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Abstract

A boundary element formulation applied to dynamic soil–structure interaction problems with embedded foundations may give rise to

inaccurate results at frequencies that correspond to the eigenfrequencies of the finite domain embedded in an exterior domain of semi-infinite

extent. These frequencies are referred to as fictitious eigenfrequencies. This problem is illustrated and mitigated modifying the original

approach proposed by Burton andMiller for acoustic problems, which combines the boundary integral equations in terms of the displacement

and its normal derivative using a complex coupling parameter a. Hypersingular terms in the original boundary integral equation are avoided

by replacing the normal derivative by a finite difference approximation over a characteristic distance h, still leading to an exact boundary

integral equation. A proof of the uniqueness of this formulation for small h and a smooth boundary is given, together with a parametric study

for the case of a rigid massless cylindrical embedded foundation. General conclusions are drawn for the practical choice of the dimensionless

coupling parameter �a and the dimensionless distance �h:
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1. Introduction

The response of a structure to external forces, a seismic

excitation or traffic induced vibrations can be calculated

using a subdomain formulation for dynamic soil–structure

interaction [1,2]. The structure may have a surface or

embedded foundation and is usually modeled with the

finite element method (FEM), while a boundary element

method (BEM) is generally preferred to model the soil

domain of semi-infinite extent. If the boundary element

formulation is based on the Green’s functions for a

horizontally layered halfspace [3–7], only a discretization

of the interface between the soil and the structure is

required and the number of unknowns is drastically

reduced.

The solution for the unbounded soil domain is not

straightforward, however, as any displacement boundary

integral equation, regularized or not, that is used to derive

the boundary element formulation has a non-unique solution

at frequencies corresponding to the eigenfrequencies of

the excavated part of the soil with Dirichlet boundary

conditions on the interface between the soil and the

foundation, and free surface conditions elsewhere [8–10].

For structures embedded in a semi-infinite halfspace, this

numerical deficiency predominantly occurs in the high

frequency range, depending on the geometry of the

foundation and the stiffness of the excavated soil. Therefore,

the problem of fictitious frequencies is not very stringent for

applications in seismic engineering, where the excitation

frequencies are low (typically between 0 and 10 Hz). For

applications of traffic induced vibrations, however, the

excitation frequencies are an order of magnitude higher

(between 1 and 80 Hz) and fictitious frequencies need to be

mitigated, which is the motivation of the present work.

A similar phenomenon is well known in acoustics, where

the problem of fictitious eigenfrequencies has been studied

extensively. Several solution techniques have been pro-

posed in the literature and are summarized below.

Copley [11] was the first to report a solution method,

using the second or interior Helmholtz integral equation and

enforcing zero displacements in the interior domain.
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Schenck [12] developed the CHIEF method, using the

combined surface and interior Helmholtz integral equations.

Zero displacements are enforced at discrete points in the

interior domain, resulting in an overdetermined system of

equations, that is solved with a least squares procedure.

A similar approach is used by Piaszczyk [13].

An effective and widely used method to mitigate

fictitious frequencies has been proposed by Burton and

Miller [14] and consists of writing a linear combination of

the original boundary integral equation for the pressure and

its normal derivative. Both integral equations have a non-

unique solution at frequencies corresponding to the

eigenfrequencies of an interior Dirichlet or Neumann

problem, respectively. A unique solution is obtained

provided that the coupling parameter linking these boundary

integral equations has a non-zero imaginary part. The choice

of this coupling parameter is not critical and a small

imaginary number is sufficient to mitigate the problem of

the fictitious eigenfrequencies. Amini [15] has shown that,

for a spherical cavity in an acoustic problem, the lowest

condition number of the integral operators in Burton and

Miller’s formulation is obtained when the coupling

parameter is inversely proportional to the wave number kp
of the longitudinal wave. A drawback of Burton and

Miller’s method in the context of elastodynamics is that

strongly singular kernels are introduced through the

boundary integral equation for the traction. For acoustic

problems, Burton and Miller review several methods to

transform these integral operators [14].

Chen et al. [16,17] have also used the dual BEM for 2D

exterior acoustic problems in combination with Burton and

Miller’s method. They introduced the concept of modal

participation factors to elucidate the appearance of fictitious

frequencies related to the singular and hypersingular

boundary integral equations. The four kernels in the integral

equations, as well as the boundary potential and the flux, are

expanded in Fourier series along the circumferential

direction, while Bessel functions are used in the radial

direction. Using these expansions, the singular boundary

integral equation for the exterior domain is expressed for

points located outside the exterior domain of interest. The

resulting boundary potential is written as a Fourier series

expansion on the circumferential modes. The coefficients in

this expression are written as the product of a modal

participation factor and a factor revealing numerical

instability at fictitious eigenfrequencies. A similar analysis

prevails for the hypersingular integral equation. These

concepts are illustrated for several 2D acoustic radiation and

scattering problems. Numerical results obtained with the

dual BEM are compared with analytical results and

numerical results computed with Burton and Miller’s

method, Schenck’s method and the DtN method.

Ursell [18] and Jones [19] describe a new fundamental

solution that is equal to zero in the interior domain. Brod

[20] uses the same technique and demonstrates that an

infinite set of integral equations on the boundary, using

a series expansion of the Green’s function, has a unique

solution for all wave numbers.

Kobayashi and Nishimura [21] extended Jones’ method

to elastodynamic problems, using a modified fundamental

solution that satisfies a boundary integral equation for the

exterior Neumann problem. For the dynamic analysis of

underground structures, Kobayashi and Nishimura interp-

olate the solution obtained at frequencies that are

slightly lower and higher than the fictitious eigenfrequen-

cies [22,23].

Gonsalves et al. [24] proposed a numerical solution

procedure for 3D elastodynamic transmission problems

using a system of coupled boundary integral equations and

the combination of the surface and interior Helmholtz

integral equation introduced by Schenck to overcome the

non-uniqueness of the boundary integral equation solution

at the fictitious eigenfrequencies.

Jones modified Burton and Miller’s method for appli-

cations in elastodynamics [25]. As some of the integrals are

highly singular, a numerical technique using a boundary

discretization with constant elements is introduced.

Liu and Rizzo [26] first demonstrated the effectiveness of

the weakly singular form of the hypersingular boundary

integral equation using the static Kelvin solution as a

fundamental solution. The boundary discretization is not

limited to flat elements, contrary to Jones’ regularization

technique. A traction-free spherical void excited by a

P-wave of unit amplitude, using Overhauser C1 continuous

elements and non-conforming quadratic elements, is

investigated. Good results are obtained if an imaginary

coupling coefficient is used that is inversely proportional to

the wave number kp of the longitudinal wave. Alternatively,

the wave number ks of the shear wave could have been

chosen.

The first objective of this paper is to briefly review the

subdomain formulation for the solution of dynamic soil–

structure interaction problems. The impedance of the soil

and the force due to the incident wave field are calculated

with a BEM using the Green’s functions of a layered

halfspace. Next, the problem of fictitious eigenfrequencies

associated with the displacement boundary integral equation

for exterior domains is recalled. Burton and Miller’s

solution method, that has been extended to elastodynamic

problems by Jones [25] and Liu and Rizzo [26], is modified

to mitigate the problem. In order to obtain a well-posed

boundary integral equation at all frequencies, a linear

combination of the boundary integral equation for the

displacement and for the displacement gradient along the

normal direction of the boundary is made, using a complex

coupling parameter a. This corresponds to a mixed

boundary condition on the interior domain. Hypersingular

terms in the resulting boundary integral equation are

avoided by replacing the normal derivative by a finite

difference approximation over a characteristic distance h,

still leading to an exact boundary integral equation.

A parametric study is finally performed for the case of
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a rigid massless cylindrical embedded foundation. General

conclusions are drawn for a practical choice of the

dimensionless coupling parameter �a and the dimensionless

distance �h:

2. The numerical prediction model

This section reviews the subdomain formulation for

dynamic soil–structure interaction problems [1,2] that are

formulated to assess traffic induced vibrations in the built

environment. This allows to demonstrate the role of the

soil impedance and the force vector due to an incident

wave in the governing system of equations, which are

calculated with a boundary element formulation. For

structures with an embedded foundation, the boundary

integral equation leads to fictitious eigenfrequencies

corresponding to the eigenfrequencies of the excavated

part of the soil.

