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a b s t r a c t

This paper presents the application of hierarchical matrices to boundary element methods for elasto-

dynamics based on Green's functions for a horizontally layered halfspace. These Green's functions are

computed by means of the direct stiffness method; their application avoids meshing of the free surface and

the layer interfaces. The effectiveness of the methodology is demonstrated through numerical examples,

indicating that a significant reduction of memory and CPU time can be achieved with respect to the

classical boundary element method. This allows increasing the problem size by one order of magnitude.

The proposed methodology therefore offers perspectives to study large scale problems involving three-

dimensional elastodynamic wave propagation in a layered halfspace, with possible applications in

seismology and dynamic soil–structure interaction.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element (BE) method is well-suited to model
three-dimensional (3D) elastodynamic wave propagation in a
stratified halfspace, as the radiation of waves towards infinity is
inherently taken into account. Moreover, a reduction of the spatial
problem dimension is obtained due to the fact that only the
boundaries of the domain have to be discretized. The BE method
is therefore often employed to model a variety of problems, such
as seismic site effects [1], railway induced vibrations [2] and
other applications involving dynamic soil–structure interaction [3].
Accounting for the soil stratification is important in many of these
applications, especially in presence of soft top layers. Although
it is common to use closed form full space Green's functions in the
BE formulation, numerically computed Green's functions for a
horizontally layered halfspace can be incorporated as well in order
to avoid meshing of the free surface and the layer interfaces, as
will be done throughout this paper.

The advantages of the BE method are partially negated, how-
ever, by the fact that dense, fully populated unsymmetric matrices
arise from the formulation, resulting in stringent memory
and CPU requirements. This hinders the applicability of the BE
method to large scale problems. Several fast BE methods have

been developed in the past decade to improve the computational
efficiency, including the fast multipole method (FMM) [4], the
panel clustering technique [5] and methods based on hierarchical
matrices [6]. In the FMM, the Green's functions are reformulated
using a multipole expansion, which has proven to be very efficient
if analytical expressions of the Green's functions are available [7].
Existing FMM formulations for (visco-)elastodynamics are there-
fore based on closed form full space fundamental solutions [8–10],
while innovative methods based on Green's functions for a
homogeneous halfspace are currently under development [11].
The latter approach has the main disadvantage, however, that a
considerable amount of boundary elements is required for the
discretization of the free surface and the layer interfaces, limiting
the actual problem size that can be treated. A complementary class
of fast BE methods is based on hierarchical matrices in combina-
tion with efficient algorithms such as adaptive cross approxima-
tion. These methods essentially are algebraic tools to approximate
the BE matrices [12,13], providing an alternative to tackle pro-
blems for which analytical expressions of the Green's functions are
not available.

Hierarchical matrices have been employed to solve elliptic
Helmholtz [14], Laplace [15] and elastostatic Lamé problems
[16,17]. Only a few authors, however, have considered the use
of hierarchical matrices for elastodynamics. Messner et al. [18]
present an accelerated time domain elastodynamic boundary
element formulation in which the time dependent problem
is transformed into a system of decoupled Laplace domain
problems using the convolution quadrature method. Full space
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elastodynamic fundamental solutions are employed in this appro-
ach, necessitating the discretization of the free surface to model
wave propagation in a halfspace. Benedetti et al. [19] consider
hierarchical matrices to solve elastodynamic crack problems using
a dual boundary element method formulated in the Laplace
domain, while Milazzo et al. [20] apply the concept to anisotropic
elastodynamics in the frequency domain.

The aim of this paper is to demonstrate that hierarchical
matrices are also suited to model 3D visco-elastodynamic wave
propagation in a stratified halfspace, incorporating Green's func-
tions for a horizontally layered halfspace. As the methodology
is formulated in the frequency domain, material damping is
accounted for through the correspondence principle [21] and
visco-elastodynamic problems can easily be treated. The text is
organized as follows. The basic concepts of the classical BE method
are summarized in Section 2, while the application of hierarchical
matrices is discussed in Section 3. The computation of the
Green's functions for a horizontally layered halfspace is also briefly
addressed. The numerical implementation of the proposed meth-
odology is validated in Section 4 and the computational perfor-
mance is assessed in terms of memory and CPU requirements. The
applicability of the novel approach is finally illustrated in Section 5
by means of a case study in which dynamic through-soil coupling
of closely spaced buildings under the influence of an incident
wavefield is investigated.

2. The boundary element method for elastodynamics based on

Green's functions for a horizontally layered halfspace

2.1. Boundary integral equation

Consider a domain ΩAR
3 with boundary Σ, characterized by a

unit outward normal vector n. The classical boundary integral
equation relates the displacement ûiðx′;ωÞ in a point x′ to
the elastodynamic state on the boundary Σ in the frequency
domain [22]:

κû iðx′;ωÞ ¼

Z

Σ
û
G
ij ðx′; x;ωÞt̂

n

j ðx;ωÞ� t̂
Gn

ij ðx′; x;ωÞû jðx;ωÞ
� �

dS ð1Þ

where the presence of body forces is neglected. A hat above a
variable denotes its representation in the frequency domain.

Green's displacements û
G
ij ðx′; x;ωÞ and tractions t̂

Gn

ij ðx′; x;ωÞ corre-

spond to the fundamental solutions at a receiver x in a direction ej
due to a unit time harmonic point load at a source x′ in a direction
ei. Throughout this paper, Green's functions for a homogeneous
full space as well as a horizontally layered halfspace will be
employed; the use of the latter avoids the discretization of the
free surface and the layer interfaces. No closed form expressions
are available for these Green's functions for layered soils, however,
which implies that they have to be computed numerically. This
will briefly be addressed in subsection 2.3.

In Eq. (1), κ ¼ 1 when the point x′ is located inside the domain
Ω and κ ¼ 0 if the point x′ is located outside the domain Ω. The
boundary integral equation (1) does not hold for points x′ located
on the boundary Σ due to the singular behaviour of the Green's
functions. A classical limiting procedure [23,24] results in Somi-
gliana's identity, involving the evaluation of Cauchy principal
value (CPV) integrals of the strongly singular Green's tractions. In
this paper, however, a regularized boundary integral equation is
employed, in which the evaluation of CPV integrals is avoided
[24–26]. The regularization procedure is based on the fact that
the singularity of the static and dynamic Green's functions at the
source point is similar. In case of an unbounded domain Ω, the
regularized boundary integral equation, which is valid for points x′

located on the boundary Σ, reads as follows [24]:

ûiðx′;ωÞ�

Z

Σ
û
G
ij ðx′; x;ωÞt̂

n

j ðx;ωÞ dSþ

Z

Σ
t̂
Gn

ij ðx′; x;ωÞûjðx;ωÞ
�

�tGnsij ðx′; xÞû jðx′;ωÞ
�
dS¼ 0 ð2Þ

where tGnsij denotes the static Green's tractions. The integral free
term û iðx′;ωÞ in Eq. (2) vanishes for a bounded domain Ω. The
boundary integrals in Eq. (2) are at most weakly singular and are
evaluated using classical Gaussian integration.

2.2. Boundary element discretization

The regularized boundary integral equation (2) is solved numeri-
cally by discretizing the boundary Σ with an appropriate number of
boundary elements, resulting in a boundary element system of
equations. For an unbounded domain Ω, the displacements û ðωÞ

and tractions t̂ ðωÞ at the collocation points are related as follows:

bTðωÞþI
h i

û ðωÞ ¼ bUðωÞt̂ ðωÞ ð3Þ

The system matrices bUðωÞ and bTðωÞ are fully populated unsym-
metric matrices, while I represents a unit matrix, corresponding to
the integral free term in the boundary integral equation. The latter
vanishes for a bounded domain. The computation of the system
matrices bUðωÞ and bTðωÞ requires integration of the Green's func-
tions û

G
ij ðx′; x;ωÞ and t̂

Gn

ij ðx′; x;ωÞ over the boundary Σ, respectively.
A quadratic amount of memory (OðN2

DOFÞ) is required to store
the system matrices bUðωÞ and bTðωÞ, where NDOF represents the
number of degrees of freedom in the BE model. Furthermore,
solving Eq. (3) by means of direct numerical solvers such as
LU-decomposition requires a cubic amount of numerical opera-
tions (OðN3

DOFÞ). The application of the classical boundary element
method is therefore presently limited to problems involving up to
Oð104

Þ degrees of freedom [12].

