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a b s t r a c t

To reduce computational complexity and memory requirement for 3-D elastodynamics using the bound-
ary element method (BEM), a multi-level fast multipole BEM (FM-BEM) is proposed. The diagonal form
for the expansion of the elastodynamic fundamental solution is used, with a truncation parameter
adjusted to the subdivision level, a feature necessary for achieving optimal computational efficiency. Both
the single-level and multi-level forms of the elastodynamic FM-BEM are considered, with emphasis on
the latter. Crucial implementation issues, including the truncation of the multipole expansion, the opti-
mal number of levels, the direct and inverse extrapolation steps are examined in detail with the backing
of numerical experiments. A complexity analysis for both the single-level and multi-level versions is con-
ducted. The correctness and computational performances of the proposed elastodynamic FMM are dem-
onstrated on numerical examples, featuring up to Oð106Þ DOFs run on a single-processor PC and including
the diffraction of an incident P plane wave by a semi-spherical or semi-ellipsoidal canyon, representative
of topographic site effects.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The boundary element method (BEM), pioneered in 1960s
[6,41], is a mesh reduction method, subject to restrictive constitu-
tive assumptions but yielding highly accurate solutions. It is in par-
ticular well suited to deal with unbounded-domain idealizations
commonly used in, e.g., acoustics [50], electromagnetics [35,39]
or seismology [7,22]. In contrast with domain discretization meth-
ods, artificial boundary conditions [18] are not needed for dealing
with the radiation conditions, and grid dispersion cumulative
effects are absent [24,51].

However, in traditional boundary element (BE) implementa-
tions, the dimensional advantage with respect to domain discreti-
zation methods is offset by the fully populated nature of the BEM
coefficient matrix, with set-up and solution times rapidly increas-
ing with the problem size N. It is thus essential to develop alterna-
tive, faster strategies that allow to still exploit the known
advantages of BEMs when large N prohibit the use of traditional
implementations. Fast BEMs, i.e., BEMs of complexity lower than
that of traditional BEMs, appeared around 1985 with an iterative
integral-equation approach for solving 2-D Laplace problems with-
in OðNÞ CPU time per iteration [42]. The fast multipole method
(FMM) concept was introduced in [19,20], in the context of
many-particle simulations. The FMM then naturally led to fast

multipole boundary element methods (FM-BEMs), whose scope
and capabilities have rapidly progressed, especially in connection
with application in electromagnetics [21,31,32,53], but also in
other fields including acoustics [14,36,48] and computational
mechanics [30]. Many of these investigations are summarized in
a review article by Nishimura [37]. The FMM, as well as other fast
BEM approaches [23,27,55,56], intrinsically relies upon an iterative
solution approach for the linear system of discretized BEM equa-
tions, with solution times typically of order OðN logNÞ per iteration
for frequency-domain wave propagation problems (instead of
OðN2Þ per iteration with traditional forms of the BEM).

With a view toward future applications in seismology and
dynamic soil-structure interaction, this article is concerned with
the formulation and implementation of a multi-level FM-BEM for
3-D elastodynamics in the frequency domain. Only a few refer-
ences address this particular area of application. Two- and three-
dimensional FM-BEMs for frequency-domain elastodynamics are
proposed in [16,17,58], respectively, while time-domain problems
are addressed in [54]. As the free-space fundamental solution used
in elastodynamic boundary integral formulations is expressed in
terms of the full-space Green’s function for the scalar Helmholtz
equation and its derivatives, many of the existing developments
towards fast integral solvers for equations of the Helmholtz type
(including in particular the Maxwell equations) are transposable
to elastodynamic BEMs. A complete presentation of an elastody-
namic FM-BEM formulation based on such transposition is the
main purpose of this article. In particular, computational efficiency
of fast elastodynamic BEMs in the mid-frequency regime is en-
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hanced by using the so-called diagonal form for the Helmholtz
Green’s function [43–45,11]; the upper limit stems from the fact
that the size N becomes intractable at high frequencies, while the
diagonal form breaks down at very low frequencies and must be
replaced with other types of expansions [10,5,25]. Improving on
[17], where the diagonal form was already adopted, the present
work implements crucial features such as the adjustment of the
truncation parameter in the multipole expansion to the subdivi-
sion level, known from recent studies for the Maxwell equations
such as [8,25] to be necessary for achieving optimal computational
efficiency. Both the single-level and multi-level forms of the FM-
BEM are considered, with emphasis on the latter. A substantial
fraction of the article is then devoted to the discussion, backed
with the results of numerical experiments, of crucial implementa-
tion details (many of which transposing methods previously pro-
posed for electromagnetic FM-BEMs [8,53] to the present 3-D
elastodynamic context) and a complexity analysis for both the sin-
gle-level and multi-level versions.

The article is organized as follows. Classical concepts pertaining
to elastodynamic BEMs are recalled in Section 2. Then, Section 3
presents underlying motivations and fundamental concepts for
the elastodynamic FMM. Next, several crucial computational and
implementation issues are addressed in Section 4. Section 5 is de-
voted to the analysis and numerical verification of the algorithmic
complexity of single-level and multi-level versions. Finally, the
correctness and computational performances of the proposed
FM-BEM are assessed in Section 6 on numerical examples involv-
ing up to N ¼ Oð106Þ nodal unknowns. The latter include the
diffraction of an incident P plane wave by a semi-spherical or
semi-ellipsoidal canyon, representative of topographic site effects.

2. Boundary element method

2.1. Boundary integral representation

Let X � R3 denote the region of space occupied by a three-
dimensional elastic solid with isotropic constitutive properties
defined by l (shear modulus), m (Poisson’s ratio) and q (mass den-
sity). Time-harmonic motions, with circular frequency x, induced
by a prescribed traction distribution tD on the boundary oX and
in the absence of body forces are considered for definiteness in this
article. The accommodation of other boundary conditions needs
only minor modifications to the treatment proposed therein. The
displacement u is given at an interior point x 2 X by the following
well-known representation formula [3]:

ukðxÞ ¼ �
Z
oX

uiðyÞTk
i ðx; y;xÞdSy þ

Z
oX

tDi ðyÞU
k
i ðx; y;xÞdSy

ðx 2 XÞ; ð1Þ

where Uk
i ðx; y;xÞ and Tk

i ðx; y;xÞ denote the ith components of the
elastodynamic fundamental solution, i.e., of the displacement and
traction, respectively, generated at y 2 R3 by a unit point force ap-
plied at x 2 R3 along the direction k, given by [12]

Uk
i ðx; y;xÞ ¼ 1

k2Sl
ðdqsdik � dqkdisÞ

o

oxq

o

oys
Gðjy � xj; kSÞ

�

þ o

oxi

o

oyk
Gðjy � xj; kPÞ

�
; ð2aÞ

Tk
i ðx; y;xÞ ¼ Cijh‘

o

oy‘
Uk

hðx; y;xÞnjðyÞ; ð2bÞ

in which kS and kP are the respective wavenumbers of S and P elas-
tic waves, so that

k2S ¼ qx2

l
; kP ¼ ckS; c2 ¼ 1� 2m

2ð1� mÞ ; ð3Þ

Gð�; kÞ is the free-space Green’s function for the Helmholtz equation
with wavenumber k, given by

Gðr; kÞ ¼ expðikrÞ
4pr

; ð4Þ

n(y) is the unit normal to oX directed outwards of X, and Cijh‘ are
the components of the fourth-order elasticity tensor, i.e.

Cijh‘ ¼ l 2m
1� 2m

dijdh‘ þ dihdj‘ þ djhdi‘

� �
: ð5Þ

2.2. Boundary integral equation

When x 2 oX, a singularity occurs in y ¼ x. With the help of a
well-documented limiting process [4], the integral representation
(1) yields the integral equation

ðKuÞðxÞ ¼ f ðxÞ ðx 2 oXÞ; ð6Þ

with the linear integral operator K and the right-hand side f de-
fined by

ðKuÞðxÞ ¼ cikðxÞuiðxÞ þ ðP:V:Þ
Z
oX

uiðyÞTk
i ðx; y;xÞdSy ð7Þ

f ðxÞ ¼
Z
oX

tDi ðyÞU
k
i ðx; y;xÞdSy; ð8Þ

where (P.V.) indicates a Cauchy principal value (CPV) singular inte-
gral and the free-term cikðxÞ is equal to 0:5dik in the usual case where
oX is smooth at x. The integral operator (7) may be recast into alter-
native, equivalent regularized forms which are free of CPV integrals
[3]. Eqs. (1) and (6) are applicable to either interior or exterior elas-
todynamic problems.

2.3. Boundary element method

The numerical solution of boundary integral equation (6) is
based on a discretization of the surface oX into NE isoparametric
boundary elements. Piecewise-linear interpolation of displace-
ments, based on three-noded triangular boundary elements, is
used in this work. The NI displacement interpolation nodes thus
defined also serve as collocation points. This discretization process
transforms (6) into a square complex-valued matrix equation of
size N ¼ 3NI of the form

½K�fug ¼ ffg; ð9Þ

where the N-vector fug collects the sought degrees of freedom
(DOFs), namely the nodal displacement components, while the
N � N matrix of influence coefficients ½K� and the N-vector ffg arise
from (7) and (8), respectively. Setting up the matrix ½K� classically
requires the computation of all element integrals for each colloca-
tion point, thus needing a computational time of order OðN2Þ.