The problem is decomposed into two subdomains

(Fig. A.1): the structure Ub and the exterior soil domain

Uext
s (Fig. A.2b) after excavation of the interior soil domain

Uint
s (Fig. A.2c). The semi-infinite layered soil domain Us

prior to excavation is denoted by UsZUext
s gUint

s

(Fig. A.2a). The problem is solved by enforcing continuity

of displacements and equilibrium of stresses on the interface

S between both subdomains. In the following, linear

problems will be assumed and all equations will be

elaborated in the frequency domain.

First, the structure Ub is considered. The boundary GbZ

GbsgS of the structure Ub is decomposed into a boundary

Gbs where tractions �tb are imposed and the soil–structure

interface S. The displacement vector ub of the structure

satisfies the following Navier equation and boundary

conditions:

div sbðubÞCrbbZKrbu
2
ub in Ub (1)

tbðubÞZ �tb on Gbs (2)

ub Z us on S (3)

tbðubÞC tsðusÞZ 0 on S (4)

where rbb denotes the body force on the structure and

t(u)Zs(u)$n the traction vector on a boundary with a unit

outward normal vector n. In Eqs. (3) and (4), displacement

continuity and stress equilibrium are imposed on the

interface S. us denotes the displacement vector in the soil.

Using modal decomposition, the structural displacement

vector ub is expanded with bounded error on a finite basis of

modes jm (mZ1,.,q):

ub Z
X

q

mZ1

jmam in Ub (5)

where the modal coordinates am (mZ1,.,q) will be

collected in a vector a.

Secondly, the exterior soil domain Uext
s is taken into

consideration. The boundary Gext
s ZGssgGsNgS of the

soil domain Uext
s is decomposed into the boundary Gss

where tractions are imposed, the outer boundary GsN on

which radiation conditions are imposed and the soil–

structure interface S. A free boundary or zero tractions

are assumed on Gss in the following. The displacement

vector us of the soil satisfies the Navier equation and the

following boundary conditions:

div ssðusÞCrsbZKrsu
2
us in U

ext
s (6)

tsðusÞZ 0 on Gss (7)

RðusÞZ 0 on GsN (8)

us Z ub on S (9)

tbðubÞC tsðusÞZ 0 on S (10)

with rsb the body force in the soil. The operator R in Eq. (8)

denotes the radiation conditions of elastodynamics [27] on

the displacements us on the outer boundary GsN of the

unbounded domain Uext
s :

The displacement vector us in the soil is decomposed

in the incident wave field ui and the diffracted wave field

ud (Fig. A.3). The diffracted wave field ud is expanded

into a locally diffracted wave field ud0 that is equal to

Kui on the interface S and the wave fields udm that

are radiated in the soil due to the motion of the interface

S [1]:

us Z ui Cud Z ui Cud0 C
X

q

mZ1

udmam in U
ext
s (11)

Fig. A.1. Geometry of the subdomains.
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The incident wave field ui is defined on the semi-

infinite layered soil domain Us without excavation. The

boundary GsZGs0gGssgGsN of the soil domain Us is

decomposed into the free surface Gs0 of the excavated part

Uint
s of the soil, the free boundary Gss and the outer

boundary GsN. The incident wave field ui satisfies the

Navier equation and the following boundary condition:

div ssðuiÞZKrsu
2
ui in Us (12)

tsðuiÞZ 0 on GssgGs0 (13)

Sommerfeld’s radiation conditions on GsN are not

satisfied for the incident wave field.

The locally diffracted wave field ud0 is defined on the

exterior soil domain Uext
s and satisfies the Navier equation

and the following boundary conditions:

div ssðud0ÞZKrsu
2
ud0 in U

ext
s (14)

tsðud0ÞZ 0 on Gss (15)

Rðud0ÞZ 0 on GsN (16)

ud0 ZKui on S (17)

The displacement fields udm radiated in the soil satisfy

the following equilibrium equation and boundary con-

ditions:

div ssðudmÞZKrsu
2
udm in Uext

s (18)

tsðudmÞZ 0 on Gss (19)

RðudmÞZ 0 on GsN (20)

udm Zjm on S (21)

Eq. (21) expresses continuity of displacements on the

soil–structure interface S: the displacement field udm
radiated in the soil is equal to the projection of the

structural mode jm (mZ1,.,q) on the interface S.

Every elastodynamic field udm creates a traction field

ts(udm) on the soil–structure interface S, so that the

tractions ts(us) in the soil are decomposed as follows

using Eq. (11):

tsðusÞZ tsðui Cud0ÞC
X

q

mZ1

tsðudmÞam on S (22)

The equilibrium of the structure Ub is subsequently

expressed in the weak sense for any virtual displacement

field v:
ð

S

v$tbðubÞ dSZ

ð

Ub

3ðvÞ : sbðubÞ dUKu
2

ð

Ub

v$rbub dU

K

ð

Gbs

v$�tb dGK

ð

Ub

v$rbb dU ð23Þ

Accounting for the stress equilibrium (4) on the soil–

structure interface S, the equilibrium equation (23)

becomes:
ð

Ub

3ðvÞ : sbðubÞ dUKu
2

ð

Ub

v$rbub dUC

ð

S

v$tsðusÞ dS

Z

ð

Gbs

v$�tb dGC

ð

Ub

v$rbb dU ð24Þ

Fig. A.2. (a) The entire and domain UsZUext
s gUint

s before excavation, (b) the exterior soil domain Uext
s after excavation, and (c) the interior soil domain Uint

s :

Fig. A.3. Decomposition of the soil displacement field us into (a) the incident wave field ui, and (b) the diffracted wave field ud.
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Decompositions (5) and (11) are introduced into the

variational formulation (24). A standard Galerkin pro-

cedure, using an analogous modal decomposition for the

virtual displacement field vZ
Pq

nZ1 jndan; with dan the

virtual modal coordinates, results into the following

system of equations for the modal coordinates a:

½Kb Ku
2
Mb CKs�aZ fb C fs (25)

The stiffness and mass matricesKb andMb are equal to:

½Kb�nm Z

ð

Ub

3ðjnÞ : sbðjmÞ dU (26)

½Mb�nm Z

ð

Ub

jn$rbjm dU (27)

The impedance matrix of the soil Ks is equal to:

½Ks�nm Z

ð

S

jn$tsðudmÞ dS (28)

The vector fb due to the external forces on the structure is

defined as:

½fb�n Z

ð

Gbs

jn$�tb dGC

ð

Ub

jn$rbb dU (29)

The force vector fs due to the incident wave field on the

structure is equal to:

½fs�n ZK

ð

S

jn$tsðui Cud0Þ dS (30)

The tractions ts(udm) due to an imposed displacement field

jm on the interface S in the expression (28) for the soil

impedance matrix are calculated using a boundary element

formulation for the unbounded soil domain Uext
s ; resulting in

fictitious eigenfrequencies that correspond to the eigenfre-

quencies of the interior soil domain Uint
s : Similarly, the

calculation of the tractions ts(ud0) in expression (30) with a

boundary element formulation gives rise to the same fictitious

eigenfrequencies.

In Section 3, the boundary integral equation is derived

and a procedure to mitigate the problem of fictitious

eigenfrequencies is proposed.

3. The boundary integral equation for the displacement

vector

The derivation of the boundary integral equation for

exterior problems is based on the elastodynamic represen-

tation theorem defined on the entire soil domainUsZUext
s g

Uint
s before excavation (Fig A.2c). In order to explain how

fictitious frequencies arise at the resonance frequencies of

the interior soil domain Uint
s ; the relationship between

the classical direct boundary integral equation and the

indirect formulation is first recalled.