2.3. Green's functions for layered soils: the direct stiffness method

As mentioned in subsection 2.1, Green's functions û
G
ij ðx′; x;ωÞ

and t̂
Gn

ij ðx′; x;ωÞ for a horizontally layered halfspace are employed
in the boundary element formulation. These Green's functions are
computed with the direct stiffness method [27] using the MATLAB
toolbox EDT 2.2 [28]. The direct stiffness method provides element
stiffness matrices for homogeneous layers and a homogeneous
halfspace, formulated in the frequency–wavenumber domain. The
stiffness matrix of a horizontally layered halfspace is obtained
from the assembly of the element stiffness matrices. Solving the
corresponding set of equations provides the Green's functions in
the frequency–wavenumber domain. An inverse transformation
from the wavenumber to the spatial domain is subsequently
performed to obtain the Green's functions in the frequency-
spatial domain. This is obtained by a numerical transformation
algorithm, developed by Talman [29] and improved by Schevenels
et al. [28,30]. The calculation of these Green's functions is
computationally expensive, however, in particular when a large
number of source/receiver depths is considered.

The global system size in the direct stiffness method grows
for an increasing number of soil layers and the time required to
compute the Green's functions for a stratified halfspace increases
correspondingly [31]. In cases with a very large number of layers,
other numerical methods such as the propagator matrix method
[32,33] may provide a more efficient alternative; these Green's
functions can be incorporated straightforwardly in the boundary
element formulation. Nonetheless, the direct stiffness method
has some appealing advantages compared to the latter method,
such as the fact that stiffness matrices are symmetric, involve half
as many degrees of freedom as propagator matrices, and remain
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robust and stable for thick layers and/or high frequencies if
limiting expressions are implemented; propagator matrices, on
the other hand, contain terms of exponential growth that require
special consideration and treatment [34–36]. The direct stiffness
method is therefore employed throughout this paper; a more
elaborate comparison of the direct stiffness and the propagator
matrix method is given by Kausel [37].

3. Application of hierarchical matrices

The applicability of the classical boundary element method is
limited due to stringent memory and CPU requirements. The use
of hierarchical matrices (H�matrices) provides an elegant way to
treat fully populated matrices with almost linear complexity [38].
In this section, the basic principles of the boundary element
method based on H�matrices are briefly summarized. The reader
is referred to the literature [6,13,38,39] for a detailed description of
the methodology.

3.1. Hierarchical matrix assembly

A H�matrix is a data-sparse representation of a matrix,
consisting of a collection of block matrices of various sizes. The
construction of a H�matrix requires several steps. First, a hier-
archical cluster tree is constructed based on the boundary element
mesh. At the lowest level (i.e. level 0), the cluster consists of the
complete BE mesh. Each cluster is recursively partitioned into two
(more or less equal) sons. Several techniques are available in order
to obtain a suitable cluster tree (e.g. nested dissection [40,41],
cardinality balanced clustering [13], etc.). In the following, a
clustering strategy based on principal component analysis (PCA)
is employed [12]. In PCA, the eigenvectors of the covariance matrix
of a cluster are first calculated. The eigenvector corresponding
to the largest eigenvalue gives the main direction of the cluster
considered. A separation plane orthogonal to the aforementioned
eigenvector is drawn through the center of the cluster, dividing
it into two (more or less equal) sons. This procedure can be recursi-
vely applied to every son, until the clusters contain less or equal than a
prescribed number Nmin of elements (or nodes).

Second, admissible cluster pairs (X,Y) are identified, i.e. cluster
subdomains which satisfy a geometric admissibility criterion such
that the corresponding fundamental solutions are smooth [12,42]:

minfdiamðXÞ;diamðYÞgoη distðX;YÞ 0oηo1 ð4Þ

where diamðXÞ denotes the maximal extent of cluster X and
distðX;YÞ is the minimal distance between clusters X and Y. The
parameters Nmin and η affect the number of admissible blocks
and the quality of the approximation of the admissible pairs
[20,39]. A trade-off between accuracy and efficiency should be
made when selecting these parameters.

The identification of admissible and inadmissible cluster pairs

finally allows for the approximation of the BE matrices bTðωÞ and
bUðωÞ by their hierarchical representations bTHðωÞ and bUHðωÞ,
respectively. For an admissible cluster pair (X,Y), the fundamental
solutions are sufficiently smooth such that the corresponding

block BE matrices bT ðX;YÞðωÞAC
m�n and bUðX;YÞðωÞAC

m�n can be

approximated by low rank approximations. m and n denote the
number of degrees of freedom in clusters X and Y, respectively. For

example, the block matrix bT ðX;YÞðωÞ is approximated by
ebT ðX;YÞðωÞ:

bT ðX;YÞðωÞC
ebT ðX;YÞðωÞ ¼ bVTðX;YÞ

ðωÞ
� �

cWTðX;YÞ
ðωÞ

� �⋆
ð5Þ

with bVTðX;YÞ
ðωÞAC

m�k and cWTðX;YÞ
ðωÞAC

n�k and where ⋆ indicates

the complex conjugate. k is the rank of the representation.

For kðmþnÞomn,
ebT ðX;YÞðωÞ is called a low rank approximation of

bT ðX;YÞðωÞ, as the memory storage can be reduced from OðmnÞ to

OðkðmþnÞÞ by storing bVTðX;YÞ
ðωÞ and cWTðX;YÞ

ðωÞ instead of bT ðX;YÞðωÞ,

which is linear in m and n. The rank k is determined such that the

approximation
ebT ðX;YÞðωÞ is accurate up to a prescribed relative

accuracy ɛ:

‖bT ðX;YÞðωÞ�
ebT ðX;YÞðωÞ‖Frɛ‖bT ðX;YÞðωÞ‖F ð6Þ

where ‖◊‖F indicates the Frobenius norm of the matrix ◊. The
partially pivoted adaptive cross approximation (ACA) algorithm

[12,43] is employed to compute the matrices bVTðX;YÞ
ðωÞ and

cWTðX;YÞ
ðωÞ for the low rank approximation defined in Eq. (5). This

is an algebraic approximation technique; the algorithm adaptively
calculates some of the rows and columns of the original block
matrix to obtain an approximation from few of the original
matrix entries. The algorithm stops if the prescribed accuracy ɛ

is attained; the stopping criterion defined in Eq. (6) can however

not be employed, as the original matrix bT ðX;YÞðωÞ is never gener-

ated completely. An intrinsic stopping criterion based on the
variation of the Frobenius norm in consecutive approximations is
therefore used. The amount of numerical operations required in

the ACA algorithm is Oðk
2
ðmþnÞÞ [12]. One of the major advan-

tages of applying the ACA algorithm to obtain low rank approx-
imations of the BE block matrices corresponding to admissible
cluster pairs is that it is an algebraic approach, implying that there
is no need for (semi-)analytical expressions of Green's functions