2.4. Solution strategy for the BEM equations

The influence matrix ½K� is fully populated. Storing ½K� is thus
limited, on ordinary computers, to BEM models of size not exceed-
ing N ¼ Oð104Þ. Direct solvers, such as the LU factorization, require
OðN3Þ arithmetic operations (i.e., they have a OðN3Þ complexity),
and are thus also limited to moderately sized BEM models. BEM
problems of larger size are preferably solved by means of iterative
algorithms (GMRES [47] being the usual choice), which build se-
quences of solution candidates until convergence within a prede-
fined tolerance is reached. With reference to (9), each GMRES
iteration requires one evaluation of ½K�fug for given fug, a task
requiring a computing time of order OðN2Þ if either ½K� is stored
or ½K�fug is evaluated by means of standard BEM numerical inte-
gration procedures. In the latter case, the OðN2Þ complexity stems
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from the fact that, again, all element integrals must be recomputed
for each collocation point. Applications of the BEM to large models
(typically N ¼ Oð106Þ) require evaluation procedures for ½K�fug that
are fast (i.e., of complexity below OðN2Þ) and that avoid explicit for-
mation and storage of ½K�. The fast multipole method (FMM) is
known in many other fields as a very efficient approach for achiev-
ing these objectives. It is therefore chosen as the basis for the pres-
ent formulation and implementation of a fast elastodynamic BEM.

3. Fast multipole method: principle

3.1. Multipole expansions of the elastodynamic fundamental solutions

The FMM is based on a reformulation of the fundamental solu-
tions in terms of products of functions of x and of y. This allows to
re-use integrations with respect to y when the collocation point x
is changed, thereby lowering the OðN2Þ complexity per iteration
entailed by standard BEMs. The elastodynamic fundamental solu-
tions (2a) and (2b) are linear combinations of derivatives of the
Green’s function (4) for the Helmholtz equation. On recasting the
position vector r ¼ y � x in the form r ¼ r0 þ ðy � y0Þ � ðx� x0Þ,
where x0 and y0 are two poles and r0 ¼ y0 � x0 (Fig. 1), the Helm-
holtz Green’s function is shown [11,9] to admit the decomposition

Gðjrj; kÞ ¼ lim
L ! þ1

Z
ŝ2S

eikŝ�ðy�y0ÞGLðŝ; r0; kÞe�ikŝ�ðx�x0Þdŝ; ð10Þ

where S is the unit sphere of R3 and the transfer function GLðŝ; r0; kÞ
is defined in terms of the Legendre polynomials Pp and the spherical
Hankel functions of the first kind hð1Þ

p by

GLðŝ; r0; kÞ ¼
ik

16p2

X
06p6L

ð2pþ 1Þiphð1Þ
p ðkjr0jÞPpðcosðŝ; r0ÞÞ: ð11Þ

The decomposition (10) and (11) is seen to achieve the desired sep-
aration of variables x and y. Then, to recast the elastodynamic fun-
damental solutions in a form similar to (10) and (11), one simply
notes that (10) implies

o

oxi
Gðjrj; kÞ ¼ �ikŝiGðjrj; kÞ;

o

oyi
Gðjrj; kÞ ¼ ikŝiGðjrj; kÞ; ð12Þ

where ŝi is the ith component of the vector ŝ. Then, on substituting
(12) into (2a) and (2b) and invoking decomposition (10) and (11),
the following multipole decomposition of the elastodynamic funda-
mental solutions is obtained:

Uk
i ðx; y;xÞ ¼ lim

L ! þ1

Z
ŝ2S

eikP ŝ�ðy�y0ÞUk;P
i;L ðŝ; r0Þe

�ikP ŝ�ðx�x0Þdŝ

þ lim
L ! þ1

Z
ŝ2S

eikS ŝ�ðy�y0ÞUk;S
i;L ðŝ; r0Þe

�ikS ŝ�ðx�x0Þdŝ; ð13Þ

Tk
i ðx; y;xÞ ¼ lim

L ! þ1

Z
ŝ2S

eikP ŝ�ðy�y0ÞTk;P
i;L ðŝ; r0Þe

�ikP ŝ�ðx�x0Þdŝ

þ lim
L ! þ1

Z
ŝ2S

eikS ŝ�ðy�y0ÞTk;S
i;L ðŝ; r0Þe

�ikS ŝ�ðx�x0Þdŝ; ð14Þ

with the elastodynamic transfer functions given in terms of the
acoustic transfer function GL by

Uk;P
i;L ðŝ; r0Þ ¼

c2

l
ŝiŝkGLðŝ; r0; kPÞ; ð15aÞ

Tk;P
i;L ðŝ; r0Þ ¼

ikSc3

l
Cijh‘ŝ‘ ŝhŝkGLðŝ; r0; kPÞnjðyÞ; ð15bÞ

Uk;S
i;L ðŝ; r0Þ ¼

1
l
ðdik � ŝkŝiÞGLðŝ; r0; kSÞ; ð16aÞ

Tk;S
i;L ðŝ; r0Þ ¼

ikS
l

ðdhk � ŝkŝhÞCijh‘ ŝ‘GLðŝ; r0; kSÞnjðyÞ: ð16bÞ

Truncation error and clustering. In practice, the limiting process
L ! þ1 in (10) or (13), (14) cannot be performed exactly and is
replaced with an evaluation for a suitably chosen finite value of
L. A key error analysis result [9] states that there exist four con-
stants C1;C2;C3;C4 such that

L ¼ C1 þ C2kjr � r0j þ C3 lnðkjr � r0jÞ þ C4 ln ��1

) expðikjrjÞ
4pjrj �

Z
ŝ2S

eikŝ�ðy�y0ÞGLðŝ; r0; kÞe�ikŝ�ðx�x0Þdŝ
����

���� < � ð17Þ

for any chosen error level � < 1, whenever

jr � r0j=jr0j ¼ jðy � y0Þ � ðx� x0Þj=jr0j 6 2=
ffiffiffi
5

p
: ð18Þ

The error bound (17) and (18) implies that expansions (13) and
(14) must be used for well-separated sets of collocation and inte-
gration points clustered around poles x0 and y0. Moreover, (17)
also indicates that the value of the truncation parameter L allowing
to achieve a given level of accuracy � increases with the size of
these clusters. Other studies on error control in multipole expan-
sions for Helmholtz equations can be found in e.g., [38,21].

3.2. Single-level fast multipole formulation

In the single-level FMM, a 3-D cubic grid of linear spacing d
embedding the boundary oX is introduced (Fig. 2). The centers of
the cubic cells thus defined are taken as poles x0 or y0 in decompo-
sitions (13), (14). Two cells are deemed adjacent if they have at
least one common point, e.g., a vertex (Fig. 3). Whenever x and y
belong to cells Cx;Cy that are not adjacent, condition (18) is auto-
matically fulfilled (as one then always has jr � r0j=jr0j 6

ffiffiffi
3

p
=2 <

2=
ffiffiffi
5

p
) and expansions (13) and (14) can be safely used. Conversely,

when x and y lie in adjacent cells, condition (18) is not assured and
the classical expressions (2a) and (2b) of the fundamental solutions
are used instead. These considerations lead to reformulate expres-
sions (7) and (8), for any collocation point x lying in a given cell Cx,
as

ðKuÞðxÞ ¼ ðKuÞnearðxÞ þ ðKuÞFMðxÞ;
f ðxÞ ¼ f nearðxÞ þ f FMðxÞ ðx 2 oX \ CxÞ;

ð19Þ

where, letting AðCÞ denote the set of cells which are adjacent to a
given cubic cell C (Fig. 3), the ‘‘near” parts are defined for each col-
location point x as the net contributions from the portion of bound-
ary situated in cells adjacent to that containing x, i.e., by

Fig. 1. Decomposition of the position vector: notation. Fig. 2. 3-D cubic grid embedding the boundary oX.
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ðKuÞnearðxÞ ¼ cikðxÞuiðxÞ þ
X

Cy2AðCxÞ
ðP:V:Þ

Z
oX\Cy

uiðyÞTk
i ðx; y;xÞdSy;

ð20aÞ

f nearðxÞ ¼
X

Cy2AðCxÞ

Z
oX\Cy

tDi ðyÞU
k
i ðx; y;xÞdSy: ð20bÞ

The ‘‘FM” parts then collect all contributions from cells that are not
adjacent to Cx:

ðKuÞFMðxÞ ¼
X

Cy 62AðCxÞ

Z
oX\Cy

uiðyÞTk
i ðx; y;xÞdSy; ð21aÞ

f FMðxÞ ¼
X

Cy 62AðCxÞ

Z
oX\Cy

tDi ðyÞU
k
i ðx; y;xÞdSy: ð21bÞ

The ‘‘near” contributions (20a) and (20b) are evaluated by
means of standard BE techniques. The treatment of the ‘‘FM” con-
tributions (21a) and (21b) exploits expansions (13) and (14) trun-
cated at a finite L and in a manner suggested by their multiplicative
form, i.e. (i) evaluate integrals over each cell Cy and associate ob-
tained values to the cell center y0, (ii) apply transfer functions to
obtain quantities associated to the center x0 of cell Cx, and (iii)
evaluate contribution at each collocation point x 2 Cx. Accordingly,
multipole moments, defined by

RS;u
k ðŝ;CyÞ ¼ �ikS dikŝj þ djkŝi � 2ŝi ŝj ŝk

� 	 Z
oX\Cy

uiðyÞnjðyÞeikS ŝ�ðy�y0ÞdS~y;