3.1. The boundary integral equation for the displacement

The displacement ui(x) in a point x that is not located on

the boundary S is written as a function of the displacement

and traction jumps [uj](x) and [tj(u)](x) across the boundary

S and the Green’s displacement and traction tensors uGij ðx; xÞ

and tGij ðx; xÞ :

uiðxÞZ

ð

S

½tjðuÞ�ðxÞu
G
ij ðx; xÞ dS

K

ð

S

t
G
ij ðx; xÞ½uj�ðxÞ dS with x;S (31)

The displacement jump [uj](x) is defined as:

½uj�ðxÞZ u
ext
j ðxÞKu

int
j ðxÞ (32)

while the traction jump [tj(u)](x) is equal to:

½tjðuÞ�ðxÞZ t
int
j ðuÞðxÞC t

ext
j ðuÞðxÞ

Z s
int
ij ðuÞðxÞn

int
i Cs

ext
ij ðuÞðxÞnexti (33)

with nexti and ninti the unit outward normal vectors to the

exterior and interior domains Uext
s and Uint

s ; respectively

(Fig. A.2b and A.2c). As the tractions ts(udm) in the soil

impedance matrix and the tractions ts(ud0) in the force

vector are defined on the exterior soil domain Uext
s ; the unit

outward normal vector nexti Zni is preferred, and the traction

jump becomes:

½tjðuÞ�ðxÞZ s
ext
ij ðuÞðxÞni Ks

int
ij ðuÞðxÞni (34)

The second-order Green’s tensor uGij ðx; xÞ represents the

displacement components in the direction ej in the point x

due to a Dirac load in the direction ei at the point x. The

second-order Green’s tensor tGij ðx; xÞ represents the com-

ponents of the traction vector in the direction ej in the point

x for the same load. On a boundary with a unit outward

normal vector nk, these tractions are equal to sGijk ðx; xÞnk;

with sGijk the stress tensor.

The Green’s displacements uGij ðx; xÞ show a weak

singularity of order rK1 in the neighborhood of the point

xZx on the interface S, while the Green’s tractions tGij ðx; xÞ

show a strong singularity of order rK2. Particular attention is

therefore paid to the second integral on the right hand side of

Eq. (31) when x approaches the interface S from the inside.

This integral is therefore decomposed into two integrals on

S\S3 and S
0
3: The boundary S3 is defined as ShB3 with B3 a

spherical extension of the interior domain Uint
s with center x

and radius 3 (Fig. A.4). The boundary S0
3ZvB3nðvB3hUint

s Þ

is the extension of the boundary of the interior domain Uint
s :
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For x2S and for a smooth jump [uj], Eq. (31) results in:

u
int
i ðxÞZ

ð

S

½tjðuÞ�ðxÞu
G
ij ðx; xÞ dSKcijðxÞ½uj�ðxÞ

K6
S

t
G
ij ðx; xÞ½uj�ðxÞ dS (35)

The integral free term cij(x) is defined as the following

limit:

cijðxÞZ lim
3/0C

ð

S0
3

t
G
ij ðx; xÞ dS (36)

For a locally smooth boundary and a locally homo-

geneous domain at the point x, cij(x)Zdij/2 [2,28].

The second integral on the right hand side of Eq. (35) is a

Cauchy Principal Value (CPV) integral defined as:

6
S

t
G
ij ðx; xÞ½uj�ðxÞ dSZ lim

3/0C

ð

SnS3

t
G
ij ðx; xÞ½uj�ðxÞ dS (37)

3.2. Regularization of the boundary integral equation

for the displacement

Rizzo and Shippy [29] and Bui and Bonnet [30,31]

introduce a regularization procedure for a homogeneous

halfspace; a similar procedure is proposed by Clouteau

[2] and Aubry and Clouteau [28] for a layered halfspace.

In both formulations, the evaluation of the CPV integral

and the integral free term cij(x) in Eq. (37) is avoided.

A zero traction static rigid body condition is applied to

the boundary integral equation (35) [2,28]. The integral free

term cij(x) is given by:

cijðxÞZ dij K 6
SgGs0

t
GS
ij ðx; xÞ dS (38)

where tGSij ðx; xÞ represents the static Green’s traction tensor.

Eq. (38) is subsequently introduced into Eq. (37) and

the following weakly singular boundary integral equation is

obtained:

u
int
i ðxÞZ

ð

S

½tjðuÞ�ðxÞu
G
ij ðx; xÞ dSK ½ui�ðxÞ

K

ð

S

t
GS
ij ðx; xÞf½uj�ðxÞK ½uj�ðxÞg dS

K

ð

S

ftGij ðx; xÞK t
GS
ij ðx; xÞg½uj�ðxÞ dS (39)

Whereas an analytical expression for the static Green’s

tensor tGSij ðx; xÞ of a homogeneous halfspace is available, this

is not the case for a layered halfspace and a numerical

evaluation becomes necessary. Therefore, Clouteau [2] and

Aubry and Clouteau [28,32] propose to use regularizing

tensors. If the heterogeneous halfspace is locally homo-

geneous in the vicinity of the source point x, the static

Green’s tensor of a homogeneous full space, based on the

material characteristics in the vicinity of the source point x,

is used. However, the integral over Gs0 has to be accounted

for in Eq. (39).

Guzina and Pak [7] use a similar approach to treat the

singularities in the displacement boundary integral equation

for a layered halfspace. The integral equation is decom-

posed into a singular part for the near field, and a residual

component for the mid to far field. Analytical expressions

for the singular components of the dynamic Green’s tensors

are known as they are equal to the static solution for a bi-

material full space, composed of two bonded elastic

halfspaces with different material characteristics [33].

Therefore, the singular parts can be evaluated analytically.

The remaining residual parts, corresponding to the mid to

far field components, are evaluated numerically using

contour integration. A modified path of integration is used

to account for the poles.

3.3. The boundary integral equation for exterior problems

The boundary integral equation for exterior problems is

obtained from Eq. (35) stating that uintj vanishes on S.

Indeed, if it is assumed that uintj Z0 on S and tintj ðuÞZ0 on

Gs0, this implies a zero displacement field inside the interior

domain Uint
s : The traction field in the interior domain Uint

s

also vanishes and the two jumps [uj](x) and [tj(u)](x)

are equal to the displacement and traction fields uextj ðxÞ and

textj ðuÞðxÞ on the boundary S. Accounting for this in Eq. (35)

gives:

ð

S

t
ext
j ðuÞðxÞuGij ðx; xÞ dSZ cijðxÞu

ext
j ðxÞC6

S

t
G
ij ðx; xÞu

ext
j ðxÞ dS

(40)

Fig. A.4. Expansion of the interior soil domain Uint
s with a sphere B3.
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The regularized version of this equation is equal to:

u
ext
i ðxÞZ

ð

S

t
ext
j ðuÞðxÞuGij ðx; xÞ dSK

ð

S

t
GS
ij ðx; xÞfuextj ðxÞ

Ku
ext
j ðxÞg dSK

ð

S

ftGij ðx; xÞ

K t
GS
ij ðx; xÞguextj ðxÞ dS (41)

The derivation of the boundary integral equations (40) or

(41) for problems defined on the exterior soil domain Uext
s is

based on the assumption that the displacements uintj are

equal to zero for all points x on the boundary S and thus in

the interior domain Uint
s : The displacements uinti vanish

everywhere in Uint
s as long as the elastodynamic boundary

value problem for an interior domain Uint
s with zero

displacement boundary conditions on S and zero traction

boundary conditions on Gs0 has a unique solution.

Unfortunately, the solution is not unique when the

excitation frequency u is equal to one of the eigenfrequen-

cies �uk of the interior domain (with zero displacement

boundary conditions on S and zero traction boundary

conditions on Gs0) and, consequently, tintj ðuÞðxÞ does not

necessary vanish at these frequencies, leading to an ill-

posed boundary integral equation.

4. The boundary integral equation for the displacement

gradient

Burton and Miller’s [14] original formulation for

acoustic problems is based on a linear combination of the

integral equations for the pressure and the normal velocity.

In elastodynamics, the traction vector on a boundary is

obtained from the projection of the stress tensor on the unit

normal vector on the boundary. The stress tensor is related

by the constitutive equations to the strain tensor, that is

defined in terms of the displacement gradient or, alterna-

tively, as a function of the normal and tangential derivatives

of the displacement vector along a boundary.