û
G
ij ðx′; x;ωÞ and t̂

Gn

ij ðx′; x;ωÞ. The incorporation of Green's functions

for layered soils has not yet been attempted before, however.
The memory storage for these block BE matrices can be reduced
even further by means of appropriate recompression techniques
[38,44,45]. In this paper, a procedure based on the singular
value decomposition (SVD) of the low rank approximations is
employed [44]. Introducing the QR-decompositions of the matrices

bVTðX;YÞ
ðωÞ ¼ bQ V

bRV and cWTðX;YÞ
ðωÞ ¼ bQW

bRW in Eq. (5) gives

ebT ðX;YÞðωÞ ¼ bQ V
bRV

bR
⋆

W
bQ

⋆

W ð7Þ

These matrix decompositions are calculated using a Householder
transformation [46]. The SVD of the outer product of the two

upper triangular matrices bRV and bRW is subsequently computed:

bRV
bR
⋆

W ¼ bUR
bΣbV

⋆

R ð8Þ

with bΣAR
k�k a diagonal matrix containing the singular values

in descending order. Combining Eqs. (7) and (8) allows to write
ebT ðX;YÞðωÞ as

ebT ðX;YÞðωÞ ¼ bQ V
bUR

� �
bΣ bQW

bVR

� �⋆
ð9Þ

which can be identified as the SVD of
ebT ðX;YÞðωÞ, as the matrices

bQ V
bUR and bQW

bVR are both unitary [45]. A memory reduction is
then obtained by discarding the smallest singular values and
corresponding singular vectors in Eq. (9), hence reducing the
rank, while maintaining the desired approximation accuracy. This
recompression procedure is applied to every low rank approxi-
mation immediately after its assembly through ACA and only
requires a limited amount of additional numerical operations of

Oðk
2
ðmþnþkÞÞ [45].

For cluster pairs (X,Y) not satisfying the admissibility criterion (4),
the fundamental solutions show a singular behaviour which does
not allow constructing a low rank approximation of the corresponding
block BE matrices. These blocks are therefore computed exactly.
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3.2. Solving the H�BE equations

Following the procedure outlined above for every cluster pair
(X,Y) leads to an approximation of the BE matrices bTðωÞ and
bUðωÞ by their hierarchical representations bTHðωÞ and bUHðωÞ,
respectively, and the BE equation (3) can be replaced by

bTHðωÞþI
h i

û ðωÞ ¼ bUHðωÞt̂ ðωÞ ð10Þ

In order to solve Eq. (10), iterative Krylov subspace methods are
well suited. The matrix-vector multiplication forms the core of
iterative solvers and the complexity of this operation is only
OðNDOF log NDOFÞ for H�matrices [13]. In this paper, all equations
are therefore solved by means of the generalized minimal residual
method (GMRES) [47]. As will be illustrated in subsection 4.2, the
contribution of the time required for solving Eq. (10) to the total
computation time is negligible compared to the assembly time of
the H�matrices; no preconditioner is therefore incorporated in
the iterative solver.

4. Validation

The BE method based on H�matrices outlined in Section 3 has
been implemented in the MATLAB toolbox BEMFUN [48]. The core
of this toolbox is implemented in Cþþ using the MATLAB MEX
interface in order to achieve both a seamless integration with
MATLAB and a high numerical efficiency. In the following subsec-
tions, three examples are considered to validate the numerical
implementation and to demonstrate the effectiveness of the
methodology. The first example is included to validate the correct
implementation of H�matrix arithmetics and does not involve
Green's functions for a layered halfspace, while the second and the
third examples focus on the application of the novel method,
incorporating Green's functions of a layered and homogeneous
halfspace, respectively. All calculations have been performed on
Intels Xeons E5520 (2.26 GHz) CPUs.

4.1. 3D spherical cavity subjected to an internal pressure

A 3D spherical cavity with radius r0 ¼ 1 m in a full space loaded
by an internal pressure p̂ðωÞ ¼ 1 Pa=Hz is investigated in this sub-
section. The full space is characterized by a shear wave velocity
Cs ¼ 150 m=s, a dilatational wave velocity Cp ¼ 300 m=s and a density
ρ¼ 1800 kg=m3. No material damping is taken into account.

The unit sphere is discretized by means of 3072 eight node
quadrilateral boundary elements with element collocation. Both
the classical and hierarchical BE method are used to calculate the
response in a frequency range between 0 Hz and 100 Hz, where
analytical full space fundamental solutions [23,37] are employed.
For the latter method, a hierarchical cluster tree is constructed
based on the elements' center, as an element collocation scheme
is used. A minimum number of elements Nmin ¼ 24 is specified,
resulting in log 2ð3072=24Þ ¼ 7 cluster levels. Fig. 1 shows the
hierarchical block structure of the matrices of bTHðωÞ and bUHðωÞ

arising from this hierarchical clustering, where a value of 0.95 is
attributed to the parameter η in the admissibility criterion (4).
A threshold ɛ¼ 10�3 has been used in the ACA algorithm to obtain
low rank approximations of the blocks corresponding to admis-
sible cluster pairs, while a tolerance of 10�4 was specified in the
iterative GRMES solver.

Fig. 2 shows the real and imaginary part of the radial displace-
ment at the point fr¼ r0;θ¼ 0; z¼ 0 mg, calculated with the classical
and the hierarchical BE method, respectively. A perfect agreement
between the results of both methods can be observed. These results
are furthermore compared to the analytical solution for the radial

displacement in the full space, defined as [37]

ûrðr;ωÞ ¼
r30

4ρC2
s r

2

1þ iωp

1þ iω0� ω0
Cp

2Cs

� �2
exp � i

r

r0
�1

� �
ω0

� �
ð11Þ

where ωp ¼ωr=Cp and ω0 ¼ωr0=Cp. The results of both numerical
methods agree very well with the analytical solution (i.e. Eq. (11)
evaluated for r¼ r0) in the low frequency range, with some small
deviations above 40 Hz.

The integral representation theorem subsequently allows
for the computation of the radiated wavefield in the soil from
the displacements and tractions on the boundary. Fig. 3 shows
the real and imaginary parts of the radial displacement at the
point fr¼ 10 m;θ¼ 0; z¼ 0 mg. The solutions of the classical and
hierarchical BE method are clearly in good correspondence
and agree with the analytical solution (i.e. Eq. (11) evaluated
for r¼10 m).

The accuracy of the BE method based on H�matrices is investi-
gated in more detail in Fig. 4, showing the relative error
‖ûr;Hðr0;ωÞ� ûr;cðr0;ωÞ‖=‖ûr;cðr0;ωÞ‖. ûr;Hðr0;ωÞ and ûr;cðr0;ωÞ

represent the radial displacement on the boundary of the cavity,
calculated with the hierarchical and the classical BE method,
respectively. Although a threshold ɛ¼ 10�3 is prescribed in the
ACA algorithm for the approximation of the matrix blocks corre-
sponding to admissible cluster pairs, the overall computational
precision is Oð10�4

Þ, except at high frequencies.

4.2. Impedance of a massless rigid square surface foundation

on a horizontally layered halfspace

A massless rigid square surface foundation resting on a hor-
izontally layered halfspace is considered in this subsection. The
foundation side equals d¼5 m. The soil consists of two layers on a
halfspace, each with a thickness of 2 m. The shear wave velocity Cs

is equal to 150 m/s in the top layer, 250 m/s in the second layer,
and 300 m/s in the underlying halfspace. The Poisson's ratio ν is

Fig. 1. Hierarchical matrix decomposition corresponding to the BE model of a

spherical cavity. The green blocks corresponding to admissible cluster pairs are

approximated by means of ACA, while the red blocks corresponding to inadmissible

cluster pairs are computed exactly. (For interpretation of the references to colour in

this figure caption, the reader is referred to the web version of this paper.)
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1=3 everywhere, resulting in dilatational wave velocities Cp of
300 m/s, 500 m/s, and 600 m/s. Material damping ratios
βs ¼ βp ¼ 0:025 in both deviatoric and volumetric deformation
are attributed to the layers and the halfspace, while a uniform
density ρ¼ 1800 kg=m3 is considered throughout the medium.