ð22aÞ

RP;uðŝ;CyÞ ¼ �ikSc3
2m

1� 2m
dij þ 2ŝi ŝj

� � Z
oX\Cy

uiðyÞnjðyÞeikP ŝ�ðy�y0ÞdS~y;

ð22bÞ

RS;t
k ðŝ;CyÞ ¼

1
l

dka � ŝkŝa½ �
Z
oX\Cy

taðyÞeikS ŝ�ðy�y0ÞdS~y; ð23aÞ

RP;tðŝ;CyÞ ¼
c2

l

Z
oX\Cy

ŝataðyÞeikP ŝ�ðy�y0ÞdS~y; ð23bÞ

are computed for each cell Cy (step (i)). Then, local expansions for
the cell Cx are evaluated by applying the transfer functions to the
multipole moments according to

LS;u
k ðŝ;CxÞ ¼

X
Cy 62AðCxÞ

GLðŝ; r0; kSÞRS;u
k ðŝ;CyÞ; ð24aÞ

LP;uðŝ;CxÞ ¼
X

Cy 62AðCxÞ
GLðŝ; r0; kPÞRP;uðŝ;CyÞ; ð24bÞ

LS;t
k ðŝ;CxÞ ¼

X
Cy 62AðCxÞ

GLðŝ; r0; kSÞRS;t
k ðŝ;CyÞ; ð25aÞ

LP;tðŝ;CxÞ ¼
X

Cy 62AðCxÞ
GLðŝ; r0; kPÞRP;tðŝ;CyÞ; ð25bÞ

where r0 ¼ y0 � x0 joins the centers of cells Cx and Cy (step (ii)).
Upon multiplying 24a–25b by the local factors exp½�ikaŝ � ðx� x0Þ�
(step (iii)) and replacing the integration over the unit sphere in
(13), (14) by a numerical quadrature rule based on a set of Q quad-
rature points ŝq 2 S and weights wq (see Section 4.3), the ‘‘FM”
contributions finally take the form

ðKuÞFMk ðxÞ �
XQ
q¼1

wq e�ikS ŝq �ðx�x0ÞLS;u
k ðŝq;CxÞ

h

þe�ikP ŝq �ðx�x0ÞðŝqÞkLP;uðŝq;CxÞ
i
; ð26Þ

f FMk ðxÞ �
XQ
q¼1

wq e�ikS ŝq �ðx�x0ÞLS;t
k ðŝq;CxÞ

h

þe�ikP ŝq �ðx�x0ÞðŝqÞkLP;tðŝq;CxÞ
i
: ð27Þ

Expression (26) defines the ‘‘FM” contribution to the matrix–vector
product ½K�fug, and hence is evaluated once per GMRES iteration,
while (27) provides the ‘‘FM” contribution to the right-hand side
ffg and is computed once, prior to calling the GMRES solver.
Fig. 4 schematically depicts the acceleration mechanism achieved
by the previously described steps.

As remarked in Section 3.1, the truncation parameter L, and
hence the maximum degree of Legendre polynomials featured in
the transfer functions GLðŝ; r0; kaÞ, increases with the cell size d.
Consequently, the number Q of quadrature points necessary for
achieving a given accuracy in (26), (27) is also an increasing func-
tion of L, i.e., of d (see Section 4.1 for further elaboration).

The single-level elastodynamic FMM is more efficient than the
classical BEM, with a complexity of OðN3=2Þ per GMRES iteration
(as shown in Section 5.1). Further acceleration is achievable by
adopting a multi-level approach, as described next for the present
context of 3-D elastodynamics.

3.3. Multi-level fast multipole formulation

To have maximal efficiency, FM-BEM algorithms must confine
non-FM calculations to the smallest possible portion of the bound-
ary while clustering whenever possible the computation of influ-
ence terms into the largest possible non-adjacent groups. This is
achieved by the multi-level FMM [8,52,30,37,53], which is based
on using large cells and hierarchically subdividing each cell into
2� 2� 2 ¼ 8 children cubic cells. This cell-subdivision approach
is systematized by means of an oct-tree structure of cells. The level
‘ ¼ 0, composed of only one cubic cell containing the whole surface
oX, is the tree root. The level-0 cell is divided into 2� 2� 2 ¼ 8
children cubic cells, which constitute the level ‘ ¼ 1. All level-1
cells being adjacent, the FMM cannot be applied to them. The level
‘ ¼ 2 is then defined by dividing each level-1 cell into 8 children
cells, and so contains 64 cells. The subdivision process is further re-
peated until the finest level ‘ ¼ �‘, implicitly defined by a preset

Fig. 3. Definition of the adjacent cells.

Fig. 4. Matrix–vector product without FMM (top) and with FMM (bottom).
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subdivision-stopping criterion, is reached. Level-�‘ cells are usually
termed leaf cells. The FMM is applied from level ‘ ¼ 2 to level ‘ ¼ �‘,
i.e., features �‘� 1 ‘‘active” levels.

The multi-level approach basically consists in first applying the
FMM to all influence computations between disjoint level-2 cells
(so as to use the largest clusters whenever possible), and then
recursively tracing the tree downwards, applying the FMM to all
interaction between disjoint level-‘ cells that are children of adja-
cent level-ð‘� 1Þ cells (Fig. 5). Finally, interactions between adja-
cent leaf cells are treated using traditional (i.e., non FM-based)
BE techniques. This approach thus minimizes the overall propor-
tion of influence computations requiring the traditional treatment.

The computation of the discretized linear operator (7), i.e., of
the matrix–vector product ½K�fug, by the multi-level elastodynamic
FMM hence consists of the following main steps:

1. Initialization: Compute multipole moments (22a), (22b) for all
lowest-level cells Cy ¼ C

�‘
y.

2. Upward pass: Recursively aggregate multipole moments by
moving upward in the tree until level 2 is reached. Denoting
by SðCÞ the set of children of a given cell C, the transition from
a level-ð‘þ 1Þ cell to its parent level-‘ cell is based on identities

RS;u
k ðŝ;Cð‘Þ

y Þ ¼
X

C
ð‘þ1Þ
y 2SðCð‘Þ

y Þ

exp �ikSŝ � ðyð‘þ1Þ
0 � yð‘Þ

0 Þ
h i

RS;u
k ðŝ;Cð‘þ1Þ

y Þ;

ð28aÞ

RP;uðŝ;Cð‘Þ
y Þ ¼

X
C
ð‘þ1Þ
y 2SðCð‘Þ

y Þ

exp �ikPŝ � ðyð‘þ1Þ
0 � yð‘Þ

0 Þ
h i

RP;uðŝ;Cð‘þ1Þ
y Þ:

ð28bÞ

It is essential at this point to emphasize a crucial feature of the
elastodynamic multi-level FMM, namely that the number and
location of the quadrature points on S are level-dependent (see
Section 4.3 for details), a consequence of the previously men-
tioned dependence of L, the truncation parameter in expansions
(13) and (14), on the cell size. Hence, application of identities
(28a), (28b) requires an extrapolation procedure furnishing the
values of RS;u

k ;RP;u at the level-‘ quadrature points from those
at the level-ð‘þ 1Þ quadrature points (see Section 4.4).

3. Transfer: Initialize local expansions for each level-‘ cell Cð‘Þ
x and

at each level 2 6 ‘ 6 �‘ using

LS;u
k ðŝð‘Þ;Cð‘Þ

x Þ ¼
X

C
ð‘Þ
y 2IðCð‘Þ

x Þ

GLðŝð‘Þ; r0; kSÞRS;u
k ðŝð‘Þ;Cð‘Þ

y Þ; ð29aÞ

LP;uðŝð‘Þ;Cð‘Þ
x Þ ¼

X
C
ð‘Þ
y 2IðCð‘Þ

x Þ

GLðŝð‘Þ; r0; kPÞRP;uðŝð‘Þ;Cð‘Þ
y Þ; ð29bÞ

where IðCÞ, the interaction list of a given cell C (Fig. 5), is the set
of same-level cells which are not adjacent to C while having a

parent cell adjacent to that of C. For a level-2 cell, (29a), (29b)
coincide with (24a) and (24b), as IðC2Þ collects all level-2 cells
not adjacent to C2.

4. Downward pass: For all levels 3 6 ‘ 6 �‘, the local expansion for
each level-‘ cell Cð‘Þ

x is updated with the contribution from the
parent level-ð‘� 1Þ cell, by means of the identity

LS;u
k ðŝ;Cð‘Þ

x Þ¼LS;u
k ðŝ;Cð‘Þ

x Þþexp �ikSðŝ �ðxð‘�1Þ
0 �xð‘Þ0 ÞÞ

h i
LS;u

k ðŝ;Cð‘�1Þ
x Þ;

ð30aÞ

LP;uðŝ;Cð‘Þ
x Þ¼LP;uðŝ;Cð‘Þ

x Þþexp �ikPðŝ �ðxð‘�1Þ
0 �xð‘Þ

0 ÞÞ
h i

LP;uðŝ;Cð‘�1Þ
x Þ:

ð30bÞ

Similarly to step 2, application of identity (30a), (30b) requires
an inverse extrapolation procedure furnishing the values of
LS;u

k ;LP;u at the level-‘ quadrature points from those at the le-
vel-ð‘� 1Þ quadrature points (see Section 4.4).

5. When the leaf level ‘ ¼ �‘ is reached, all local expansions have
been computed. The contribution ðKuÞFMðxÞ is evaluated using
(26) with the level-�‘ quadrature points, and the near-field con-
tribution is evaluated according to (20a), (20b) for all level-�‘
(leaf) cells Cx.