For reasons of simplicity, it is preferred herein not to

explicitly evaluate the traction vector along the boundary in

terms of the normal and tangential derivatives but to use

only the normal derivatives of the displacement vector

along the boundary since this term is providing additional

information to the known displacement field on S.

In this section, the boundary integral equation for the

normal derivative of the displacements ui(x) is evaluated.

Differentiating the displacement boundary integral equation

(40) with respect to the spatial coordinates xk is particularly

unsafe, however, since this equation is only defined for

points on the boundary S. Therefore, the differentiation is

performed on the displacement boundary integral equation

(31) and the limit for x approaching the boundary S is

evaluated. The normal derivative is defined as follows from

Eq. (35) in the case of a smooth surface and regular jumps

[uj] and [tj(u)] on S and for a homogeneous space:

u
int
i;k ðxÞnk Z6

S

½tjðuÞ�ðxÞu
G
ij;kðx; xÞnk dSKcijðxÞ½uj;knk�ðxÞ

K4¼
S

t
G
ij;kðx; xÞnk½uj�ðxÞ dS ð42Þ

The kernels uGij;kðx; xÞ and tGij;kðx; xÞ have singularities of

order rK2 and rK3 at the point xZx on the boundary S,

respectively. As a consequence, the first integral on the right

hand side of Eq. (42) only exist as a CPV integral, while the

second integral is hypersingular and defined as a Hadamard

Finite Part integral [34], denoted by E=. As the aim of this

section is not to give a complete review on highly singular

boundary integrals, the reader is referred to the work of

Bonnet [8] for more detailed developments.

The boundary integral equation for the normal derivative

of the displacement consists of stating that uinti;k ðxÞnkZ0 on

the boundary S. It is assumed that this condition and the

traction-free condition on Gs0 imply that, for an elastody-

namic field, the displacements uinti ðxÞ in the interior domain

Uint
s are equal to zero, resulting also in vanishing tractions

tinti ðuÞðxÞ in the interior domain. Therefore, the displacement

jump [uj](x) is equal to the displacement uexti ðxÞ; while the

traction jump [ti(u)](x) reduces to texti ðuÞðxÞ; leading to the

boundary integral equation for the normal derivatives of

the displacement:

6
S

t
ext
j ðuÞðxÞuGij;kðx; xÞnk dS

Z cijðxÞu
ext
j;k ðxÞnk C4¼

S

t
G
ij;kðx; xÞu

ext
j ðxÞnk dS (43)

Regularized forms of this equation have been proposed

for a homogeneous halfspace [8,35] but, to the authors’

knowledge, similar expressions are not available for a

layered halfspace. It is not even sure that the integral free

term cij(x) in Eq. (43) is the same as in Eq. (40).

The static Green’s tensors for a bi-material composed of

two bonded elastic halfspaces with different material

characteristics have been used by Guzina and Pak [7,33]

to isolate the singular part in the displacement boundary

integral equation. These static Green’s tensors might be a

useful ingredient for a similar regularization of the boundary

integral equation (43) for the displacement gradient.

However, the singularities in the Green’s tensors uGij;kðx; xÞ

and tGij;kðx; xÞ are of higher order, which would necessitate

further investigations.

The solution of the boundary integral equation (43) for

the normal derivatives of the displacement is not unique for

exterior problems. When the frequency u is equal to one

of the eigenfrequencies �u0
k of the interior domain with

L. Pyl et al. / Engineering Analysis with Boundary Elements 28 (2004) 1493–1513 1499



the normal derivative of the displacement equal to zero on S

and a zero traction boundary condition on Gs0, the solution

is not unique.

5. The combined boundary integral equation

As the fictitious eigenfrequencies corresponding to the

boundary integral equations (40) and (43) are different, a

different boundary condition could be used at each fictitious

frequency tomitigate the problem offictitious frequencies. In

order to obtain a well-posed boundary integral equation at all

frequencies, however, a linear combination of the boundary

integral equation (37) for the displacement uinti ðxÞ and of the

boundary integral equation (42) for the displacement

gradient uinti;k ðxÞnk along the normal direction of the boundary

is classically preferred, corresponding to the following

mixed boundary condition on the boundary S for the

displacement field uinti ðxÞ :

u
int
i ðxÞCau

int
i;k ðxÞnk Z 0 on S (44)

where a is a complex coupling parameter with the dimension

of a length. Upon the introduction of the boundary integral

equations (37) and (42) into the mixed boundary equation

(44), the following boundary integral equation is obtained:
ð

S

½tjðuÞ�ðxÞu
G
ij ðx; xÞ dSCa6

S

½tjðuÞ�ðxÞu
G
i;kðx; xÞnk dS

KcijðxÞð½uj�ðxÞCa½uj�;knkðxÞÞK6
S

t
G
ij ðx; xÞ½uj�ðxÞ dS

Ka4¼
S

t
G
ij;kðx; xÞnk½uj�ðxÞ dSZ 0 ð45Þ

A very small value of a results in the original boundary

integral equation (37), whereas the boundary integral

equation (42) for the displacement gradient along the normal

direction on the boundary is recovered for very large values

of a. The real part of a corresponds to a compliance

boundary condition on the boundary S if the traction

boundary integral equation were used. Its imaginary part is

equivalent to the inverse of a wave number, resulting in an

absorbing boundary condition on the boundary S. As it is

shown in Appendix A, fictitious eigenfrequencies can be

avoided using the mixed boundary condition (44), provided

that the coupling parameter a has a non-zero positive

imaginary part: real eigenfrequencies for the interior

boundary value problem no longer exist, resulting in a

unique solution.

Since a zero displacement field is such a solution

inside the interior domain Uint
s ; the traction field in the

interior domain Uint
s also vanishes and the two jumps

[uj](x) and [tj(u)](x) in Eq. (45) are equal to the

displacement and traction fields uextj ðxÞ and textj ðuÞðxÞ on

the boundary S. The boundary integral equation for

exterior problems becomes:
ð

S

t
ext
j ðuÞðxÞuGij ðx; xÞ dSCa6

S

t
ext
j ðuÞðxÞuGij;kðx; xÞnk dS

KcijðxÞðu
ext
j ðxÞCau

ext
j;k nkðxÞÞK6

S

t
G
ij ðx; xÞu

ext
j ðxÞ dS

Ka4¼
S

t
G
ij;kðx; xÞnku

ext
j ðxÞ dSZ 0 ð46Þ

Amini [15] has analyzed the choice of the coupling

parameter a in Burton and Miller’s boundary integral

formulation for acoustic problems [14]. The condition

number of the linear operators is a function of the

eigenvalues of the boundary integral operators and has to

be minimized. For interior domains with a simple

geometry (e.g. a sphere), the smallest condition number

is obtained for a coupling parameter a that is inversely

proportional to the wave number kpZu/Cp of the

longitudinal waves. In elastodynamic problems, the

wave number ksZu/Cs of the shear waves can be chosen

alternatively. In this paper, an imaginary coupling

parameter aZi/ks is used. Similar results are expected

when the longitudinal wave number kp is used for the

calculation of the normal stress component and the shear

wave number ks for the transverse components.

A dimensionless coupling parameter �a is subsequently

introduced, defined as the ratio of the parameter a and a

characteristic length R of the interior domain (e.g. the radius

of an embedded foundation):

�aZ
a

R
Z

i

ksR
Z

iCs

uR
Z

i

a0
(47)

where a0ZuR/Cs is a dimensionless frequency.

6. Finite difference approximation of the mixed

boundary integral equation

The boundary integral equation (46) is hypersingular and

would require advanced regularization techniques that are

believed to be still unavailable for a layered halfspace. In

order to avoid the evaluation of these hypersingular terms,

while preserving the well-posedness of the problem at all

frequencies, it is proposed to use a finite difference

approximation on the derivatives of the displacement and

traction fields along the direction normal to the boundary:

u
int
j ðxÞCa

uintj ðxÞKuintj ðxKhnðxÞÞ

h
Z 0 (48)

where h is the distance between the boundary S and a

second boundary SK, located in the interior soil domain Uint
s

and defined as SKZ fxKZxKhnðxÞ; x2Sg3Uint
s :
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Applying this finite difference approximation (48) to

equation (46) finally results in the following boundary

integral equation that only contains the Green’s functions

uGij ðx; xÞ and tGij ðx; xÞ :

cijðxÞu
ext
j ðxÞZ

ð

S

t
ext
j ðuÞðxÞ u

G
ij ðx; xÞK

a

hCa
u
G
ij ðx

K
; xÞ

� �

dS

K6
S

t
G
ij ðx; xÞK

a

hCa
t
G
ij ðx

K
; xÞ

� �

u
ext
j ðxÞ dS

ð49Þ

This combined boundary integral equation eliminates

fictitious eigenfrequencies and can easily be implemented in

a boundary element formulation, as will be demonstrated in

Section 7. It can also be regularized using the same

technique as for Eq. (35).