The classical as well as the hierarchical BE method are
employed to calculate the vertical soil impedance K̂

s

zzðωÞ, defined
as

K̂
s

zzðωÞ ¼

Z

Σ
ψ zz � t̂

ns

s ðûscðψ zzÞÞ dS ð12Þ

where ψ zz indicates the vertical rigid body translation of the
foundation. The soil–structure interface Σ is discretized by means
of four node quadrilateral boundary elements with element
collocation. The tractions t̂

ns

s ðûscðψzzÞÞ due to imposed

displacements ψzz are obtained by solving Eqs. (3) and (10). As a
surface foundation is considered, the system matrices bTðωÞ and
bTHðωÞ are zero. The same values for the parameters η, Nmin, ɛ and
the tolerance in the GMRES solver as specified in subsection 4.1 are
used in the BE method based on H�matrices. As mentioned in
Section 2, Green's functions for a layered halfspace are incorporated
in both BE formulations [27,28], avoiding the necessity to discretize
the free surface and the layer interfaces.

The vertical soil impedance K̂
s

zzðωÞ can alternatively be written
in the following form [49]:

K̂
s

zzðωÞ ¼ Ks
zz0

�
kzzða0Þþ ia0czzða0Þ

�
ð13Þ

where a0 ¼ωB=Cs is a dimensionless frequency and B¼ d=2 a
characteristic length of the foundation. Ks

zz0 indicates the static
stiffness, while kzzða0Þ and czzða0Þ are dimensionless stiffness and
damping coefficients, respectively. A BE mesh consisting of 30�30
equally sized elements is used. Up to nine elements per shear
wavelength λs ¼ Cs=f ¼ 2πB=a0 are provided at the maximum
dimensionless frequency of 10 (determined by the shear wave
velocity of the top layer). Fig. 5 shows the coefficients kzzða0Þ and
czzða0Þ in a dimensionless frequency range between 0 and 10.
A perfect match between the classical and hierarchical BE methods
can be observed.

The influence of the threshold ɛ used in the ACA algorithm
on the accuracy and efficiency of the BE method based on

H�matrices is investigated in Figs. 6–8. The value of the threshold
ɛ is varied logarithmically between 10�1 and 10�4. It is clearly
illustrated in Fig. 6 that ɛ should be smaller than 10�2 in order to
obtain reliable results. The accuracy of the proposed methodo-
logy is also assessed in Fig. 7, which shows the relative error

‖K̂
s

zz;Hða0Þ� K̂
s

zz;cða0Þ‖=‖K̂
s

zz;cða0Þ‖, where K̂
s

zz;Hða0Þ and K̂
s

zz;cða0Þ

represent the vertical soil impedance computed with the

Fig. 2. (a) Real and (b) imaginary part of the radial displacement at fr ¼ r0; θ¼ 0; z¼ 0 mg due to a unit harmonic pressure applied in a spherical cavity with r0 ¼ 1 m. The

solution obtained with the hierarchical BE method (grey circles) is compared to the solution obtained with the classical BE method (black crosses) and the analytical solution

(solid line) [37].

Fig. 3. (a) Real and (b) imaginary part of the radial displacement at fr ¼ 10 m; θ¼ 0; z¼ 0 mg due to a unit harmonic pressure applied in a spherical cavity with r0 ¼ 1 m. The

solution obtained with the hierarchical BE method (grey circles) is compared to the solution obtained with the classical BE method (black crosses) and the analytical solution

(solid line) [37].

Fig. 4. Relative error ‖ûr;Hðr0 ;ωÞ� ûr;cðr0;ωÞ‖=‖ûr;cðr0 ;ωÞ‖ on the boundary of a

spherical cavity with r0 ¼ 1 m.

P. Coulier et al. / Engineering Analysis with Boundary Elements 37 (2013) 1745–1758 1749



hierarchical and the classical BE method, respectively. The relative
error considerably decreases for reduced values of ɛ. Furthermore,

a decrease of almost one order of magnitude is observed for

increasing dimensionless frequencies in case ɛ¼ 10�1 and

ɛ¼ 10�2, while the relative error is less dependent on the

frequency for the other cases. The RAM memory usage with

respect to the classical BE method is shown in Fig. 8. As expected,

the efficiency decreases for reduced values of ɛ, as well as for an

increasing dimensionless frequency a0. Such trends have also

been observed in hierarchical BE methods for anisotropic elasto-

dynamic problems [19,20]. Figs. 6–8 clearly indicate that the

overall computational precision and the RAM memory usage are

strongly determined by the value of the threshold ɛ. A trade-off

between accuracy and efficiency should hence be made when

applying the proposed methodology.

The soil response due to a unit vertical rigid body translation
ψzz of the foundation is shown in Fig. 9a and b at dimensionless
frequencies a0¼5 and a0¼10, respectively; the classical and hier-
archical BE approaches yield exactly the same result. A relatively
low frequency range is considered in this example, as the classical
BE method is not well suited to provide accurate reference results
at high frequencies within reasonable computation times. The BE
method based on H�matrices, however, is able to model high
frequent wave propagation in a layered halfspace. The radiated
wavefield at the surface of the soil is shown in Fig. 9c at a relatively
high dimensionless frequency a0¼50. A BE mesh consisting
of 100�100 equally sized elements is used for this calculation,
providing six elements per shear wavelength λs ¼ Cs=f ¼ 2πB=a0.
The propagation of wave fronts parallel to the foundation edges
can clearly be observed.

Fig. 6. (a) Dimensionless stiffness coefficient kzzða0Þ and (b) damping coefficient czzða0Þ of a massless rigid square surface foundation on a layered halfspace with a function of

the dimensionless frequency a0. The solution obtained with the hierarchical BE method (solid lines) for the threshold ɛ used in the ACA algorithm varying from 10�1 (light

grey line) to 10�4 (dark grey line) is compared to the solution obtained with the classical BE method (black crosses).

Fig. 7. Relative error ‖K̂
s

zz;Hða0Þ� K̂
s

zz;cða0Þ‖=‖K̂
s

zz;cða0Þ‖ with a function of the

dimensionless frequency a0, for the threshold ɛ used in the ACA algorithm varying

from 10�1 (light grey line) to 10�4 (dark grey line).

Fig. 8. Memory usage with respect to the classical BE method with a function

of the dimensionless frequency a0, for the threshold ɛ used in the ACA algorithm

varying from 10�1 (light grey line) to 10�4 (dark grey line).

Fig. 5. (a) Dimensionless stiffness coefficient kzzða0Þ and (b) damping coefficient czzða0Þ of a massless rigid square surface foundation on a layered halfspace with a function of

the dimensionless frequency a0. The solution obtained with the hierarchical BE method (grey line) is compared to the solution obtained with the classical BE method (black

crosses).
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In order to demonstrate the effectiveness of the BE method
based on H�matrices, the vertical soil impedance K̂

s

zzðωÞ is
reconsidered at a particular dimensionless frequency a0 ¼ π,

for an increasing number of boundary elements. As an element
collocation scheme is applied, the number of degrees of free-
dom equals three times the number of elements. The stiffness
and damping coefficients kzzða0 ¼ πÞ and czzða0 ¼ πÞ are shown as a
function of the number of degrees of freedom in Fig. 10. The results
of the hierarchical and classical BE method both converge to a
value K̂

s

zz ¼ Ks
zz0ð0:077þ ia00:416Þ N=m and are in good correspon-

dence with each other. The application of the classical BE method
is, however, limited to a model size of 43 200 degrees of freedom,
as the storage of the complex floating point entries of bUðωÞ in
double precision requires 2� N2

DOF � 8 bytes¼ 27:8 GB of RAM
memory, which is the limit of the hardware employed for the
calculations presented in this paper. Fig. 11a compares the mem-
ory required to store the BE matrices bUðωÞ and bUHðωÞ on a double
logarithmic plot, in which the slope of the curve corresponds to
the power relating the number of degrees of freedom and the
required memory. As expected, a quadratic trend OðN2

DOFÞ can
be observed for the classical BE method. For the hierarchical
BE method, however, the memory requirement is of the order
OðNDOF log

3
10 NDOFÞ, allowing for the extension of the model size

up to 399 675 degrees of freedom with 28 GB of RAM memory
available. Applying the recompression procedure outlined in

Fig. 9. Real part of the vertical displacement ûzðx;ωÞ due to an imposed unit vertical rigid body translation ψzz of a massless rigid square surface foundation on a layered

halfspace at a dimensionless frequency: (a) a0¼5, (b) a0¼10 and (c) a0¼50, obtained with the classical (left) and the hierarchical (right) BE method. The classical BE method

is not well suited to provide accurate reference results for (c) within reasonable computation times.