The computation of the right-hand side (8) follows the same
steps, with the multipole moments RS;u

k ;RP;u and local expansions
LS;u

k ;LP;u replaced with their counterparts RS;t
k ;RP;t and LS;t

k ;LP;t .
The above steps are shown in Section 5.2 to have a complexity of
at most OðN logNÞ, with the exception of the direct and inverse
extrapolations in steps 2 and 4, whose complexity is OðN3=2Þ.

3.4. Computation of near-field contributions

The near-field contributions (20a), (20b) involve (i) CPV-singu-
lar, (ii) weakly singular and (iii) non-singular element integrals.
CPV-singular integrals are split according to

ðP:V:Þ
Z
oX

uiðyÞTk
i ðx; y;xÞdSy ¼

Z
oX

uiðyÞ Tk
i ðx; y;xÞ � Tk

i ðx; yÞ
h i

dSy

þ ðP:V:Þ
Z
oX

uiðyÞTk
i ðx; yÞdSy;

where Tk
i ðx; yÞ are the traction components of the (singular) static

fundamental solution and the difference Tk
i ðx; y;xÞ � Tk

i ðx; yÞ is
non-singular [3]. The remaining CPV integral is then evaluated ana-
lytically, taking advantage of the fact that three-noded triangular
elements, which have constant unit normal and Jacobian, are used.
Weakly singular integrals (which feature the kernel Uk

i ðx; y;xÞ) and
non-singular integrals are computed using numerical Gaussian
quadrature (the weak singularity being first cancelled by means
of a suitable change of coordinates). Finally, when oX presents an

Fig. 5. Multi-level fast multipole algorithm. Only multipole moments from non-adjacent (light-grey) cells Cð‘Þ
y 62 AðCð‘Þ

x Þ may provide (through transfer) FM-computed
contributions to ðKuÞFMðxÞ at collocation points x lying in cell Cð‘Þ

x . Upon cell subdivision (right), new FM-computed contributions to collocation points in cell Cð‘þ1Þ
x originate

from cells Cð‘þ1Þ
y in the interaction list IðCð‘þ1Þ

x Þ of Cð‘þ1Þ
x , while the adjacent region AðCð‘þ1Þ

x Þ reduces in size.
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edge or corner at x, the free-term cijðxÞ is evaluated using the meth-
od of [33].

4. Fast multipole method: computational aspects

Both the single-level and multi-level elastodynamic FMM have
been implemented, for three-noded triangular boundary elements,
using a public domain version of the GMRES solver [15] with a con-
vergence criterion set to kfKu� fgk=kffgk 6 10�3. All examples
have been run on the same single-processor PC (RAM: 3GB, CPU
frequency: 3.40 GHz). Except where indicated otherwise, the mul-
ti-level FMM is used.

The numerical efficiency and accuracy of the FMM is strongly
affected by several factors, such as the truncation of the transfer
function, the quadrature over the unit sphere and the number of
levels, and great care must be taken in the implementation. This
section is devoted to a discussion of these issues, and of various
algorithmic choices and improvements. The latter are largely based
on a transposition to the present elastodynamic context of ideas
and methods proposed in [8,53] for the FMM applied to the 3-D
frequency-domain Maxwell equations. At several places, illustra-
tive numerical results for the test problem of a spherical cavity
of radius a embedded in an elastic isotropic infinite medium (with
m ¼ 0:25), subjected to an internal time-harmonic uniform pres-
sure P (Fig. 6) are given. This problem has a simple, spherically
symmetric, exact solution [12], with the radial displacement and
stress given in terms of the normalized radial coordinate r̂ ¼ r=a
by:

urðr̂Þ ¼
aP
l

1
r̂2

c2ð1� ikPar̂Þ
4c2ð1� ikPaÞ � ðkPaÞ2

expðikPaðr̂ � 1ÞÞ

rrrðr̂Þ ¼ P
1
r̂3

ðkPaÞ2r̂2 � 4c2ð1� ikPar̂Þ
4c2ð1� ikPaÞ � ðkPaÞ2

expðikPaðr̂ � 1ÞÞ
ð31Þ

with the wavenumber kP and the wave velocity ratio c defined in
(3).

4.1. Truncation of the transfer function

As already mentioned in Section 3.1, the decomposition (10) is
shown in [9] to be convergent in the limit L ! þ1, which imme-
diately implies convergence for the corresponding expressions (13)
and (14) of the elastodynamic kernels. However, the spherical Han-
kel functions hð1Þ

p ðzÞ behave like ðp=zÞp for large p [1] and their eval-
uation must therefore be avoided for orders p significantly larger
than k j r0 j. Hence, the truncation level L used in (11) has to be
large enough to guarantee sufficient accuracy in (10) while avoid-
ing divergence of the Hankel functions appearing in (11). Appropri-
ate values for L achieving the ‘‘numerical convergence” of the
transfer function GLð~s; r0; kÞ are selected using formulae empiri-
cally established from numerical experiments. One such formula,
known from previous studies on FMMs for Maxwell equations
[8], reads:

LðdÞ ¼
ffiffiffi
3

p
kdþ C�log10ð

ffiffiffi
3

p
kdþ pÞ: ð32Þ

In this work, distinct truncation levels LP and LS are defined accord-
ing to (32) with k ¼ kP and k ¼ kS, respectively. The transfer func-
tions (15a), (15b) and (16a), (16b) are then evaluated using L ¼ LS
and L ¼ LP, respectively. The truncation parameter value defined
by (32) is level-dependent through the cell size d, and L is (roughly)
doubled for each upwards transition to a new level.

Formula (32) features a constant C� which has to be adjusted
from numerical experiments. For that purpose, the test problem is
now considered for N ¼ 30;726, with a leaf level �‘ ¼ 3 and a leaf-
cell size dð�‘Þ ¼ 0:6kS (where kS ¼ 2p=kS denotes the S-wavelength).
A subset of 10 columns of the influence matrix ½K� are computed
using both the present FM-BEM (by performing matrix–vector
products ½K�fug with all entries of fug set to zero except that corre-
sponding to the selected column of ½K�, set to unity) and standard
BEM techniques. The relative RMS difference between these two
sets of matrix columns measures the truncation error introduced
by the FMM with finite truncation level L. This truncation error,
and the CPU time for one FMM iteration, are plotted against C� in
Fig. 7. Error levels below 10�3 are achieved for 5 6 C� 6 12:5, which
corroborates the previously discussed notion of a numerically opti-
mal truncation level L. Values of C� outside the above range lead to
values of L that are either too small (insufficient convergence in
(10)) or too large (divergence of Hankel functions in (11)). Fig. 7 also
shows that the CPU time for one FMM iteration increases with C�,
which was to be expected since L given by (32) also increases with
C�. The value C� ¼ 7:5 is found to achieve to keep a good compro-
mise between accuracy and computational cost, and is retained in
the present implementation. This observation is consistent with
that made in [53] for 3-D electromagnetics.

4.2. Number of levels

The choice of the leaf level �‘ is crucial, as it affects both the
overall computational time and the accuracy of the elastodynamic
FM-BEM algorithm. A too-small number of levels increases the
proportion of near interactions, thus pushing the complexity of
the computation closer to OðN2Þ, while a too-large number of levels
increases the number of transfers between levels (see Table 1
where several values of �‘ are considered, with kPa ¼ 6p and N ¼
122;886).

The truncation parameter L at any level depends on the leaf-cell
size dð�‘Þ. This is now illustrated with the help of the comparison
method and test problem of Section 4.1: relative RMS differences
between matrices generated by FM-BEM (with L determined at
all levels by (32)) and standard BEM produced by this comparison

Fig. 6. Pressurized spherical cavity: notation.
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are plotted in Fig. 8 against C� for several choices of dð�‘Þ. For small
values of kSd

ð�‘Þ, the FM-BEM algorithm is seen to be insufficiently
accurate. This stems from the fact that the distances jr0j between
leaf cells scale with d, and the spherical Hankel functions in (11)
are known to diverge in the small-argument limit. Estimate (17)
accordingly predicts that L has a Oðln kdÞ divergence in the small
cell size limit, and formula (32) does not provide adequate values
of L in this case, even upon increasing the constant C�, as evidenced
by the results of Fig. 8. This suggests that the leaf cell size dð�‘Þ must
be chosen larger to a minimum value dmin to avoid divergence; for
instance, results obtained using dð�‘Þ ¼ 0:075kS have very poor accu-
racy. A minimum leaf cell size dmin ¼ k=10 is adopted in [8]. Accu-
racy and computational efficiency considerations make higher
values of dmin preferable. In this work, the subdivision-stopping cri-
terion defining the leaf level �‘ is set to: dð�‘þ1Þ

6 dmin
6 dð�‘Þ, with

dmin ¼ 0:3kS. Configurations for which cells of size significantly
smaller than dmin � 0:3kS are desirable (e.g., geometries with com-
plex details at sub-wavelength scales) require an adaptation to
elastodynamics of approaches combining the diagonal form (10)
with other types of expansions valid for low wavenumbers, see
[10,5,25].