Based on the previous developments, demonstrating

that Eq. (49) has no fictitious eigenfrequencies is

equivalent to proving that the elastodynamic problem in

the interior domain Uint
s with the non-local boundary

condition (48) has a unique solution. The proof of the

uniqueness is given in Appendix A where it is shown that

if a has a non-zero imaginary part and if h is small

enough, a purely real eigenfrequency for the interior

problem with the mixed boundary condition (48) can only

be obtained when uinti ðxÞZuinti ðxKhnðxÞÞZ0; i.e. for

eigenmodes of the Dirichlet problem defined on the elastic

layer trapped between the boundaries S and S
K. The

maximum excitation frequency umax has to be smaller

than a frequency uc(h), that is related to the distance h

between the boundaries S and S
K. If the boundary S is

smooth and if the distance h is small, the smallest

eigenfrequency uc(h) of this elastic layer has an order of

magnitude equal to 2pCs/2h, where Cs is the shear wave

velocity. In Section 7, this distance h will be related to the

size le of an individual boundary element.

7. Boundary element implementation

The interface S between the foundation and the soil is

discretized into boundary elements. The tractions and

displacements on the interface S are interpolated using

nodal values and element based shape functions and

the boundary integral is evaluated numerically for each

element.

The classical boundary element formulation results in the

following system of equations:

H
�
uZG

�
t (50)

where the coefficient matrices G and H are fully populated

and non-symmetric matrices and represent the Green’s

displacement and traction tensor, respectively.
�
t and

�
u are

the nodal traction and displacement vectors.

The boundary element discretization applied to the

boundary integral equation (49) simply consists in adding

a regular term for sources x
K the boundary S

K. The

resulting system of equations reads as:

HC
a

hCa
H

K
� �

�
uZ GC

a

hCa
G

K
� �

�
t (51)

The computation of the matrices G
K and H

K, corre-

sponding to the sources xK on the boundary S
K, increases

the computational effort. This approach is quite generic for

any type of Green’s function and for collocation as well as

variational approaches. It is easy to implement in an existing

boundary element program as it only requires a second

computation for the inner sources on the boundary S
K and

does not modify the structure and the size of the original

system of equations.

Terms in Eq. (49) are subject to strong numerical errors if

the distance h between the boundaries SK and S is small: if

the position x
K of the source on the boundary S

K

approaches the position x of the receiver on the boundary

S, the Green’s tensors uGij ðx
K; xÞ and tGij ðuÞðx

K; xÞ show

singularities of the order rK1 and rK2, respectively. The

integrals become nearly singular and would require an

appropriate integration scheme. Therefore, the distance h is

chosen larger than the size le of a boundary element,

estimated as the square root of the maximum surface of a

boundary element on the interface S between the soil and

the structure. It is convenient to introduce the dimensionless

distance �h as the ratio of the distance h and the size le of a

boundary element:

�hZ
h

le
(52)

The distance h also has to be small enough as to ensure

that the boundary S
K is located inside the interior domain

Uint
s ;which gives another argument to relate the distance h to

the size le of a boundary element. For relatively thin

embedded structures, the choice of values �h larger than 1

involves the risk of defining points xK outside the interior

domain Uint
s :

Furthermore, the distance h should be strictly smaller

than the smallest radius of curvature rmin of the boundary S.

This condition prevents the use of the present formulation

for non-smooth boundaries. However, one can always

define a smooth field with pseudo-normal vectors instead

of using the actual one in order to have an invertible

mapping from S to S
K, this smoothing procedure being

driven also by the mesh size.

In Section 6, it has been argued that the maximum

excitation frequency umax should remain smaller than the

eigenfrequency uc(h) of the elastic layer trapped between

the boundaries S and S
K. If the dimensionless distance

�hZ1; this criterion imposes that the element size le should
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remain smaller than lmin/2, with lmin the minimum

wavelength.

Besides, the boundary element size is also limited to

lmin/Ne, with lmin the minimum wavelength in the soil and

Ne the number of elements per wavelength. A minimum

value NeZ6 is strongly advisable [36]. This criterion is

more strict than the previous criterion on the maximum

excitation frequency, so that the latter is automatically

fulfilled if an appropriate boundary element discretization is

chosen.

Fig. A.5. (a) Real part Kmn(a0) and (b) imaginary part Cmn(a0) of the dimensionless impedance functions as a function of the dimensionless frequency a0 for

�aZ0 (solid line) and according to Apsel and Luco [37] (dashed-dotted line).
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8. Impedance of a rigid massless cylindrical

embedded foundation

8.1. Problem outline

The solution technique proposed in the previous sections

is now illustrated by means of a numerical example, where

the impedance functions of a rigid massless cylindrical

foundation embedded in a homogeneous soil are considered.

Results are compared to results published by Apsel and

Luco [37]. A parametric study allows to define guidelines

for an appropriate choice of the dimensionless coupling

parameter �a and the dimensionless distance �h:

A rigid massless cylindrical embedded foundation with a

radius RZ1.94 m and an embedment ratio d/RZ1.0 is

considered. The soil is modeled as a homogeneous

halfspace and has a shear wave velocity CsZ150 m/s, a

Poisson’s ratio nsZ0.25, a density rsZ1800 kg/m3 and a

hysteretic material damping ratio bsZ0.01 in shear and

longitudinal deformation.

The frequency dependent elements Smn(a0) of the 6 by 6

impedance matrix of a rigid foundation are written in the

following dimensionless form [38]:

Smnða0ÞZK
s
mn½Kmnða0ÞC ia0Cmnða0Þ� (53)

where the subscripts m and n denote the horizontal (h),

vertical (v), rotational (r) and torsional (t) degree of

freedom, while the static stiffness coefficients Ks
mn are

defined as Ks
hhZKs

vvZmR; Ks
rrZKs

ttZmR3 and Ks
hrZmR2;

with mZC2
s rs the shear modulus of the soil. The

dimensionless functions Kmn(a0) and Cmn(a0) depend on

the dimensionless frequency a0ZuR/Cs.

8.2. The reference solution

Apsel and Luco [37] use an integral equation based on

the Green’s functions of a layered viscoelastic halfspace to

determine the impedance functions of three-dimensional

rigid foundations subjected to external forces and moments.

The boundary integral equation is defined on a boundary

located in the interior domain. A distribution of sources on

this boundary represents the unknowns. A non-singular

integral equation with a symmetric kernel is obtained in

terms of the unknown distribution of sources. For rigid

foundations, the force distribution is written in terms of

the unit rigid body displacements of the soil–foundation

interface for each of the six degrees of freedom of the

foundation, using a body force distribution matrix. The

solution of the integral equation in terms of the body force

distribution is accomplished by discretization, which

reduces the integral equation to a set of linear algebraic

equations.

The accuracy of the numerical solution of the integral

equation is influenced by the number of source and receiver

points and depends on the distance between the soil–

foundation interface and the boundary in the interior soil

domain. For an embedment ratio d/RZ1.0, Apsel and Luco

use 65 observation points and 29 source points. Only

absolute values of the number of observation points as a

function of the embedment ratio are given. The distance

between the soil–foundation interface and the boundary in

the interior domain is equal to 2.5dobs, with dobs the distance

between the observation points.