Fig. 10. Dimensionless stiffness coefficient kzzða0 ¼ πÞ (solid line) and damping coeffi-

cient czzða0 ¼ πÞ (dashed line) of a massless rigid square surface foundation on a layered

halfspace for an increasing number of degrees of freedom. The solution obtained with

the hierarchical BE method with (grey lines) and without (black dots) recompression is

compared to the solution obtained with the classical BE method (black crosses).
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subsection 3.1 even allows to consider up to 468 075 degrees of
freedom with the same amount of memory. In comparison,
2380 GB and 3265 GB of RAM would be required in order to
handle such models with the classical BE method. Fig. 11b shows
the CPU time required to calculate K̂

s

zzða0 ¼ πÞ, including both
the time to assemble the matrices bUðωÞ or bUHðωÞ and to solve
Eq. (3) or (10), respectively. For relatively small models (Oð103

Þ),
the classical BE method turns out to be a little faster, but the
hierarchical approach is considerably more efficient from a mod-
erate model size.

The contribution of the assembly and solution time to the total
CPU time is further investigated in Fig. 12 (in case no recompression
is applied). For the classical BE method, the assembly time shows a
quadratic trend. The solution time of the direct solver, however,
increases in a cubic way. The time required to solve Eq. (3) will
therefore dominate the total solution time of the classical BE
method for large models. Fig. 12 also shows that the contribution

of the solution time is negligible compared to the assembly time for
the hierarchical BE method. No effort has therefore been made to
incorporate a preconditioner in the iterative GMRES solver, such as
an H�LU preconditioner proposed in [50], as speeding up the
iterative solver will not result in a significant reduction of the total
CPU time required in the hierarchical BE method.

4.3. Diffraction of a vertically incident plane P-wave by

a semi-spherical cavity

In this subsection, the diffraction of a vertically incident plane
P-wave by a semi-spherical cavity with radius a, representing a
canyon, is investigated (Fig. 13). For validation purposes [51–54],
a homogeneous halfspace is considered, although the diffraction in
a layered halfspace can be easily treated as well. The halfspace has
a shear wave velocity Cs ¼ 150 m=s, a dilatational wave velocity
Cp ¼ 259:8 m=s, a density ρ¼ 1800 kg=m3 and a material damping
ratio βs ¼ βp ¼ 0:0025 in both deviatoric and volumetric deforma-
tions. The P-wave is characterized by a dimensionless frequency
f p ¼ kpa=π ¼ 2a=λp, where kp and λp denote the dilatational wave-
number and wavelength, respectively. A BE mesh consisting of
19 021 eight node quadrilateral boundary elements with nodal
collocation is used to discretize the canyon. The same values for
the parameters η, Nmin, ɛ and the tolerance in the GMRES solver
as specified in subsection 4.1 are used in the BE method based on
H�matrices.

A subdomain formulation [55,56] is employed, where the total
wavefield is decomposed into an incident and a scattered wave-
field. Figs. 14 and 15 show the modulus of the resulting horizontal
and vertical displacements ûxðx;ωÞ and ûzðx;ωÞ along the path
ABC (indicated on Fig. 13) as a function of the normalized
horizontal distance x=a, at dimensionless frequencies f p ¼ 1=4
and f p ¼ 1=2, respectively. The displacements would be vertical
with an amplitude of 2 m/Hz in the absence of the cavity. It is
clearly illustrated in these figures that a mode conversion takes
place due to the presence of the cavity, however, resulting in
significant horizontal displacements; the latter are zero at x=a¼ 0
due to the symmetry of the problem. The results obtained with the
BE method based on H�matrices are compared to the solution of
Sohrabi-Bidar et al. [51] and are in excellent agreement. Similar
results have been obtained, amongst others, by Sánchez-Sesma
[52], Reinoso et al. [53] and Chaillat et al. [54].

5. Application: through-soil coupling of closely

spaced structures

It has been illustrated in the previous sections that the use of
H�matrices in the BE method combined with Green's func-

Fig. 11. (a) RAM memory and (b) total CPU time required for an increasing number of degrees of freedomwith the classical (black lines) and the hierarchical BE method with

(solid grey lines) and without (dashed grey lines) recompression.

Fig. 12. CPU time required to assemble the matrices bUðωÞ or bUHðωÞ (solid lines) and

to solve Eq. (3) or (10) (dashed lines) with the classical (black) and the hierarchical

(grey) BE method.

Fig. 13. Semi-spherical canyon subjected to a vertically incident plane P-wave.
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tions for a horizontally layered halfspace results in a significant
reduction of memory and CPU requirements, allowing to perform
large scale BE computations. Furthermore, the method is also
suited to tackle visco-elastodynamic problems, as illustrated in
subsections 4.2 and 4.3. The proposed methodology hence offers
perspectives to model larger problems involving wave propagation
in a layered halfspace, with possible applications in seismology,
railway induced vibrations and dynamic soil–structure interaction.

One field of application is the numerical prediction of railway
induced vibrations in an urban environment. While the interaction
between the soil and multiple structures in dense urban areas
subjected to seismic excitation has already been examined in a
low frequency range (o10 Hz) [57–59], the numerical prediction
of railway induced vibrations involves much higher frequencies
up to 80 Hz [60]. As the number of boundary elements strongly
increases with frequency, classical BE models only allow to take
into account through-soil coupling of very few structures
and are unable to rigorously model wave propagation in dense

urban areas characterized by many closely spaced structures. It is
expected that structures close to the source of excitation will
shield the surrounding buildings from the incident waves. In this
section, the applicability of the proposed BE method based on
H�matrices is illustrated by means of a case study where the
dynamic interaction between multiple buildings is investigated.

5.1. Model description

The case study considers a set of 12 identical masonry buildings
resting on a layered halfspace (Fig. 16a). The same layered soil
profile as introduced in subsection 4.2 is used. Fig. 17 shows the
frequency–wavenumber spectrum of the vertical free field velocity
iω ~uzðCr ;ωÞ due to vertical harmonic excitation at the surface of
the layered halfspace, presented in terms of the phase velocity
Cr ¼ω=kr instead of the wavenumber kr. Peaks in the spectrum of
iω ~uzðCr ;ωÞ correspond to surface waves of the layered halfspace.
The Rayleigh wave dispersion curves are superimposed on Fig. 17;

Fig. 15. Modulus of the (a) horizontal and (b) vertical displacement ûxðx;ωÞ and ûzðx;ωÞ along the path ABC (indicated on Fig. 13) due to a vertically incident plane P-wave at

a dimensionless frequency f p ¼ 1=2. The solution obtained with the hierarchical BE method (black lines) is compared to the solution of Sohrabi-Bidar et al. [51] (grey crosses).

Fig. 16. (a) Finite element and (b) boundary element mesh of the set of 12 masonry buildings. (For interpretation of the references to colour in this figure caption, the reader

is referred to the web version of this paper.)

Fig. 14. Modulus of the (a) horizontal and (b) vertical displacement ûxðx;ωÞ and ûzðx;ωÞ along the path ABC (indicated in Fig. 13) due to a vertically incident plane P-wave at a

dimensionless frequency f p ¼ 1=4. The solution obtained with the hierarchical BE method (black lines) is compared to the solution of Sohrabi-Bidar et al. [51] (grey crosses).
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four modes with associated cut-on frequencies exist in the freq-
uency range considered. As the soil stiffness gradually increases
with depth, the spectrum of the vertical free field velocity is
dominated by the fundamental Rayleigh wave of the layered
halfspace.