4.3. Quadrature over the unit sphere

Another practical issue is the numerical computation of inte-
grals over the unit sphere S in (13) and (14). The quadrature meth-
od of [8], based on a product rule in the angular spherical
coordinates h;/, employs quadrature points and weights of the
form ŝq ¼ ðhi;/jÞ and wq ¼ wh

i w
/
j , where ðhi;wh

i Þð0 6 i 6 LÞ corre-
spond to a Lþ 1-point Gaussian rule on ½0;p� while ð/j;w

/
j Þ, given

by

/j ¼
2p

2Lþ 1
j; w/

j ¼ 2p
2Lþ 1

ð0 6 j 6 2LÞ; ð33Þ

correspond to a uniform rule on ½0;2p�. This approach, which em-
ploys Q ¼ ðLþ 1Þð2Lþ 1Þ quadrature points overall, is designed so
as to integrate exactly the L2ðSÞ-orthonormal set of spherical har-

monics ðYp;mðh;/ÞÞ06p6L;�p6m6p of order 6 L, a requirement which, to-
gether with (32), implies that the number of quadrature points
must be level-dependent. It is adopted here, in a form slightly mod-
ified as explained next.

Reduction of the number of quadrature points. The transfer
function GL given by (11) has the form GLðr0; ŝ; kÞ ¼

PL
p¼0Hpðr0Þ

Ppðcosðŝ; r0ÞÞ. The factor Hpðr0Þ does not depend on ŝ, and is com-
puted once for each r0. Then, for each pair ðr0; ŝÞ, the Legendre
polynomials are computed by induction:

PpðxÞ ¼ ð2� 1=pÞxPp�1ðxÞ þ ð1=p� 1ÞPp�2ðxÞ
P0ðxÞ ¼ 1; P1ðxÞ ¼ x



x ¼ r0 � ŝ

jr0jjŝj

� �
:

ð34Þ

The Legendre polynomials are known to satisfy the identity
Ppð�xÞ ¼ ð�1ÞpPpðxÞ. This can be exploited to reduce the number
of quadrature points ŝ: a grid that is invariant under the transfor-
mation ŝ ! �ŝ allows to perform the numerical integration on S
with half the original quadrature points. The rule defined by (33)
fulfils this invariance provided the uniform rule on ½0;2p� is de-
fined in terms of 2Lþ 2, rather than 2Lþ 1, points. This modified
version of (33) features 2ðLþ 1Þ2 points, but only ðLþ 1Þ2 points
are actually computed, stored and used. As a result, the computing
time and memory required by the quadrature are roughly divided
by 2.

4.4. Extrapolation (direct/inverse)

The upward translations (28a) and (28b) require evaluating
multipole moments at level-‘ quadrature points from their values
at level-ð‘þ 1Þ quadrature points. This important step of the algo-
rithm has a significant impact on the overall CPU time required by
the FM-BEM, and hence has to be formulated carefully. A fast
method, which takes advantage of the uniform distribution (33)
of quadrature points along / and exploits L2ðSÞ-orthogonality and
finite-bandwidth properties of the spherical harmonics, has been
proposed in [8,53] and is used here.

With the quadrature points at levels ‘ and ‘þ 1 of the form

ŝð‘þ1Þ
q ¼ ðhð‘þ1Þ

i ;/ð‘þ1Þ
j Þ 0 6 i 6 Lð‘þ1Þ 0 6 j 6 2Lð‘þ1Þ;

ŝð‘Þq ¼ ðhð‘Þ
i0
;/ð‘Þ

j0
Þ 0 6 i0 6 Lð‘Þ 0 6 j0 6 2Lð‘Þ;

the values Fi0 j0 ¼ Fðhð‘Þ
i0
;/ð‘Þ

j0
Þ at the level-‘ quadrature points of a

generic function FðŝÞ ¼ Fðh;/Þ are extrapolated from those
Fij ¼ Fðhð‘þ1Þ

i ;/ð‘þ1Þ
j Þ at the level-ð‘þ 1Þ quadrature points by

means of the following three steps:

~F
ð‘þ1Þ
im ¼

X2Lð‘þ1Þ

j¼0

e�im/ð‘þ1Þ
j F

ð‘þ1Þ
ij ðjmj 6 Lð‘þ1ÞÞ

forward Fast Fourier Transform;

~F
ð‘Þ
i0m

¼
XLð‘þ1Þ

i¼0

Bm;‘

i0 i
~F

ð‘þ1Þ
im dense matrix—vector product;

F
ð‘Þ
i0j0

¼
XLð‘þ1Þ

m¼�Lð‘þ1Þ

eim/ð‘Þ
j0 ~F

ð‘Þ
i0m

backward Fast Fourier Transform;

ð35Þ

with

Bm;‘

i0 i ¼
XLð‘þ1Þ

p¼jmj
Qm

p ðcos h
ð‘þ1Þ
i ÞQm

p ðcos h
ð‘Þ
i0
Þ;

Qm
p ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ 1
4p

ðp�mÞ!
ðpþmÞ!

s
Pm
p ðuÞ

Likewise, the downward translations (30a) and (30b)
require inverse extrapolations from level-‘ quadrature points to

Table 1
Error and CPU time against the number of levels

�‘ (leaf level) kSd
ð�‘Þ
=2p Error/BEM CPU time/iter. (s)

3 1.32 1.1 � 10�5 367
4 0.66 4.7 � 10�4 134
5 0.33 3.7 � 10�3 104
6 0.17 5.1 � 10�2 200
7 0.083 1.7 � 10�1 380
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Fig. 8. Truncation error as a function of adjustable parameter C� for several values
of leaf-cell size dð�‘Þ .
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level-ð‘þ 1Þ points, which are based on a transposed version of the
extrapolation:

~F
ð‘Þ
i0m

¼
X2Lð‘Þ
j0¼0

e�im/ð‘Þ
j0 F

ð‘Þ
i0j0

ðjmj 6 Lð‘þ1ÞÞ

forward Fast Fourier Transform;

~F
ð‘þ1Þ
im ¼

XLð‘þ1Þ

i0¼0

Bm;‘

i0 i
~F

ð‘Þ
i0m

dense matrix—vector product;

F
ð‘þ1Þ
i0j0

¼
XLð‘þ1Þ

m¼�Lð‘þ1Þ

eim/ð‘þ1Þ
j ~F

ð‘þ1Þ
im backward Fast Fourier Transform;

ð36Þ

Other extrapolation methods have been proposed [8], some of
which being of lower computational complexity but at the cost
of further approximation. The above extrapolation method is exact,
and will be shown in numerical experiments (Section 5) to account
for only a modest fraction of the overall CPU time of an elastody-
namic FM-BEM analysis, and hence to be satisfactory.

4.5. Ordering of the transfer operations

In operations (29a) and (29b), the transfer functions GL need to
be evaluated only for vectors r0 linking the centers of two same-le-
vel cells Cy and Cx. Such vectors are integer multiples of the cell
size d : r0 ¼ ðnxnynzÞd. Moreover, at any given level, the transfers
are only computed for cells Cy in the interaction list of a given cell
Cx, i.e., the integers nx;ny;nz necessarily belong to the set
f�3 6 nx;ny;nz 6 3g n f�1 6 nx; ny;nz 6 1g. The maximum number
of distinct vectors r0 required for performing all operations (29a)
and (29b) for a given level is therefore 73 � 33 ¼ 316. Each transfer
matrix can thus be reused many times, especially at the lowest lev-
els. In order to take advantage of this remark, the transfer opera-
tions are first sorted according to the vector r0. Then, for each r0,
the transfer matrix is computed using the method of Section 4.3.
Moreover, the same transfer matrices are used for each GMRES
iteration. It is therefore possible to precompute and store on disk
each transfer matrix, prior to performing any GMRES iteration.

4.6. Matrix of near interactions

The only BEMmatrix in the FMM for which storage may be con-
sidered is the near-interaction influence matrix ½Knear�, such that
½Knear�fug ¼ fKugnear with reference to (20a), because ½Knear� is
sparse. The most common storage strategy for sparse matrices is
the Compressed Sparse Row (CSR) approach [46], based on three
linear arrays: the nonzero matrix entries (stored row-wise), the
column indices, and integer pointers to the beginning of each ma-
trix row in the first two arrays. Products of CSR-stored sparse
matrices with vectors are then computed row by row, which pre-
vents one to take advantage of optimized matrix-vector product
routines, e.g., those of the BLAS library.

A modification of this storage strategy takes advantage of the
structure of the computation of the near interactions, where a cell
can interact only with its neighbor cells. The idea is to store blocks
representing the interaction of a cell on its neighbor cells (Fig. 9)
and then to evaluate matrix–vector products blockwise (instead
of termwise). Each block is stored in full-matrix format. For exam-
ple, the largest model used in the numerical study of complexity of
Section 5.3, for which N ¼ 1;215;291, features 18,351 non-empty
leaf cells. The corresponding blockwise-sparse matrix of near inter-
actions is made of 260,203 blocks (i.e., a given leaf cell has on aver-
age about 14 non-empty adjacent cells, including itself, for this
example).

This storage strategy has two advantages. First, it uses local lists
of unknown DOFs for a given cell and its neighbors, instead of the
global list. Second, optimized BLAS routines can be used to com-
pute the product of each block of ½Knear� with the corresponding
part of the solution vector. Moreover, to reduce the number of
blockwise matrix–vector products, only one block is created for
each leaf cell Cx, with lines and columns corresponding to colloca-
tion nodes in Cx and interpolation nodes in all cells Cy 2 AðCxÞ,
respectively. The matrix entries for each such block are computed
by treating the set of elements belonging to all Cy 2 AðCxÞ as a sin-
gle (small) BEM mesh and using traditional BEM matrix set-up
methods.

