeable. The gain ranges from two to
four depending on the geometry and tends to become larger when the problem size
increases. On the Cobra and the Almond test cases, the embedded solver reduces not
only the solution time but also the memory used, as FGMRES(15)/GMRES(30) is
faster than GMRES(120) (see Table 1).

Similarly to what has been observed with GMRES, using a full FGMRES in the
outer loop enables us to reduce the number of outer iterations but often results in
a longer solution time. In Table 7 we show results obtained with full FGMRES and
compare this with the full GMRES method. It can also be seen that the savings in
time due to the use of the inner-outer scheme with respect to GMRES is also strongly
related to the reduction in the number of dot product calculations since there are
far fewer basis vectors to be orthogonalized. This gain is particularly visible on the
aircraft test example with 213084 unknowns. The time spent in the FMM is longer for
the FGMRES/GMRES solver, about 3 hours and 47 minutes (i.e., 33x11.84-1920x6.9;
see Tables 7 and 4), and it is about 3 hours and 11 minutes for GMRES. In that
example, the embedded scheme is about 2 hours faster than regular GMRES. In this
latter case, we have to orthogonalize up to 973 basis vectors while in the inner-outer
scheme we do not have to orthogonalize a basis larger than 60. This is another
illustration that the orthogonalization procedure is extremly time consuming.
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TABLE 6
Number of matriz-vector products and elapsed time required to converge on eight processors of
the Compaq machine. The tests were run on eight processors of the Compaq machine, except those
marked with (®), which were run on k processors.

Aircraft
Size |Density FROB Time FROB GMRES(120) FGMRES(30)/GMRES(60)
Iter Time Iter Time
94704 0.28 11m 1956 3h 13m | 27+1560 2h 14m
213084 0.13 31m +2000 7h 56m | 3441920 5h
591900 0.09 1h 30m 42000 1d 57m | 57+3300 1d 9h 45m
1160124 0.02 3h 24m +2000 > 4d 5142940 16h 41m(64)
Almond
Size |Density FROB Time FROB| GMRES(60) |FGMRES(15)/GMRES(30)
Iter Time Iter Time
104793 0.19 6m 302 19m 11+300 14m
419172 0.05 21m 42000 > 10h 204540 1h 24m
943137 0.02 49m 1633  6h 36m(16) | 224600 3h 32m
Cetaf
Size |Density FROB Time FROB| GMRES(120) |FGMRES(30)/GMRES(60)
Iter Time Iter Time
86256 0.18 4m 1546  1h 43m | 17+ 960 55m
134775 0.11 6m 1125  1h 55m | 15+ 840 1h 19m
264156 0.06 13m 1373 4h 46m | 17+ 960 2h 22m
531900 0.03 20m 1717 14h 8m | 19+1080 6h
1056636 0.01 37m +2000 > 1d 2241260 14h
Cobra
Size | Density FROB Time FROB | GMRES(60) | FGMRES(15)/GMRES(30)
Iter Time Iter Time
60695 0.24 2m 708 29m 244660 18m
179460 0.09 7m 433 48m 204540 42m
TABLE 7

Number of matriz-vector products and elapsed time required to converge on eight processors of
the Compaq machine. The tests were run on eight processors of the Compaq machine, except those
marked with (®) | that were run on k processors.

Aircraft
Size GMRES(c0) FGMRES(00,60)
Iter Time Iter Time
94704 746 2h 9m 23+1320 2h 30m
213084 973 7h 19m 3041740 6h 11m
591900 1461 16h 42m(%) | 4342520 12h(32)
1160124 | M.L.E.(69) > 1d 4342520 14 h 28m(64)
Cobra
Size GMRES(00) FGMRES(0,60)
Iter Time Iter Time
60695 369 26m 21+600 17m
179460 353 1h 11m 184510 38m

In Figure 3.3 we show the typical convergence history of the FGMRES/GMRES
and GMRES solvers on a large Cetaf problem discretized with 264156 points. We
depict the convergence curve as a function of the elapsed time. It can be seen that
the embedded solver clearly outperforms the single GMRES scheme. The FGMRES/
GMRES solver continues to succeed in reducing the residual norm while GMRES
converges slowly. Similar behavior is also reported for simpler model examples in [29].
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Fic. 3.3. Convergence history as a function of elapsed time of GMRES versus FGMRES on
the Cetaf problem discretized with 264156 points.

For all the numerical experiments reported so far, we consider a discretization
using ten points per wavelength. In that context, we vary the size of the linear
system by varying the frequency of the illuminating wave and we consider objects with
a fixed dimension expressed in meters. Consequently, each linear system corresponds
to the simulation of a different physical phenomenon. In contrast, in Table 8 we
solve the same physical phenomenon. We vary the size of the linear systems by
varying the number of points per wavelength, keeping the frequency of the illuminating
wave constant as well as the dimension of the object. In that table, A denotes the
wavelength and h the average mesh size. Because the leaf boxes used to build the
preconditioner have a size that is a fraction of A, the preconditioner becomes denser
as the problem size increases. This observation partially explains the fact that the
number of iterations of GMRES(60) slightly decreases when the the size of the linear
system increases. This is an opposite behavior to what we observed in Table 6, where
the density of the preconditioner decreases when the size of the problem is increased.
We also observe that the behavior of FGMRES(15)/GMRES(30) is not affected by
the mesh refinement.