Each masonry building has dimensions 12 m� 6 m� 8 m and
has two stories, each subdivided into four rooms [61]. The interior
and exterior walls have a thickness tw ¼ 0:10 m and consist of
clay brick masonry. The floors are concrete slabs with a thickness
tfl ¼ 0:20 m. All floors are simply supported, corresponding to
hinged joints at the slab edges. The structure is founded on a
concrete strip foundation with a width wf ¼ 0:60 m and a thick-
ness tf ¼ 0:20 m. The buildings are modelled with the finite
element method. The strip foundation, the walls and the floors
are modelled by means of shell elements, using isotropic proper-
ties for the foundation and the floors and orthotropic properties
for the masonry walls. The lintels above the door and the windows
are modelled by means of beam elements. A detailed description
of the single building model can be found in [61].

The 12 buildings are positioned in a symmetric layout with
respect to the x-axis, with a separation distance of 2 m in the
y-direction between the buildings. The front edges of four subsets
of three buildings are aligned at x¼6 m, x¼26 m, x¼40 m and
x¼60 m.

The numerical prediction of railway induced vibrations in the
built environment is a dynamic soil–structure interaction problem,
coupling the source (railway track) and the receivers (buildings)
through wave propagation in the soil [60,62]. In this case
study, however, only the soil–structure interaction problem at
the receiver side is addressed. The response of the buildings to an
incident wavefield generated by a unit vertical point load acting on
the surface of the layered halfspace at the origin of the coordinate

system is therefore investigated, instead of an incident wavefield
due to the passage of a train.

5.2. Coupled FE–BE model

A coupled FE–BE methodology in the frequency domain account-
ing for dynamic soil–structure interaction, based on a subdomain
formulation [55,56], is employed to calculate the response of
the buildings to the incident wavefield. If N structures are consi-
dered, a weak variational formulation of the equilibrium of struc-
ture j ðj¼ 1;…;NÞ results in the following set of coupled FE–BE
equations:

½Kjþ iωCj�ω2Mj�û j
ðωÞþ ∑

N

k ¼ 1

K̂
s

jkðωÞû
k
ðωÞ ¼ f̂

s

j
ðωÞ for j¼ 1…N

ð14Þ

where û
j
ðωÞ collects the nodal degrees of freedom of structure j,

while Kj, Cj and Mj are the stiffness, damping and mass matrix of
this structure, respectively. Rayleigh damping is assumed for the
damping matrix Cj [61]. The diagonal blocks (k¼ j) of the dynamic
soil stiffness matrix K̂

s

jkðωÞ represent dynamic soil–structure inter-
action for structure j, while the off-diagonal blocks (ka j) account
for through-soil coupling of structures j and k. The force vector
f̂
s

j
ðωÞ denotes the dynamic soil–structure interaction forces

at the soil–structure interface Σj due to the incident wavefield.
A Craig–Bampton substructuring technique is furthermore used
for every individual building, decomposing each structure j into its
foundation and superstructure.

The hierarchical BE method outlined in Section 3 is employed
to evaluate the dynamic soil stiffness matrices K̂

s

jkðωÞ and the force
vectors f̂

s

j
ðωÞ arising from the incident wavefield. The free surface

and the soil layers do not need to be discretized as Green's
functions of a layered halfspace are employed. The finite elements
of the foundations are coupled to a conforming boundary element
mesh for the surrounding soil (Fig. 16b) and a nodal collocation
scheme is used to facilitate the FE–BE coupling. As a nodal collo-
cation scheme is used, the hierarchical clustering is based on the
nodes rather than on the element centers. The same values for
the parameters η, Nmin, ɛ and the tolerance in the GMRES solver
as specified in subsection 4.1 are used in the BE method based on
H�matrices (where Nmin indicates in this case a minimum number
of nodes).

It is also emphasized that a full 3D calculation is performed,
without introducing additional assumptions concerning the lay-
out of the buildings (i.e. no periodicity considerations are taken
into account).

5.3. Numerical results

First, the response of the set of 12 buildings to an incident
wavefield generated by a unit vertical harmonic point load at
10 Hz is considered. At this frequency, only one Rayleigh wave

Fig. 18. Real part of the vertical soil displacement ûzðx;ωÞ at 10 Hz (a) without and (b) with accounting for the presence of the buildings.
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Fig. 17. Frequency–wavenumber spectrum of the vertical free field velocity

iω ~uzðCr ;ωÞ due to vertical harmonic excitation at the surface of the layered halfspace.

Superimposed are the Rayleigh wave dispersion curves of the first four modes.
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exists (Fig. 17); the Rayleigh wavelength in the soil equals λRðf Þ ¼
CRðf Þ=f ¼ 25:7 m. The incident wavefield, characterized by cylind-
rical wave fronts, is shown in Fig. 18a. Fig. 18b shows the wavefield
in the soil in case the presence of all 12 buildings is simultaneously
taken into account. As the Rayleigh wavelength is larger than the
dimensions of the strip foundations, the wavefield remains nearly
cylindrical.

The influence of through-soil coupling on the structural res-
ponse is illustrated in Fig. 19. Fig. 19a shows the vertical displace-

ment ûzðx;ωÞ of all buildings, in case the presence of the sur-
rounding buildings is neglected for each building. This is obtained
by solving Eq. (14) N times, in which the soil stiffness matrices

K̂
s

jkðωÞ are not considered for ka j. Fig. 19b illustrates the structural

response in case the presence of all 12 buildings is simultaneously
taken into account. Comparison of Fig. 19a and b indicates that the
structural response is nearly identical for the three buildings
closest to the source, while the response of the buildings further
away from the source turns out to be more affected by the presence
of the surrounding buildings.

The influence of through-soil coupling on the structural
response is investigated in more detail for one particular building,
which is indicated in red in Fig. 16. Fig. 20 compares the modulus
and phase of the vertical displacement ûzðx;ωÞ along the front
wall-foundation edge AB. The response is not symmetrical due to
the presence of doors and windows in the individual masonry
buildings. While the variation of the displacements along this
edge is similar in both cases, the amplitude is slightly reduced
if through-soil coupling is accounted for. This indicates that
the buildings closer to the source shield the considered building
from the incident wavefield. Furthermore, an almost constant
phase shift of 0.65 rad is introduced along the edge AB, as the
Rayleigh wave fronts are slightly shifted due to the presence of the
buildings. Similarly, Fig. 21 compares the modulus and phase of
the vertical displacement ûzðx;ωÞ along the side wall-foundation
edge AC. The variation of the displacements along this edge is
similar in both cases; a slight amplitude reduction and a phase
shift of 0.65 rad can be observed here as well.

Second, the response of the set of 12 buildings to an incident
wavefield generated by a unit vertical harmonic point load at a

Fig. 19. Real part of the vertical structural displacement ûzðx;ωÞ at 10 Hz (a) without and (b) with accounting for through-soil coupling of the surrounding buildings.

Fig. 20. (a) Modulus and (b) phase of the vertical displacement ûzðx;ωÞ along the front wall-foundation edge AB at 10 Hz without (grey lines) and with (black lines)

accounting for through-soil coupling of the surrounding buildings.

Fig. 21. (a) Modulus and (b) phase of the vertical displacement ûzðx;ωÞ along the side wall-foundation edge AC at 10 Hz without (grey lines) and with (black lines)

accounting for through-soil coupling of the surrounding buildings.
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frequency of 50 Hz is considered. Although three modes exist at
this frequency, the spectrum of the vertical free field velocity
is still dominated by the fundamental Rayleigh wave (Fig. 17);
the corresponding Rayleigh wavelength in the soil equals λRðf Þ ¼
CRðf Þ=f ¼ 2:9 m. The incident wavefield, characterized by cylind-
rical wave fronts, is shown in Fig. 22a. The dynamic interaction
between the buildings and the halfspace significantly changes the

wavefield (Fig. 22b), as the wavelength in the soil has the same
order of magnitude as the dimensions of the strip foundations.