4.7. Memory management

In the multi-level elastodynamic FM-BEM, multipole moments
(22a) and (22b) and local expansions (28a) and (28b) are computed
for each cell, each level and each quadrature point, and thus arise
in large numbers. It is essential to keep the storage of such quanti-
ties to a minimum. The memory needed for a given FM-BEM anal-
ysis is affected by the order in which certain tasks are performed.
To compute the local expansions LS

k;L
P at level ‘;RS

k;R
P are

needed at level ‘ andLS
k;L

P at level ð‘� 1Þ. One may therefore dis-
card the values of RS

k;R
P at level ð‘þ 1Þ (and reallocate the corre-

sponding memory) once RS
k;R

P are computed at level ‘. As
schematized in Fig. 10, performing the transfer at level ‘ immedi-
ately after the upward pass from level ð‘þ 1Þ to level ‘ allows toFig. 9. Near interactions matrix (blockwise-sparse storage).

Fig. 10. Non-optimal (left) and optimal (right) orderings of the various steps of the multi-level FMM (the numbered arrows indicate the sequential ordering of passes for each
case).
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restrict the storage to the multipole moments at levels ‘ and
ð‘þ 1Þ, and the local expansions at all levels. This ordering hence
reduces by about half the memory required for storing multipole
moments and local expansions.

Moreover, virtual memory is optimized for large problem sizes,
as follows. Multipole moments and local expansions are written on
disk (out-of-core). Then, for each step of the multi-level FMM, the
needed information is read in the appropriate file and stored back
in that file after updating. The maximum virtual memory cost is
therefore incurred by the transfer pass at level �‘, for which all le-
vel-�‘ multipole moments and local expansions must be saved in
virtual memory.

For even larger problem sizes, an improved version of this strat-
egy, where the ‘-level cells are split into Ngr groups, has been
implemented. The transfer pass is then effected as two nested
loops over the Ngr groups, with operations (including the reorder-
ing according to vectors r0 linking the centers of two same-level
cells, see Section 4.5) done only for cells belonging to the two cur-
rently active groups. As a result, the virtual memory required by a
transfer pass is divided by Ngr . This multi-group out-of-core pro-
cess is applied separately to each pass of the multi-level FMM. In
order to define groups of similar size at each level, the number of
groups is level- and problem-dependent.

4.8. Implementation of the elastodynamic FM-BEM: summary

The elastodynamic multi-level FM-BEM solver implemented in
the course of this work, whose features are those discussed in Sec-
tions 3 and 4, is summarized for convenience in Figs. 11 and 12.

5. Complexity of the elastodynamic FMM

In this section, the theoretical complexity of the elastodynamic
FMM, i.e., the CPU time spent for each GMRES iteration as a func-
tion of N, is studied for both the single- and multi-level versions
(Sections 5.1 and 5.2) and then compared to results from numerical
experiments (Section 5.3).

5.1. Theoretical evaluation, single-level FMM

Noting d P dmin the linear cell size, the number of non-empty
cells and the number of average DOFs per non-empty cell are
OðN=d2Þ and Oðd2Þ respectively; these estimates stem from the fact
that the geometrical support of the unknown BE DOFs is
two-dimensional. The truncation parameter LðdÞ given by (32) is
such that there is a positive constant H (which depends on dmin)
for which LðdÞ 6 Hd for any d P dmin. Therefore, one may

Fig. 11. Elastodynamic multi-level FM-BEM: schematic description of overall algorithm.
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conservatively consider that LðdÞ ¼ OðdÞ and, by virtue of (33), that
the number Q of quadrature points over S is Q ¼ Oðd2Þ. The main
steps of the single-level FMM entail the following computational
complexities:

(a) Evaluation of multipole moments (22a) and (22b) and local
expansions (26), for each quadrature point and each cell:
OðNd2Þ.

(b) Transfers (24a), (24b), (25a), (25b), for each quadrature
point and each pair of non-adjacent cells: Oðd2 � N=d2�
N=d2Þ ¼ OðN2=d2Þ.

(c) Near interactions (6), for each cell, by means of the product
of a Oðd2Þ � Oðd2Þmatrix with a Oðd2Þ vector: OðN=d2 � d4Þ ¼
OðNd2Þ.

Setting d ¼ OðNaÞ the optimal complexity is obtained by mini-
mizing the largest exponent in Nd2 ¼ N1þ2a and N2=d2 ¼ N2�2a.
Hence the optimal cell size in the single-level FMM is d ¼
OðN1=4Þ. As a result, the optimal complexity in the single-level
FMM in elastodynamics is of order OðN3=2Þ, and is achieved by
using OðN3=4Þ cells.

5.2. Theoretical evaluation, multi-level FMM

The leaf cell size dð�‘Þ is as small as possible, under the constraint
dð�‘þ1Þ

6 dmin
6 dð�‘Þ (dmin being a fixed fraction of S wavelength), as

discussed in Section 4.2. Assuming a constant number of DOFs
per wavelength, dð�‘Þ may be considered as independent of N in

the complexity analysis. The size dð0Þ of the largest cells is related
to dð�‘Þ by 2

�‘dð�‘Þ ¼ dð0Þ. Moreover, the fact that the BEM nodes are lo-
cated on a surface of characteristic diameter Oðdð0ÞÞ implies that
dð0Þ ¼ 2

�‘dð�‘Þ ¼ OðN1=2Þ. Hence, the total number of levels is:

‘ ¼ OðlogNÞ ð37Þ

and the number of leaf cells is OðNÞ. Moreover, since the DOFs are
supported on a surface, each non-empty level-‘ cell has on average
4 non-empty children cells, and therefore holds an average of
Nð‘Þ ¼ Oð4�‘NÞ DOFs. The numbers of non-empty cells and of chil-
dren at each level for the example of a spherical cavity with
N ¼ 1;215;291 DOFs, shown in Table 2, corroborate this estimate.
Lastly, one notes that the level-‘ truncation parameter and the
number of level-‘ quadrature points are Lð‘Þ¼Oðdð‘ÞÞ¼Oðdð0Þ�2�‘Þ¼
OðN1=2�2�‘Þ and Q ð‘Þ¼O

�
ðdð‘ÞÞ2

�
¼OðN�4�‘Þ.

Based on the foregoing remarks, the computational complexi-
ties associated with the main steps of the multi-level FMM are ob-
tained as:

Fig. 12. Elastodynamic multi-level FM-BEM: schematic description of generic FMM step.

Table 2
Average number of non-empty cells and children at each level

Level Number of non-empty cells Number of children

2 56 4.86
3 272 4.26
4 1160 4.07
5 4720 3.89
6 18,351 –
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(i) Multipole moments (22a), (22b) and local expansions (26),
evaluated only at level �‘ : OðNÞ.

(ii) Transfers (29a), (29b), performed for each level, each cell Cð‘Þ
x

and each cell Cð‘Þ
y 2 IðCð‘Þ

x Þ : Oð4‘ � Q ð‘ÞÞ ¼ OðNÞ per level, i.e.,
OðN logNÞ overall.

(iii) Upward and downward passes (28a), (28b), (30a), (30b), for
each level ‘, each cell and each quadrature point ŝð‘Þ : OðNÞ
per level, i.e., OðN logNÞ overall.

(iv) Direct and inverse extrapolations, for each level ‘ and each
cell: OðN3=2Þ.

Estimate (ii) relies on the fact that the interaction list of a given
cell contains at most 63 � 33 ¼ 189 cells, irrespective of the level
and the total number of cells. Estimate (iv) stems from the obser-
vation that each extrapolation (35) from level ð‘þ 1Þ to level ‘

(whose total number is Oð4‘Þ) requires Lð‘Þ þ 1 dense matrix–vector
products, each of size ðLð‘Þ þ 1Þ � ðLð‘þ1Þ þ 1Þ, i.e., Oð4‘ � 2�‘N1=2�
ð2�‘N1=2 � 2�ð‘þ1ÞN1=2ÞÞ ¼ OðN3=22�ð‘þ1ÞÞ operations. Summing these
extrapolations from level ‘ ¼ �‘ to ‘ ¼ 3, the obtained cumulative
complexity of all extrapolations is OðN3=2Þ as stated. A similar anal-
ysis holds for the cumulative effect of the inverse extrapolation
steps (36).

This analysis therefore predicts a theoretical complexity of
OðaN logN þ bN3=2Þ per iteration for the multi-level FMM.

5.3. Numerical study of complexity

The theoretical complexities just formulated are now compared
against recorded CPU times, on the pressurized spherical cavity
problem (Section 4). This comparison aims in particular at evaluat-
ing the respective importances of the OðaN logNÞ and OðbN3=2Þ con-
tributions to the overall complexity of the multi-level FMM.
Several frequencies are considered, with the size of the BEM mod-
els adjusted so as to maintain a mesh density of about 10 nodes per
S wavelength (Table 3). This complexity study involves problem
sizes of up to N � 1:2� 106, while the examples of [17] used
N 6 2:5� 104.