4. Conclusions. In this paper we have described an effective and inherently
parallel approximate inverse preconditioner, based on a Frobenius-norm minimization
preconditioner, that can easily be implemented in an FMM code. We have studied the
numerical scalability of our method for the solution of very large and dense linear sys-
tems of equations arising from real-life appplications in electromagnetism. The locality
of the preconditioner on large problems can be significantly improved by embedding
it within inner-outer solvers. We have described an embedded iterative scheme based
on the GMRES method, implemented in a multipole context with different levels of
accuracy for the matrix-vector products in the inner and outer loops. We have shown
that the combination FGMRES/GMRES can effectively enhance the robustness of
the preconditioner and reduce significantly the computational cost and the storage
requirements for the solution of large problems. One could apply this idea recursively
and embed several FGMRES schemes with decreasing FMM accuracy down to the
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TABLE 8
Number of matriz-vector products and elapsed time required to converge on eight processors of
the Compaq machine when the discretization is refined. The tests were run on eight processors of
the Compaq machine, ezcept those marked with (¥), that were run on k processors.

Almond - length = 2.5 m - frequency 2.6 GHz
h Size of linear system GMRES(60) FGMRES(15,30)
Iter Time Iter Time
A/6 38724 345 15m 124-330 11m
A/10 104793 302 19m 114300 14m
A/15 240294 281 1h 21m 104-270 1h 06m
/20 426750 271 2h 36m(6 | 104270 2h 45m(16)

lowest accuracy in the innermost GMRES. However, in our work, we consider only a
two-level scheme. Most of the experiments shown in this paper require a huge amount
of computation and storage, and they often reach the limits of our target machine in
terms of memory and disk storage. To give an idea of how large these simulations
are, the solution of systems with one million unknowns using a direct method would
require 8 Thytes of storage and 37 years of computation on one processor of the target
computer (assuming the computation runs at peak performance). Such simulations
are nowadays feasible thanks to the use of iterative methods and can be integrated in
the design processes where the bottleneck moves from the simulation to the pre- and
postprocessing of the results, as the tools are not yet available to easily manipulate
meshes with millions of degrees of freedom. Finally we mention that the techniques
described in this paper have recently been applied succesfully to large simulations in
computational acoustics and extended to the computation of monostatic radar cross
sections [16].

Acknowledgments. We would like to thank Guillaume Alléon from EADS-CCR
for providing us with some test examples considered in this paper. We would also
like to acknowledge the computing support provided by the CINES (Centre Informa-
tique National de 'Enseignement Supérieur) and the CEA (Commissariat a I’Energie
Atomique) that enabled us to access their computing facilities.

REFERENCES

[1] G. ALLEON, M. BENZI, AND L. GIRAUD, Sparse approzimate inverse preconditioning for dense
linear systems arising in computational electromagnetics, Numer. Algorithms, 16 (1997),
pp. 1-15.

[2] M. W. BENSON, [lterative Solution of Large Scale Linear Systems, Master’s thesis, Lakehead
University, Thunder Bay, Canada, 1973.

[3] B. CARPENTIERI, Sparse Preconditioners for Dense Linear Systems from Electromagnetic Ap-
plications, Ph.D. thesis, CERFACS, Toulouse, France, 2002.

[4] B. CARPENTIERI, I. S. DUFF, AND L. GIRAUD, Sparse pattern selection strategies for robust
Frobenius-norm minimization preconditioners in electromagnetism, Numer. Linear Alge-
bra Appl., 7 (2000), pp. 667-685.

[5] B. CARPENTIERI, I. S. DUFF, L. GIRAUD, AND M. MAGOLU MONGA MADE, Sparse symmetric
preconditioners for dense linear systems in electromagnetism, Numer. Linear Anal. Appl.,
11 (2004), pp. 753-771.

[6] K. CHEN, An analysis of sparse approzimate inverse preconditioners for boundary integral
equations, STAM J. Matrix Anal. Appl., 22 (2001), pp. 1058-1078.



[24]

[25]

[26]

[27] A

APPROXIMATE INVERSE AND FAST MULTIPOLE 791

. CHOW AND Y. SAAD, Approzimate inverse preconditioners via sparse-sparse iterations,

STAM J. Sci. Comput., 19 (1998), pp. 995-1023.

. DARVE, The fast multipole method 1: Error analysis and asymptotic complexity, STAM J.

Numer. Anal., 38 (2000), pp. 98—128.

. DARVE, The fast multipole method: Numerical implementation, J. Comput. Phys., 160

(2000), pp. 195-240.

. DE BOOR, Dichotomies for band matrices, SIAM J. Numer. Anal., 17 (1980), pp. 894-907.
. DEMKO, Inverses of band matrices and local convergence of spline projections, SIAM J.

Numer. Anal., 14 (1977), pp. 616-619.

. DEMKO, W. F. Moss, AND P. W. SMITH, Decay rates for inverses of band matrices, Math.