The dashed-dotted lines in Fig. A.5 show the real and

imaginary parts Kmn(a0) and Cmn(a0) of the non-zero

elements of the foundation’s impedance matrix as computed

by Apsel and Luco [37] for dimensionless frequencies up to

amax
0 Z6:0; corresponding to an excitation frequency of

73.83 Hz. These solutions seem to be free of fictitious

eigenfrequencies maybe because they are obtained with a

boundary integral equation for exterior problems that is

defined on a boundary located in the interior domain.

Therefore, the solutions of Apsel and Luco will be used as a

reference in the following.

As the dimensionless frequency a0 is factored out in the

imaginary part of the impedance functions Smn(a0) in Eq.

(53), due to hysteretical damping, the imaginary parts

Cmn(a0) tend to very high values when the dimensionless

frequency a0 tends to zero.

8.3. Boundary element discretization

The impedance functions of the rigid embedded

cylindrical foundation are calculated with a boundary

element formulation. Fig. A.6 shows the discretization of

the interface S between the foundation and the soil into 448

boundary elements. The size le of a boundary element is

equal to 0.33 m so that NeZlmin/leZ6 boundary elements

are used at the minimum wavelength lmin of the shear wave

in the soil; the latter is equal to 2 m for a shear wave velocity

CsZ150 m/s and a maximum frequency fmaxZ75 Hz.

Fig. A.6. Boundary element discretization of the interface S between the

foundation and the soil.
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The traction field t(u) is approximated by a constant

value over each boundary element and a collocation method

is applied.

The Green’s functions for the layered halfspace in the

integral equations are calculated using Kennet’s method

[39], which is based on reflection and transmission

coefficients. The Green’s functions are computed in the

wave number and frequency domain. The inverse Hankel

transformations between the wave number and the

spatial domain are performed with a constant quadrature

step D �krZ0:007 up to a value �k
max
r Z15; where the

dimensionless radial wave number is defined as �krZkrCs=u:

The regular integrals are evaluated with a Gauss

quadrature rule with six Gauss points in each coordinate

direction, while a special quadrature scheme with 256 points

is used to evaluate the weakly singular integrals.

8.4. Appearance of fictitious eigenfrequencies

In order to demonstrate the problem associated with the

appearance of fictitious eigenfrequencies, the elements

Smn(a0) of the impedance matrix of the rigid massless

cylindrical embedded foundation are first computed using

a boundary element formulation that is based on

the displacement boundary integral equation (31).

The dimensionless coupling parameter �a is equal to zero

in this case.

Calculations are performed for dimensionless frequen-

cies up to amax
0 Z6:0 and a step Da0Z0.081. Fig. A.5a and

A.5b compares these results with the impedance functions

obtained by Apsel and Luco, which are drawn in a dashed-

dotted line on all figures.

Fig. A.5.1a and A.5.1b reveal important discrepancies

between the computed real partKvv(a0) and the imaginary part

Cvv(a0) of the vertical impedance and the reference solutions at

the dimensionless frequencies a0Z3.3 and a0Z5.4. These

anomalies are labeled asM1 andM11 and are associated with

fictitious eigenfrequencies corresponding to the eigenfrequen-

cies of the interior soil domain Uint
s with Dirichlet boundary

conditions along the interface S and free boundary conditions

along the free surface Gs0. In order to demonstrate this, the

eigenfrequencies and eigenmodes of the interior soil domain

Uint
s have been computed with a finite element model,

consisting of linear eight node brick elements, with material

properties corresponding to the excavated soil. Fig. A.7 shows

the first two vertical eigenmodes M1 and M11 of the interior

soil domainUint
s at the dimensionless frequencies a0Z3.3 and

a0Z5.4. The discrepancy between the computed damping

coefficient Cmn(a0) and the reference solution is amplified at

low values of the dimensionless frequency a0 since the

dimensionless frequency a0 has been factored out in Eq. (53).

Fig. A.8 shows the displacements at the dimensionless

frequency a0Z3.3 in the points located at the free surface

due to a unit vertical harmonic point load applied at the

center of the base of the cylindrical foundation. The

displacements are not only shown on the free surface Gss

of the exterior domain Uext
s ; but also on the free surface Gs0

of the interior domain Uint
s : Large non-zero displacements

can clearly be observed in the latter points and are

associated with the spurious mode M1 at the fictitious

eigenfrequency a0Z3.3.

Fig. A.5.2, A.5.3 and A.5.4 reveal similar discrepancies

between the computed impedance functions for

the horizontal, rocking and coupled horizontal–rocking

vibration modes and the reference solutions at the

dimensionless frequencies a0Z3.6, a0Z4.0 and a0Z5.8.

Fig. A.8. (a) Isometric and (b) side view of the displacements at points on the surface for the rigid massless cylindrical embedded foundation excited by a

vertical harmonic point load at a dimensionless frequency a0Z3.3, computed with the parameter �aZ0:

Fig. A.7. Vertical modes (a) M1 (a0Z3.3) and (b) M11 (a0Z5.4) of the

interior soil domain Uint
s :
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These anomalies are labeled as M2, M4 and M14 and are

associated with fictitious eigenfrequencies corresponding to

the horizontal and rocking modes of the interior soil domain

Uint
s with Dirichlet boundary conditions along the interface

S and free boundary conditions along the free surface Gs0,

as illustrated in Fig. A.9. The first peak on the real part

Khh(a0) of the horizontal impedance at a0Z3.6 corresponds

to the horizontal mode M2, while the peaks at a0Z4.0 and

a0Z5.8, correspond to the rocking modes M4 and M14 of

the interior soil domain. These three spurious modes

influence the three impedance coefficients Khh(a0), Krr(a0)

and Khr(a0) (and, to a lesser extent, the corresponding

imaginary parts Chh(a0), Crr(a0) and Chr(a0)) in the

frequency range of interest due to the coupling between

the horizontal and rocking motion.

Fig. A.5.5a and A.5.5b shows the real part Ktt(a0) and the

imaginary part Ctt(a0) of the torsional impedance of the

foundation. A single anomaly occurs at a dimensionless

frequency a0Z4.2 that corresponds to the first torsional

mode M6 of the interior soil domain Uint
s (Fig. A.10).

In the following subsections, it is demonstrated how this

numerical problem can be mitigated by discretizing

alternatively the combined boundary integral equation

(49) along the interface S between the soil and the

foundation. The choice of the dimensionless parameters �a

and �h is demonstrated to be crucial.

8.5. Choice of a frequency dependent dimensionless

coupling parameter �a

Following Amini’s recommendations [15], a frequency

dependent coupling parameter �aZ i=a0 is first considered.

The dimensionless parameter �hZ1 is fixed in the following

examples.

Fig. A.11a and A.11b compares the real and imaginary

part of the dimensionless impedance functions for

a frequency dependent coupling parameter �aZ i=a0 and

for a constant coupling parameter �aZ i=6 with the reference

solutions of Apsel and Luco. An imaginary value of �a

represents a damping condition on the boundary of the

interior domain Uint
s : When �a is inversely proportional to

the dimensionless frequency, a very large value of �a is

obtained at small frequencies, resulting in an increasing

contribution of the boundary integral equation for the

displacement gradient and an increasing deviation of the

computed impedance functions from the reference values.

The discretization of the original displacement boundary

integral would have resulted in sufficiently accurate results

at low excitation frequencies, whereas now, a solution

method is used in a frequency range where it is not needed

and designed for: the first fictitious eigenfrequency is equal

to a0Z3.3, corresponding to the first vertical mode of the

interior soil domain. A frequency dependent coupling

parameter is therefore avoided in the range of low

dimensionless frequencies and a frequency independent

dimensionless coupling parameter �a will be preferred in the

following.