Multi-level FMM: Complexity of the main steps. With reference to
items (i)–(iv) of Section 5.2, the cumulative CPU times recorded
for the main steps of the multi-level FMM are compared to the
corresponding theoretical complexities for the evaluation of (i)
the multipole moments (Fig. 13a) and local expansions
(Fig. 13b), (ii) the transfers (Fig. 13c), and (iii–iv) the upward

Table 3
Numerical study of complexity: BEM model sizes N and non-dimensional frequencies used

N 30,726 122,769 217,983 389,232 449,835 530,709 635,349 771,912 955,608 1,215,291
kPa=p 3.05 6.14 8.31 10.9 11.66 12.68 13.91 15.2 17.4 19.24
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(a) Multipole moments
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(c) Transfer
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Fig. 13. Theoretical complexity and recorded CPU times for the main steps of the multi-level elastodynamic FMM.
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and downward passes including the (direct/inverse) extrapola-
tions (Fig. 13d). For the latter case, coefficients ða; bÞ allowing
a best fit of theoretical complexities of the form OðaN logNþ
bN3=2Þ to the CPU data are obtained via regression as ða; bÞ ¼
ð1:3� 10�7;9:8� 10�9Þ for the upward pass and ða; bÞ ¼ ð1:8�
10�6;8:2� 10�8Þ for the downward pass. These values, which
are of course code- and computer-dependent, suggest that the
importance of the OðN3=2Þ contribution to the upward and
downward passes becomes significant for N above Oð105Þ. In
Fig. 14 the computation time required by the upward and down-
ward passes and its estimation bN3=2 are compared to the other
steps of the algorithm. The results indicate that the OðN3=2Þ con-
tributions arising from the extrapolations are small compared to
the OðN logNÞ contributions for BEM model sizes N ¼ Oð106Þ or
less, for which the extrapolation method of Section 4.4 is there-
fore satisfactory. Using improved algorithms for extrapolation
such as those proposed in [8], of computational complexity
lower than OðN3=2Þ, would reduce the elastodynamic FMM com-
plexity to OðN logNÞ. They may prove essential for BEM models
involving several millions DOFs and more.
Overall complexity of the single-level andmulti-level FMM.Numer-
ical experiments, in the formof full BEMsolutions obtainedusing
the standard BEM, single-level FM-BEMandmulti-level FM-BEM
on BEM models of respective sizes up to Oð104Þ;Oð105Þ and
Oð106Þ, corroborate the previously discussed theoretical com-
plexities estimates for each approach, as seen in Fig. 15, where

the OðN3=2Þ contribution to the multi-level FMM has been disre-
garded in accordance with the previous discussion on its effect.

5.4. Discussion

The results of Sections 5.2 and 5.3 are consistent with corre-
sponding studies in [53,8] for electromagnetics, where particular
the OðN3=2Þ complexity of the direct and inverse extrapolations is
also pointed out. The OðN logNÞ overall complexity is also obtained
for the method stable at all frequencies proposed in [10]. In con-
trast, the elastodynamic FM-BEM of [17] uses a level-independent
value for the truncation parameter L. This variant avoids the need
for direct and inverse extrapolation but requires L ¼ OðkSdð0ÞÞ ¼
OðN1=2Þ by virtue of (32). Revisiting steps (i), (ii) and (iii) of Section
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Fig. 14. Comparison of the cost of the upward and downward passes to the other
steps of the algorithm.

1e+02 1e+03 1e+04 1e+05 1e+06

N

1e-02

1e+00

1e+02

1e+04

C
PU

/it
er

. (
s)

BEM
O(N

2
)

single-level FMM

O(N
3/2

)
multi-level FMM
O(N log

2
N)

1e+02 1e+03 1e+04 1e+05 1e+06

N

1e+00

1e+02

1e+04

1e+06

Si
ze

 o
f 

B
E

M
 m

at
ri

x 
(M

o)

BEM
O(N

2
)

single-level FMM

O(N
3/2

)
multi-level FMM
O(Nlog

2
N)

Fig. 15. Complexity of the standard BEM, single-level FMM and multi-level FMM (left: CPU time, right: memory).

Table 4
Pressurized spherical cavity: RMS solution error on the cavity and in the domain

kPa=p 0.1 0.50 1.00 2.00

#nodes=kS 80 16 8 4
RMS error, r ¼ a (cavity wall) 0.025 0.006 0.006 0.021
RMS error, a < r 6 3a (domain) 0.011 0.006 0.008 0.031

Table 5
Pressurized spherical cavity: influence of the number of nodes per S-wavelength on
the RMS solution error and the CPU time per iteration

# nodes per S-
wavelength

N RMS solution error on
cavity

CPU time per iter.
(s)

2.5 1926 2:0� 10�2 1.5
5 7686 4:6� 10�3 3.7
10 30,726 1:3� 10�3 14.2
20 122,886 4:0� 10�4 85.1

Fig. 16. Diffraction of an incident plane P wave by a spherical cavity: notation.
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5.2 with fixed values for L ¼ OðN1=2Þ and Q ¼ OðL2Þ ¼ OðNÞ, one
finds a OðN2Þ complexity for that approach, as remarked also in
[37]. In comparison, static FM-BEMs for static problems are known
to have OðNÞ complexity [37,30] since the truncation parameter in
the multipole expansion in that case depends neither on the level
nor on the problem size.

6. Numerical examples

First, additional numerical results for the example of a pressur-
ized spherical cavity, introduced in Section 4, are presented. Then,
the more complex example of the diffraction of an incident P plane
wave by a spherical cavity, for which an exact solution is also avail-
able, further demonstrates the good accuracy of the present FMM.
Finally, the usefulness of the proposed FMM formulation is illus-
trated on the scattering of a seismic plane P wave by an irregular

half-space model. For all results presented therein, the following
computational parameters were used: C� ¼ 7:5; dmin ¼ 0:3kS (un-
less indicated otherwise), and a convergence threshold defined
by kff �Kugk=kffgk 6 10�3 (using the notations of equation (9))
for GMRES.

6.1. Pressurized spherical cavity

The example configuration defined in Section 4 is again used.
First, numerically computed solutions are compared for four non-
dimensional frequencies to the corresponding exact solution (31).
The stopping criterion relative to cell subdivision proposed in Sec-
tion 4.2 led to four levels for the highest frequency considered
ðkPa=p ¼ 2Þ. Four levels were also used for the other three results
in order to ensure that a sufficient proportion of the computations
utilize multipole expansions (the subdivision-stopping criterion
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Fig. 17. Diffraction of an incident plane P wave by a spherical cavity: comparison of the numerical FMM and analytical solutions for normalized frequencies kPa=p ¼ 1;4 and
azimuths h ¼ 0;p=4;p=2;3p=4.

Table 6
Diffraction of an incident plane P wave by a spherical cavity: influence of leaf cell size on solution error

dmin h ¼ 0 h ¼ p=4 h ¼ p=2 h ¼ 3p=4

kPa=p ¼ 1 ðN ¼ 7686Þ 0:2kS 9:2� 10�3 2:6� 10�3 2:2� 10�2 8:6� 10�4

0:1kS 9:6� 10�3 8:6� 10�3 9:2� 10�3 4:9� 10�3

0:05kS 1:1� 10�2 2:3� 10�2 4:8� 10�2 2:1� 10�2

0:02kS 4:2� 10�2 3:1� 10�2 3:1� 10�1 8:5� 10�2

kPa=p ¼ 4 ðN ¼ 122;886Þ 0:3kS 1:4� 10�2 4:4� 10�3 2:3� 10�2 5:6� 10�3

0:2kS 1:4� 10�2 4:2� 10�3 2:0� 10�2 5:2� 10�3

0:1kS 1:7� 10�2 1:5� 10�2 4:6� 10�2 6:8� 10�3

0:05kS 1:4� 10�1 6:8� 10�2 2:6� 10�1 4:6� 10�2

0:02kS 5:8� 10�1 3:5� 10�1 6:0� 10�1 2:1� 10�1
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being hence disregarded for these cases). For each frequency, rela-
tive RMS errors for the radial displacement on the cavity wall and

over the radial interval a < r 6 3a are presented in Table 4. The
present FM-BEM is seen to be quite accurate, even in the low-fre-
quency case ðkPa=p ¼ 0:1Þ for which the accuracy of FMM expan-
sions of the form (10) is known to deteriorate [8], whereas the
standard BEM does not [7].

Next, the effect of the number of nodes per S-wavelength on
solution accuracy is examined. For that purpose, the cavity radius
a and angular frequencyx are kept constant (with kPa ¼ 3p), while
four BEMmeshes with increasing mesh densities are used. The cor-
responding numbers of nodes per S-wavelength are given in Table
5 (first column). The relative solution errors observed for these
meshes (Table 5, second column) indicate that a good solution
accuracy requires a minimum of 5 nodes per S-wavelength. The
corresponding observed CPU times per iteration (Table 5, third col-
umn) increase due to the combined effect of mesh refinement and
truncation parameter (32). The numerical results presented in the
remainder of this article have been obtained using meshes featur-
ing a minimum of 10 nodes per S-wavelength.

6.2. Diffraction of an incident plane P wave by a spherical cavity

The geometrical configuration and material parameters are as in
the previous example, but the cavity surface is now traction-free.
An incident plane P-wave propagates along the positive z-direction
(Fig. 16). Two frequencies are considered, defined by kPa=p ¼ 1 and
kPa=p ¼ 4, with respective problem sizes N ¼ 7686 and N ¼
122;886. The numerical results are compared to the analytical
solution given in [12] (which, incidentally, features a typographical
error corrected in [7]).

The numerical results are computed along radial straight lines
emanating from the cavity center in directions ðh ¼ 0;p=4;
p=2;3p=4Þ in the x� z plane. Fig. 17 shows the real part of the ra-
dial displacement against the normalized radial coordinate r=a. The
subdivision-stopping criterion employed for cases kPa=p ¼ 1 and
kPa=p ¼ 4 corresponds respectively to dmin ¼ 0:2kS and d min ¼
0:3kS. The numerical results obtained using the present FM-BEM
are seen to agree very well with the exact solution for the two fre-
quencies considered, even along the h ¼ p=2 direction correspond-
ing to grazing incidence. For the case kPa=p ¼ 4, a solution CPU
time of 44s per iteration (144 GMRES iterations, no precondition-
ing) is recorded. In Table 6, the influence of the choice of leaf cell
size (see Section 4.2) is further examined. Results obtained by
choosing dmin P 0:1kS are satisfactorily accurate. On the other

Fig. 18. Diffraction of an oblique incident P plane wave by a semi-ellipsoidal canyon: notation (top left and bottom); sample BEM mesh, with N ¼ 25;788 (top right).