Comput., 43 (1984), pp. 491-499.

FRrAYssE, L. GIRAUD, AND S. GRATTON, A Set of Flexible-GMRES Routines for
Real and Complex Arithmetics, Technical Report TR/PA/98/20, CERFACS, Toulouse,
France, 1998. Public domain implementation available at http://www.cerfacs.fr/algor/
Softs/FGMRES.

. FrAYssi, L. GIRAUD, S. GRATTON, AND J. LANGouU, A Set of GMRES Routines for

Real and Complex Arithmetics on High Performance Computers, Technical Report
TR/PA/03/3, CERFACS, Toulouse, France, 2003. Public domain implementation avail-
able at http://www.cerfacs.fr/algor/Softs/ GMRES.

. O. FREDERICKSON, Fast Approximate Inversion of Large Sparse Linear Systems, Math.

Report 7, Lakehead University, Thunder Bay, Canada, 1975.

. GIRAUD, J. LANGOU, AND G. SYLVAND, On the Parallel Solution of Large Industrial Wave

Propagation Problems, Technical Report TR/PA/04/52, CERFACS, Toulouse, France,
2004. Preliminary version of the paper to appear in J. Comput. Acoust.

. GRAMA, V. KUMAR, AND A. SAMEH, Parallel matriz-vector product using approximate hi-

erarchical methods, in Proceedings of the 1995 ACM/IEEE Supercomputing Conference,
December 3-8, 1995, San Diego Convention Center, San Diego, CA, Sidney Karin, ed.,
ACM, New York, IEEE Computer Society Press, Piscataway, NJ, 1995. CD-ROM.
GRAMA, V. KUMAR, AND A. SAMEH, Parallel hierarchical solvers and preconditioners for
boundary element methods, STAM J. Sci. Comput., 20 (1998), pp. 337-358.

. GREENGARD AND W. GROPP, A parallel version of the fast multipole method, Comput. Math.

Appl., 20 (1990), pp. 63-71.

. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comput. Phys.,

73 (1987), pp. 325-348.

1. J. GROTE AND T. HUCKLE, Parallel preconditioning with sparse approxrimate inverses, SIAM

J. Sci. Comput., 18 (1997), pp. 838-853.

. Yu. KOLOTILINA, Ezplicit preconditioning of systems of linear algebraic equations with dense

matrices, J. Sov. Math., 43 (1988), pp. 2566-2573.

. LEE, J. ZHANG, AND C.-C. Lu, Sparse Inverse Preconditioning of Multilevel Fast Multipole

Algorithm for Hybrid Integral Equations in Electromagnetics, Technical Report 363-02,
Department of Computer Science, University of Kentucky, Lexington, KY, 2002.

. LEE, J. ZuanG, aAnD C.-C. Lu, Incomplete LU preconditioning for large scale dense com-

plex linear systems from electromagnetic wave scattering problems, J. Comput. Phys., 185
(2003), pp. 158-175.
SAAD, A flexible inner-outer preconditioned GMRES algorithm, STAM J. Sci. Comput., 14
(1993), pp. 461-469.

. SAAD AND M. H. ScHULTZ, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.

. R. SAMANT, E. MICHIELSSEN, AND P. SAYLOR, Approzimate Inverse Based Precondition-

ers for 2D Dense Matriz Problems, Technical Report CCEM-11-96, University of Illinois,
Urbana-Champaign, 1996.

SERTEL AND J. L. VOLAKIS, Incomplete LU preconditioner for FMM implementation, Mi-
crowave Opt. Tech. Lett., 26 (2000), pp. 265-267.

SIMONCINI AND D. B. SzyLD, Flezible inner-outer Krylov subspace methods, SIAM J. Numer.
Anal., 40 (2003), pp. 2219-2239.

. SonG, C.-C. Lu, aAND W. C. CHEW, Multilevel fast multipole algorithm for electromagnetic

scattering by large complex objects, IEEE Trans. Antennas and Propagation, 45 (1997),
pp. 1488-1493.

SYLVAND, La Meéthode Multipdle Rapide en Electromagnétisme: Performances, Par-
allélisation, Applications, Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Marne-la-
Vallée, France, 2002.



792 CARPENTIERI, DUFF, GIRAUD, AND SYLVAND

[32] W.-P. TANG, Schwartz Splitting and Template Operators, Ph.D. thesis, Computer Science
Department, Stanford University, Stanford, CA, 1987.

[33] H. A. VAN DER VORST, lterative Krylov Methods for Large Linear Systems, Cambridge Uni-
versity Press, Cambridge, UK, 2003.

[34] H. A. vAN DER VORST AND C. VUIK, GMRESR: A family of nested GMRES methods, Numer.
Linear Algebra Appl., 1 (1994), pp. 369-386.

[35] S. A. Vavasis, Preconditioning for boundary integral equations, STAM J. Matrix Anal. Appl.,
13 (1992), pp. 905-925.

[36] F. ZHAO AND S. L. JOHNSSON, The parallel multipole method on the connection machine, STAM
J. Sci. Stat. Comput., 12 (1991), pp. 1420-1437.