The influence of through-soil coupling on the structural response
is illustrated in Fig. 23. Fig. 23a shows the vertical displacement
ûzðx;ωÞ of all buildings, in case the presence of the surrounding
buildings is neglected for each building, while Fig. 23b illustrates the
structural response in case the presence of all 12 buildings is

Fig. 22. Real part of the vertical soil displacement ûzðx;ωÞ at 50 Hz (a) without and (b) with accounting for the presence of the buildings.

Fig. 23. Real part of the vertical structural displacement ûzðx;ωÞ at 50 Hz (a) without and (b) with accounting for through-soil coupling of the surrounding buildings.

Fig. 24. (a) Modulus and (b) phase of the vertical displacement ûzðx;ωÞ along the front wall-foundation edge AB at 50 Hz without (grey lines) and with (black lines)

accounting for through-soil coupling of the surrounding buildings.

Fig. 25. (a) Modulus and (b) phase of the vertical displacement ûzðx;ωÞ along the side wall-foundation edge AC at 50 Hz without (grey lines) and with (black lines)

accounting for through-soil coupling of the surrounding buildings.
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simultaneously taken into account. As in Fig. 18, the response of the
three buildings closest to the source remains almost unaffected. The
response of the other buildings, however, is considerably altered by
the presence of the surrounding buildings.

The influence of through-soil coupling on the structural res-
ponse is investigated in more detail for the same building as
discussed before. Figs. 24 and 25 compare the modulus and
phase of the vertical displacement ûzðx;ωÞ along the front
wall-foundation edge AB and side wall-foundation edge AC, respec-
tively. It is clearly illustrated that the variation of vertical displace-
ments along both edges strongly differs when through-soil coupling
is accounted for.

This case study indicates that wave propagation in the soil
and the structural response are considerably affected in an urban
environment. At low frequencies, this predominantly results in a
shielding effect, reducing the amplitudes of the displacements,
without drastically altering the wavefield. At higher frequencies,
however, the wavelength in the soil becomes comparable to
the foundation dimensions and the dynamic interaction between
the buildings and the halfspace significantly changes the wave-
field. It should furthermore be emphasized that this case study
could not have been investigated as efficiently with existing BE
formulations.

6. Conclusions

In this paper, the application of hierarchical matrices to bound-
ary element methods based on Green's functions for a horizontally
layered halfspace has been presented. The Green's functions are
numerically computed by means of the direct stiffness method, as
no closed form analytical expressions are available. Incorporating
these Green's functions is advantageous, as there is no need to
discretize the free surface and the layer interfaces. The ACA
algorithm is used to compute low rank approximations of blocks
corresponding to admissible cluster pairs, while an iterative method
is employed to solve the resulting set of H�BE equations.

The numerical implementation of the novel methodology has
been validated and it has been demonstrated that although a
compromise between accuracy and efficiency should be made, it
is very efficient, very fast and sufficiently accurate. The method
enables the fast evaluation of much larger boundary element
models than before and is hence a valuable tool for researchers
and engineers dealing with problems involving elastodynamic
wave propagation in a stratified halfspace, providing the possibi-
lity to investigate complex problems in seismology and dynamic
soil–structure interaction. The applicability of the method has
clearly been illustrated by means of a case study that could not
have been solved as efficiently with existing BE formulations. The
dynamic interaction between closely spaced structures was inves-
tigated and it was illustrated that through-soil coupling of build-
ings can significantly alter the structural response, especially at
higher frequencies.

Acknowledgements

The first author is a doctoral fellow and the second author is a
postdoctoral fellow of the Research Foundation Flanders (FWO).
The financial support is gratefully acknowledged.

References

[1] Semblat J-F, Duval A, Dangla P. Seismic site effects in a deep alluvial basin:
numerical analysis by the boundary element method. Computers and Geo-
technics 2002;29(7):573–85.

[2] Lombaert G, Degrande G, Clouteau D. Numerical modelling of free field traffic
induced vibrations. Soil Dynamics and Earthquake Engineering 2000;19(7):
473–88.

[3] Beskos D, Krauthammer T, Vardoulakis I, editors. Dynamic soil–structure
interaction. A.A. Balkema; 1984.

[4] Rokhlin V. Rapid solution of integral equations of classical potential theory.
Journal of Computational Physics 1985;60:187–207.

[5] Hackbusch W, Nowak Z. On the fast matrix multiplication in the boundary
element method by panel clustering. Numerische Mathematik 1989;54:
463–91.

[6] Hackbusch W. A sparse matrix arithmetic based on H�matrices. Part I:
introduction to H�matrices. Computing 1999;62(2):89–108.

[7] Nishimura N. Fast multipole accelerated boundary integral equation methods.
Applied Mechanics Reviews 2002;22:175–81.

[8] Fujiwara H. The fast multipole method for solving integral equations of three-
dimensional topography and basin problems. Geophysical Journal Interna-
tional 2000;140(1):198–210.

[9] Chaillat S, Bonnet M, Semblat J-F. A new fast multi-domain BEM to model
seismic wave propagation and amplification in 3D geological structures.
Geophysical Journal International 2009;177:509–31.

[10] Grasso E, Chaillat S, Bonnet M, Semblat J-F. Application of the multi-level
time-harmonic fast multipole BEM to 3-D visco-elastodynamics. Engineering
Analysis with Boundary Elements 2012;36(5):744–58.

[11] Chaillat S, Bonnet M. Formulation and fast evaluation of the multipole
expansions of the elastic half-space fundamental solutions. In: 8th European
solid mechanics conference, Graz, Austria, July 2012.

[12] Rjasanow S, Steinbach O. The fast solution of boundary integral equations
(mathematical and analytical techniques with applications to engineering).
New York: Springer-Verlag; 2007.

[13] Bebendorf M. Hierarchical matrices: a means to efficiently solve elliptic
boundary value problems. 1st ed.Springer Publishing Company; 2008.

[14] Banjai L, Hackbusch W. Hierarchical matrix techniques for low- and high-freq-
uency Helmholtz problems. IMA Journal of Numerical Analysis 2008;28(1):
46–79.

[15] Ostrowski J, Andjelić Z, Bebendorf M, Cranganu-Cretu B, Smajić J. Fast BEM-
solution of Laplace problems with H�matrices and ACA. IEEE Transactions on
Magnetics 2006;42(4):627–30.

[16] Bebendorf M, Grzhibovskis R. Accelerating Galerkin BEM for linear elasticity
using adaptive cross approximation. Mathematical Methods in the Applied
Sciences 2006;29(14):1721–47.

[17] Maerten F. Adaptive cross-approximation applied to the solution of system of
equations and post-processing for 3D elastostatic problems using the boundary
element method. Engineering Analysis with Boundary Elements 2010;34(5):
483–491.

[18] Messner M, Schanz M. An accelerated symmetric time-domain boundary
element formulation for elasticity. Engineering Analysis with Boundary Ele-
ments 2010;34(11):944–55.

[19] Benedetti I, Aliabadi M. A fast hierarchical dual boundary element method for
three-dimensional elastodynamic crack problems. International Journal for
Numerical Methods in Engineering 2010;84(9):1038–67.

[20] Milazzo A, Benedetti I, Aliabadi M. Hierarchical fast BEM for anisotropic time-
harmonic 3-D elastodynamics. Computers and Structures 2012;96–97:9–24.

[21] Rizzo F, Shippy D. An application of the correspondence principle of linear
viscoelasticity theory. SIAM Journal on Applied Mathematics 1971;21(2):
321–30.