8.6. Choice of a frequency independent dimensionless

coupling parameter �a

Fig. A.12a and A.12b shows the real and imaginary part

of the dimensionless impedance functions computed with
�hZ1 and the following values of a constant dimensionless

coupling parameter: �aZ i=6; �aZ i=3 and �aZ i=2: The

results obtained with �aZ i=6; corresponding to the maxi-

mum dimensionless frequency amax
0 Z6; are in good

agreement with the results of Apsel and Luco, while the

deviations increase for increasing values of �a:

The next example illustrates what happens when the

dimensionless coupling parameter �a is too large. Fig. A.13a

and A.13b shows the real and imaginary part of

Fig. A.9. Horizontal and rocking modes (a) M2 (a0Z3.6), (b) M4 (a0Z4.0) and (c) M14 (a0Z5.8) of the interior soil domain Uint
s :

Fig. A.10. Torsional mode M6 (a0Z4.2) of the interior soil domain Uint
s :
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the dimensionless impedance functions computedwith �hZ1

and a large dimensionless coupling parameter �aZ5i=3: The

contribution of the boundary integral equation for the

displacement gradient along the normal direction dominates

the combined boundary integral equation (49) and numerical

problems occur at fictitious eigenfrequencies �u0
k that

correspond to the resonance frequencies of the interior soil

domainUint
s with boundary conditions uinti;k ðxÞnkZ0 along the

soil–structure interfaceS and free boundary conditions along

the boundary Gs0.

Fig. A.11. (a) Real part Kmn(a0) and (b) imaginary part Cmn(a0) of the dimensionless impedance functions as a function of the dimensionless frequency a0 for
�hZ1 and �aZ i=6 (solid line), for �hZ1 and �aZ i=a0 (dashed line) and according to Apsel and Luco [37] (dashed-dotted line).
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8.7. Choice of the dimensionless distance �h

It has been argued before that the dimensionless distance
�h between the boundaries SK and S should be larger than 1

(or that the distance h should be larger than the boundary

element size le) in order to obtain a good approximation of

the derivatives of the displacements and Green’s functions.

Different values of the dimensionless distance �hZ1; �hZ2

and �hZ3 are therefore considered, while a constant

dimensionless coupling parameter �aZ i=6 is used.

Fig. A.12. (a) Real part Kmn(a0) and (b) imaginary part Cmn(a0) of the dimensionless impedance functions as a function of the dimensionless frequency a0 for
�hZ1 and �aZ i=6 (solid line), �aZ i=3 (dashed line), �aZ i=2 (dotted line) and according to Apsel and Luco [37] (dashed-dotted line).
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Fig. A.14a and A.14b shows the real and imaginary

part of the dimensionless impedance functions for these

three cases. The deviation with the reference results of

Apsel and Luco increases for an increasing dimensionless

distance �h:

8.8. Recommended values of the dimensionless parameters
�h and �a

The previous parametric study on the impedance

functions of a rigid massless cylindrical embedded

Fig. A.13. (a) Real part Kmn(a0) and (b) imaginary part Cmn(a0) of the dimensionless impedance functions as a function of the dimensionless frequency a0 for
�hZ1 and �aZ5i=3 (solid line) and according to Apsel and Luco [37] (dashed-dotted line).
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foundation has demonstrated that the problem of fictitious

eigenfrequencies can be successfully mitigated and that

good correspondence with the results of Apsel and Luco is

obtained for a dimensionless distance �hZ1 and a constant

dimensionless coupling parameter �aZ i=6; as illustrated in

Fig. A.12.

Fig. A.15 again shows the displacements at the

dimensionless frequency a0Z3.33 in the points located at

Fig. A.14. (a) Real part Kmn(a0) and (b) imaginary part Cmn(a0) of the dimensionless impedance functions as a function of the dimensionless frequency a0 for

�aZ i=6 and �hZ1 (solid line), �hZ2 (dashed line), �hZ3 (dotted line) and according to Apsel and Luco [37] (dashed-dotted line).
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the free surface due to a unit vertical harmonic point load

applied at the center of the base of the cylindrical

foundation. This figure should be compared with results

presented earlier in Fig. A.8. The displacements on the free

surface of the interior domainUint
s are now negligible, which

clearly demonstrates that the problem of the fictitious

eigenfrequencies has been successfully mitigated.

9. Conclusion

The solution of elastodynamic problems defined on

exterior domains with embedded regions of finite extent,

using a discretization of a displacement boundary integral

equation, is not unique at the eigenfrequencies of the

embedded interior domain with Dirichlet boundary con-

ditions along the soil–structure interface and free boundary

conditions along the free surface.

The solution technique used in the present paper is

derived from the approach proposed by Burton and Miller

for acoustic problems. The combination of the boundary

integral equation for the displacement and the displacement

gradient along the normal direction on the boundary is

introduced, using an imaginary coupling parameter a.

A modification of this approach, introducing a second

parameter h, is proposed to avoid hypersingular terms in the

corresponding boundary integral equation. It is proven that

fictitious eigenfrequencies are avoided if the parameter h is

small enough. The limiting case for h tending to zero has the

same properties but requires hypersingular kernels.

Both parameters a and h are written in a dimensionless

form and a parametric study is performed on the choice of

these parameters, considering the impedance of a rigid

massless cylindrical foundation, embedded in a homo-

geneous halfspace. In the range of dimensionless frequen-

cies up to amax
0 Z6; very good correspondence with the

results published by Apsel and Luco is obtained with

a constant dimensionless coupling parameter �aZ i=amax
0

and a dimensionless distance �hZ1: Spurious non-zero

displacements in the interior domain due to fictitious

resonances disappear almost completely when these par-

ameters are used. Overestimation of the parameters �a and �h

or the use of a frequency dependent coupling parameter �a

result in less accurate numerical results.

As the results of this parametric study have proven that

the problem of fictitious eigenfrequencies can successfully

be mitigated using the combined boundary integral

equation, this solution procedure will be used with

confidence in the future to compute traffic induced

vibrations in buildings with an embedded foundation.
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Appendix A. Proof of uniqueness for the finite difference

case

Let U be an open bounded domain with a smooth

boundary G whose unit outward normal vector at the point x

is denoted by n. Since the boundary is smooth, its minimum

radius of curvature is greater than rm. Thus, for any 0!h!

rm the smooth inner surface Gh is defined as follows:

Gh Z fx2UjxZ x
0
Khn; x

0
2Gg (A.1)

The part Uh of the domain U, located between G and Gh,

is mapped as follows:

Uh Z fx2UjxZ x
0
Kzhn; x

0
2G; z2�0; 1½g (A.2)

Fig. A.15. (a) Isometric and (b) side view of the displacements of the points on the surface for the rigid massless cylindrical embedded foundation excited by a

vertical harmonic point load at a dimensionless frequency a0Z3.33 and with the parameters �hZ1 and �aZ i=6:
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Therefore, the integration of any function f(x) over Uh

can be written as:

ð

Uh

fðxÞ dVðxÞZ h

ð

G

ð1

0
fðx0 KzhnÞgðz; x0Þ dz dSðx0Þ (A.3)

with g(z, x 0)ZdS(x 0, z)/dS(x 0) tending to 1 if h tends to 0.

It will be demonstrated that there exists a finite h such

that the homogeneous elastodynamic problem on U has a

unique solution that satisfies the following kinematic

condition:

uðx0 KhnÞZ 1C
h

a

� �

uðx0Þ cx
0
2G (A.4)

as long a a has a strictly positive imaginary part. This

kinematic condition is equivalent to the finite difference

form (48) of the mixed boundary condition (44).

This problem is equivalently solved looking for the

saddle point of the following Lagrangian Lðu;l;wÞ :

Lðu; l;wÞZ
1

2
aðu; �uÞCRe

ð

G

lðx0Þ$ uðx0 KhnÞ

�

8

<

:

K 1C
h

a

� �

uðx0Þ

�

dSðx0Þ

9

=

;

CRe

ð

Gh

wðxÞ$½tnðuÞ� dSðxÞ

8

>

<

>

:

9

>

=

>

;

(A.5)

where �u is the complex conjugate of u. The standard bilinear

form a(u, v) for elastodynamic problems is defined as:

aðu; vÞZ

ð

U

ðC : ðgrad u5grad vÞKu
2
ru$vÞ dV (A.6)

with C the fourth-order elastic tensor. The second term on

the right hand side of Eq. (A.5) enforces the kinematic

condition (A.4) on the boundary G using the Lagrange

multipliers l(x 0). The third term is added to ensure that no

forces are applied on the boundary Gh, as is actually the case

when the solution is written in terms of single and double

layer potentials that are only defined on G. The vector

[tn(u)] denotes the jump of the traction vector tn(u) along Gh

(between GhC and GhK), while w(x) is a vector of Lagrange

multipliers.