0 1 2 3
s/a

0

1

2

3

4

di
sp

la
ce

m
en

t m
od

ul
us

|uy| (present FMM)

|uy| (Sanchez-Sesma)

|uy| (Reinoso et al.)

|uz| (present FMM)

|uz| (Sanchez-Sesma)

|uz| (Reinoso et al.)

Fig. 19. Diffraction of an incident P plane wave by a semi-spherical canyon: hori-
zontal and vertical computed displacement on line CDE (with points C, D, E defined
on Fig. 18) plotted against normalized arc-length coordinate s=a along CDE (nor-
malized frequency kPa=p ¼ 0:25). Comparison of present FMM solution to results
from Sánchez-Sesma [49] and Reinoso et al. [40].
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Fig. 20. Diffraction of an incident P plane wave by a semi-spherical canyon: hori-
zontal and vertical computed displacement on line CDE (with points C, D, E defined
on Fig. 18) plotted against normalized arc-length coordinate s=a along CDE (nor-
malized frequency kPa=p ¼ 5).
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hand, solution errors are seen to deteriorate markedly whenever
values dmin

< 0:1kS are used. These results corroborate the validity
of the recommended value dmin P 0:3kS proposed in Section 4.2 on
the basis of an essentially one-dimensional test problem. Some of
the values of dmin smaller than 0:3kS also lead to acceptable solu-
tion errors for this example. This however cannot be expected to
be always true, as the test of Section 4.2 indicates.

6.3. Diffraction of an incident P plane wave by a semi-ellipsoidal
canyon

This example is concerned with the diffraction by a semi-ellip-
soidal canyon of a plane P-wave of unit amplitude travelling in an
elastic homogeneous irregular half-space (Fig. 18). A right-handed
Cartesian frame ðx; y; zÞ is defined so that the elastic half-space
occupies the region fðx; y; zÞ j z P 0g. The surface of the canyon is

ellipsoidal, with semiaxes b; a; a respectively aligned along the
coordinate directions x; y; z. The plane wave travels along direction
sin h0ey � cos h0ez. The semi-ellipsoidal surface of the canyon and
the surrounding portion of free surface lying inside a disk of radius
D > a; b are discretized using boundary elements. Such a configura-
tion is representative of a ‘‘topographic site effect” in seismology
and has been the subject of numerous studies, see [28,29,57,13,7,
26,34,49,40] where diffraction of waves by surface heterogeneities
is considered.

Semi-spherical canyon and vertical incident P-wave. First, the dif-
fraction of a vertical incident plane P-wave by a semi-spherical
canyon is considered (i.e., b ¼ a, see Fig. 18), with m ¼ 0:25. Results
obtained by the present FM-BEM for the (low) normalized fre-
quency kPa ¼ 0:25p, by means of a BE mesh featuring
N ¼ 23;382 DOFs, are compared to corresponding results from
[49] (based on a semi-analytical approach) and [40] (obtained
using a standard elastodynamic BEM). In this case, the subdivi-
sion-stopping threshold used is dmin ¼ 0:15kS, resulting in a leaf le-
vel �‘ ¼ 3. Fig. 19 shows that the horizontal and vertical
displacements along line CDE (with points C, D, E defined in
Fig. 18) produced by the three approaches are in good agreement.
Note that the corresponding results in [49,40] are plotted against
the horizontal coordinate y, whereas the arc-length coordinate s
along ABC is used in Fig. 19. The same value D ¼ 3a of the trunca-
tion radius has been used for all three sets of results. The present
computation required 7 GMRES iterations and 6s of CPU time per
iteration.

Moreover, the FM-BEM allows to deal with non-dimensional
frequencies significantly higher than those considered in previous
studies. Fig. 20 shows the displacements along line ABC computed
for a nondimensional frequency kPa=p ¼ 5 using the present meth-
od. This time, the problem size N ¼ 287;946 is well beyond the
capabilities of standard BEM. This computation, performed with a
leaf level �‘ ¼ 6, required 86 GMRES iterations (without precondi-
tioning) and 163 s of CPU time per iteration. The displacement near
the canyon edge (i.e., y ¼ a and s ¼ pa=2, see Fig. 18) has strong
variations, as expected.

Table 7
Diffraction of a plane wave by a semi-spherical canyon: number of GMRES iterations for various truncation radii D and nondimensional frequencies kPa=p with, in parentheses,
the corresponding problem sizes N

kPa=p ¼ 0:25 kPa=p ¼ 0:5 kPa=p ¼ 0:75 kPa=p ¼ 1:5 kPa=p ¼ 5 kPa=p ¼ 10

D ¼ 3a 7 (23,382) 10 (23,382) 12 (23,382) 19 (23,382) 86 (287,946) > 280 (1,145,700)
D ¼ 5a 7 (61,875) 10 (61,875) 15 (61,875) 28 (61,875) 159 (774,180)
D ¼ 7a 8 (77,565) 13 (77,565) 17 (77,565) 43 (77,565)
D ¼ 20a 14 (98,844) 39 (98,844) 43 (98,844)
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Fig. 21. Diffraction of an oblique incident P plane wave by a semi-ellipsoidal
canyon: horizontal and vertical computed displacement on line ABCDE (with points
A, B, C D, E defined on Fig. 18) plotted against normalized arc-length coordinate s=a
along ABCDE (normalized frequency kSa=p ¼ 0:5). Comparison of present FMM
solution to results from Reinoso et al. [40].

Fig. 22. Diffraction of an oblique incident P plane wave by a semi-ellipsoidal canyon: horizontal (left) and vertical (right) computed displacement on canyon surface and
meshed part of free surface (normalized frequency kSa=p ¼ 2). The white ellipse depicts the canyon edge.
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The size of the problems that can be solved is now limited by
the number of iterations of the iterative solver. The number of iter-
ations required for convergence of the GMRES solver, reported in
Table 7 for various problem sizes N and (non-dimensional) fre-
quencies kPa=p, clearly depend on both N and kPa=p. Reducing
the iteration count requires a preconditioning strategy. This critical
component of the development of efficient FM-BEM algorithms re-
mains in the authors’ view a largely open issue and is not ad-
dressed here. In [17], a block diagonal matrix is used. Other
strategies for defining preconditioning matrices, found to be effec-
tive in the context of electromagnetic FM-BEMs, include perform-
ing an incomplete LU decomposition of ½K� [52] or using the SParse
Approximate Inverse [2]. A comparative performance study of
available preconditioning strategies remains to be done for the
elastodynamic FM-BEM.

Semi-ellipsoidal canyon and oblique incident P-wave. Finally, a
fully three-dimensional configuration is considered, namely the
scattering of an oblique incident P-wave by a semi-ellipsoidal can-
yon (with b ¼ 3a and h0 ¼ p=6, see Fig. 18), with m ¼ 1=3. This
problem has been previously studied in [13] by means of a wave
function expansion and, for low frequencies, in [40] using a stan-
dard BEM. Results obtained by the present FM-BEM for the (low)
normalized frequency kSa=p ¼ 0:5, by means of a BE mesh featur-
ing N ¼ 25;788 DOFs shown in Fig. 18, are compared to corre-
sponding numerical results from [40]. Fig. 21 shows that the
horizontal and vertical displacements produced by both ap-
proaches, plotted against the normalized arc-length coordinate
s=a along line ABCDE (with points A, B, C, D, E defined on
Fig. 18), are in good agreement. The present computation (featur-
ing a truncation radius D ¼ 6a and a leaf level �‘ ¼ 3) required 11
GMRES iterations and 9 s of CPU time per iteration. Finally, results
obtained using the present FM-BEM for a higher frequency defined
by kSa=p ¼ 2 are presented in terms of the y and z components of
the displacement field (Fig. 22). The problem size is N ¼ 353;232.
The computation, performed with a leaf level �‘ ¼ 5, required 32
GMRES iterations and 143 s of CPU time per iteration.

7. Conclusions

In this article, the Fast Multipole Method has been succesfully
extended to 3-D elastodynamics in the frequency domain. Com-
bined with the BEM formulation, it permits to reduce the compu-
tational burden, in both CPU time and memory requirements, for
the analysis of wave propagation (e. g. seismic), and allows to
run BEM models of size N ¼ Oð106Þ on an ordinary PC. Compari-
sons with analytical or previously published numerical results
show the efficiency and accuracy of the present elastodynamic
FM-BEM. Theoretical complexity estimates for both the single-le-
vel and multi-level formulations were derived and corroborated
by numerical experiments.

Applications of the present FM-BEM to realistic cases in seis-
mology are under way. Moreover, a natural extension of this work
consists in formulating multipole expansions of other fundamental
solutions, with the half-space elastodynamic fundamental solution
being currently investigated. Finally, improving the efficiency of
the elastodynamic FM-BEM also requires further research into re-
fined (direct/inverse) extrapolation techniques (for lowering the
OðN3=2Þ of this step) and a well-chosen preconditioning strategy
(for reducing the GMRES iteration count).
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