[22] Wheeler L, Sternberg E. Some theorems in classical elastodynamics. Archive
for Rational Mechanics and Analysis 1968;31:51–90.

[23] Domínguez J. Boundary elements in dynamics. Southampton, UK: Computa-
tional Mechanics Publications and Elsevier Applied Science; 1993.

[24] Bonnet M. Boundary integral equation methods for solids and fluids. Chiche-
ster, UK: John Wiley and Sons; 1995.

[25] Rizzo F, Shippy D, Rezayat M. A boundary integral equation method for
radiation and scattering. International Journal for Numerical Methods in
Engineering 1985;21:115–29.

[26] Aubry D, Clouteau D. A regularized boundary element method for stratified
media. In: Cohen G, Halpern L, Joly P, editors. Proceedings of the first interna-
tional conference on mathematical and numerical aspects of wave propagation
phenomena. Philadelphia, Strasbourg, France: SIAM; 1991. p. 660–8.

[27] Kausel E, Roësset J. Stiffness matrices for layered soils. Bulletin of the
Seismological Society of America 1981;71(6):1743–61.

[28] Schevenels M, François S, and Degrande G. EDT: An ElastoDynamics Toolbox
for MATLAB. Computers & Geosciences 2009;35(8):1752–4.

[29] Talman J. Numerical Fourier and Bessel transforms in logarithmic variables.
Journal of Computational Physics 1978;29(1):35–48.

[30] Schevenels M. The impact of uncertain dynamic soil characteristics on the
prediction of ground vibrations [Ph.D. thesis]. Department of Civil Engineer-
ing, KU Leuven; 2007.

[31] Pan E. Static Green's functions in multilayered half spaces. Applied Mathema-
tical Modelling 1997;21(8):509–21.

[32] Thomson W. Transmission of elastic waves through a stratified solid medium.
Journal of Applied Physics 1950;21:89–93.

[33] Haskell N. The dispersion of surface waves on multilayered media. Bulletin of
the Seismological Society of America 1953;73:17–43.

[34] Dunkin J. Computation of modal solutions in layered, elastic media at high
frequencies. Bulletin of the Seismological Society of America 1965;55(2):
335–58.

P. Coulier et al. / Engineering Analysis with Boundary Elements 37 (2013) 1745–1758 1757



[35] Luco J, Apsel R. On the Green's functions for a layered half-space. Part I.
Bulletin of the Seismological Society of America 1983;4:909–29.

[36] Apsel R, Luco J. On the Green's functions for a layered half-space. Part II.
Bulletin of the Seismological Society of America 1983;73(4):931–51.

[37] Kausel E. Fundamental solutions in elastodynamics: a compendium. New York:
Cambridge University Press; 2006.

[38] Grasedyck L, Hackbusch W. Construction and arithmetics of H�matrices.
Computing 2003;70:295–334.

[39] Börm S, Grasedyck L, Hackbusch W. Introduction to hierarchical matrices with
applications. Engineering Analysis with Boundary Elements 2003;27(5):405–22.

[40] George A. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis 1973;10:345–63.

[41] Grasedyck L, Kriemann R, Le Borne S. Domain decomposition based H�LU
preconditioning. Numerische Mathematik 2009;112(4):565–600.

[42] Bebendorf M. Approximation of boundary element matrices. Numerische
Mathematik 2000;86:565–89.

[43] Bebendorf M, Rjasanow S. Adaptive low-rank approximation of collocation
matrices. Computing 2003;70:1–24.

[44] Grasedyck L. Adaptive recompression of H�matrices for BEM. Computing
2005;74(3):205–23.

[45] Bebendorf M, Kunis S. Recompression techniques for adaptive cross approx-
imation. Journal of Integral Equations and Applications 2009;21(3):331–57.

[46] Golub G, Van Loan C. Matrix computations. 3rd ed.. Baltimore, MD: John
Hopkins University Press; 1996.

[47] Saad Y, Schultz M. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statis-
tical Computing 1986;7(3):856–69.

[48] François S, Schevenels M, Degrande G. BEMFUN: MATLAB toolbox for boundary
elements in elastodynamics. Version 2.1 Build 16, User's guide BWM-2009-26,
Department of Civil Engineering, KU Leuven, December 2009.

[49] Gazetas G. Analysis of machine foundation vibrations: state of the art. Soil
Dynamics and Earthquake Engineering 1983;2(1):2–42.

[50] Bebendorf M. Hierarchical LU decomposition based preconditioners for BEM.
Computing 2005;74:225–47.

[51] Sohrabi-Bidar A, Kamalian M, Jafari MK. Time-domain BEM for three-
dimensional site response analysis of topographic structures. International
Journal for Numerical Methods in Engineering 2009;79(12):1467–92.

[52] Sánchez-Sesma F. Diffraction of elastic waves by three-dimensional surface

irregularities. Bulletin of the Seismological Society of America 1983;73(6):

1621–36.

[53] Reinoso E, Wrobel L, Power H. Three-dimensional scattering of seismic waves

from topographical structures. Soil Dynamics and Earthquake Engineering

1997;16(1):41–61.

[54] Chaillat S, Bonnet M, Semblat J-F. A multi-level fast multipole BEM for 3-D

elastodynamics in the frequency domain. Computer Methods in Applied

Mechanics and Engineering 2008;197(49–50):4233–49.

[55] Aubry D, Clouteau D. A subdomain approach to dynamic soil-structure

interaction. In: Davidovici V, Clough R, editors. Recent advances in earthquake

engineering and structural dynamics, Ouest editions/AFPS, Nantes; 1992.

p. 251–72.

[56] Aubry D, Clouteau D, Bonnet G. Modelling of wave propagation due to fixed or

mobile dynamic sources. In: Chouw N, Schmid G, editors. Workshop wave '94,

wave propagation and reduction of vibrations. Germany: Ruhr Universität

Bochum; 1994. p. 109–21.

[57] Clouteau D, Aubry D. Modification of the ground motion in dense urban areas.

Journal of Computational Acoustics 2001;9(4):1659–75.

[58] Kham M, Semblat J-F, Bard P-Y, Dangla P. Seismic city-site interaction: main

governing phemomena through simplified numerical models. Bulletin of the

Seismological Society of America 2006;96(5):1934–51.

[59] Lombaert G, Clouteau D. The resonant multiple wave scattering in the seismic

response of a city. Waves in Random and Complex Media 2006;16(3):205–30.

[60] Lombaert G, Degrande G, Kogut J, François S. The experimental validation of a

numerical model for the prediction of railway induced vibrations. Journal of

Sound and Vibration 2006;297(3–5):512–35.

[61] François S, Karg C, Haegeman W, Degrande G. A numerical model for

foundation settlements due to deformation accumulation in granular soils

under repeated small amplitude dynamic loading. International Journal for

Numerical and Analytical Methods in Geomechanics 2010;34(3):273–96.

[62] Sheng X, Jones C, Thompson D. A theoretical model for ground vibration from

trains generated by vertical track irregularities. Journal of Sound and Vibration

2004;272(3–5):937–65.

P. Coulier et al. / Engineering Analysis with Boundary Elements 37 (2013) 1745–17581758


	Application of hierarchical matrices to boundary element methods for elastodynamics based on Green's functions for a...
	Introduction
	The boundary element method for elastodynamics based on Green's functions for a horizontally layered halfspace
	Boundary integral equation
	Boundary element discretization
	Green's functions for layered soils: the direct stiffness method

	Application of hierarchical matrices
	Hierarchical matrix assembly
	Solving the H-BE equations

	Validation
	3D spherical cavity subjected to an internal pressure
	Impedance of a massless rigid square surface foundation on a horizontally layered halfspace
	Diffraction of a vertically incident plane P-wave by a semi-spherical cavity

	Application: through-soil coupling of closely spaced structures
	Model description
	Coupled FE–BE model
	Numerical results

	Conclusions
	Acknowledgements
	References