Stating the stationarity of the LagrangianLðu;l;wÞ with

respect to u gives:

Kaðu; vÞZ

ð

Gh

ðl0ðxÞ$vðxÞCwðxÞ$½tnðvÞ�Þ dSðxÞ

K 1C
h

a

� �
ð

G

lðx0Þvðx0Þ dSðx0Þ (A.7)

with l 0(x)Zl(xChn)/g(1, xChn). The jump [tn(v)] of the

traction vector tn(v) along Gh associated with any field v

defined on U is alternatively written as TðvÞ: If the adjoint

operator of TðvÞ is denoted as T�ðvÞ; the line force density

fo that is applied on Gh is defined as foZKT
�ðwÞ: The

elastic virtual work on the left hand side of Eq. (A.7) is

integrated by parts and the line force density fo is

introduced, resulting in the following equation:

ð

U

ðdivsðuÞCru
2
uÞ$vdV

Z

ð

Gh

ð½tnðuÞ�Cl
0
KfoÞ$vdSC

ð

G

tnðuÞK 1C
h

a

� �

l

� �

$vdS

(A.8)

This strong formulation enforces the elastodynamic

equilibrium equations inside the domain U, as well as the

following relations between the Lagrange multipliers l and

w and the traction vectors tn(u) on G and Gh:

lðx0ÞZ
a

aCh
tnðuÞðx

0Þ x
0
2G (A.9)

l
0ðxÞZK½tnðuÞðxÞ�C foðxÞ x2Gh (A.10)

As the jump [tn(u)(x)] of the traction vector has to

vanish, Eq. (A.10) finally results in l 0
Zfo.

A main difficulty now occurs when the parameter a in the

kinematic condition (A.4) has a non-vanishing imaginary

part. In that case, the displacement vector u may satisfy the

kinematic condition on Gh, while its conjugate field �u does

not. This means that the conjugate field �u cannot be used as

a virtual displacement field v in Eq. (A.7).

To overcome this drawback, the displacement fields uh
are defined for any field u on Uh as follows:

uhðx; z; uÞZ ð1KzÞbhuðxÞ x2Gh 0!z!1 (A.11)

with bZK1=ðaChÞ: The functional space Vo is defined as:

Vo Z fuo2L2ðUÞjgrad uo2L2ðUÞ; uoðx
0Þ

Z uoðx
0
KhnÞ; x02Gg (A.12)

The displacement field u is decomposed as:

uZ uo CuhðuoÞ (A.13)

For all uo2Vo, the displacement field u satisfies the

kinematic condition (A.4) on G since:

1C
h

a

� �

uðx0ÞZ 1C
h

a

� �

ð1CbhÞuoðx
0
KhnÞ

Z uðx0 KhnÞ cx
0
2G (A.14)
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The bilinear form ao(uo, vo) on Vo is now defined as:

aoðuo; voÞZ aðuo CuhðuoÞ; �vo Cuhð �voÞÞK

ð

Gh

fo$ �vo dS

(A.15)

Eqs. (A.9) and (A.10) allow to elaborate this definition

as:

aoðuo; voÞZ aðuo CuhðuoÞ; �vo Cuhð �voÞÞ

K ð1CbhÞ

ð

G

tnðuo CuhðuoÞÞ$ �vo dS (A.16)

When it is understood that the displacement field vZ

voCuh(vo) satisfies the kinematic condition (A.4), the

definitions (A.15) and (A.16) are equivalent to Eq. (A.7)

as the terms in the Lagrange multipliers l(x 0) and l 0(x) do

not contribute to the work. A solution u of the elastody-

namic problem on U with the kinematic condition (A.4) has

to satisfy:

aoðuo; voÞZ 0 cvo2Vo (A.17)

In particular, the following imaginary part must be equal

to zero:

Imðaoðuo;uoÞÞZ 0 (A.18)

Noticing that uhðuÞZ ðbrC ibiÞhHu; withHZ ð1KzÞgh

a real operator that is built from the trace operator gh onGh, it

can be shown that:

Imðaoðuo;uoÞÞZ 2hbiðhbrahðHuo;H �uoÞCahðHuor;uorÞ

CahðHuoi; uoiÞÞ

K Im ð1CbhÞ

ð

G

tnðuo CuhðuoÞÞ$ �vo dS

0

@

1

A

(A.19)

where ah(u,v) denotes the same bilinear form as a(u,v), except

that the integral is performed only on the domainUh, as uh(uo)

vanishes elsewhere. The stresses tn(uo) and tn(uh(uo)) in

Eq. (A.19) are elaborated using the constitutive equations and

the following expressions for the gradients of the displacement

fields:

grad uZ
1

h
n5vzuCgradhu (A.20)

gradHuZ
1

h
n5ghuC ð1KzÞgradhghu (A.21)

where gradh is the gradient in the planenormal ton. Integrating

with respect to zwhen possible, accounting for uo(x)Zuo(xC

hn)whenx2Gh and sorting all termswith respect to powers of

h, it can be demonstrated that only the last term of Eq. (A.19)

gives a contribution in h0, while the other terms are at least

O(h), so that:

Imðaoðuo; uoÞÞZ Im

ð

G

Q : ðvnuo5 �uoÞ dS

0

@

1

A

Cbikuok
2
Q COðhÞ (A.22)

In this equation, kuok
2
Q is defined as:

kuok
2
Q Z

ð

G

Q : ðu5 �uÞ dS (A.23)

with Q the acoustic tensor defined as Qil(x)ZCijklnjnk. Since

the acoustic tensor is positive definite, kuok
2
Q is equivalent to

the L2-norm kuok
2
G on G.

Before going further, it is worth to look at the asymptotic

solution when h tends to zero. Inside the domain Uh, uh
dominates; more precisely, bn5ghu dominates the gradient

which is constant when z varies. Therefore, the traction

vectors tn(u) on the two sides of Uh are equal. As [tn(u)]Z0,

they are also equal to the traction vector on the other side of

Gh:

tnðuÞðxÞZ tnðuÞðx
0
Kh

G
nÞ

Z bQuðx0 KhnÞ x
0
2G (A.24)

In order to obtain a well-posed limit problem, the

following is stated:

lim
h/0

tnðuÞðxÞZ ixQuðx0Þ (A.25)

which can be easily achieved by taking aZi/x. As for a

smooth boundary, any solution of the homogeneous

elastodynamic equation on Uh for u%u0 is continuous

and has continuous derivatives up to any order inside Uh,

all fields including gradhuo and v2nnuo can be bounded

independently from h, provided that the limit when h

tends to zero is well defined. Using a Taylor expansion

along the normal for uo up to the second-order and

noticing that uo(xKhn)Zuo(x) for x2G one can show

that vnuoZO(h) on G. Thus, if kuok
2
Gh
RAO0 for h%ho,

there exists a real number c so that the following

inequality holds ch%ho and cu%uo:

Imðaoðuo;uoÞÞKbikuok
2
Q

�

�

�

�%chkuok
2
G (A.26)

As the imaginary part of b is strictly positive, biRxO

0, and the following inequality must also hold:

Imðaoðuo;uoÞÞRc
0
xkuok

2
G (A.27)

uniformly in h with c 0 a positive real number. As the

imaginary part Im(ao(uo,uo)) must be equal to zero

according to Eq. (A.18), the inequality (A.27) implies

that kuok
2
GZ0; resulting in uZ0 on G and on Gh.

For an excitation frequency u that is lower than the first

eigenfrequency of Uh with clamped boundary conditions on

Gh and G, it is known that the unique elastodynamic solution

without body forces corresponds to uoZ0 everywhere
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inside Uh. Consequently, tn(u0)Z0 and lZ0. As the only

elastodynamic solution on a bounded domain that satisfies

uZ0 and tn(u)Z0 on its boundary corresponds to uZ0

everywhere inside this domain, it can be concluded that

uoZ0 everywhere inside U. The uniqueness of the inner

problem with the kinematic condition (A.4) is then proven

for h!ho and u!uo, including the limiting case when h

tends to zero. In the latter case, the kinematic condition

(A.4) corresponds to the following condition:

uCavnuZ 0 (A.28)
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