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Characterization of the accuracy of the Fast Multipole Method in
particle simulations
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SUMMARY

The Fast Multipole Method (FMM) is a fast summation algorithm capable of accelerating pairwise
interaction calculations, known as N-body problems, from an algorithmic complexity of O(N 2) to
O(N) for N particles. The algorithm has brought dramatic increase in the capability of particle
simulations in many application areas, such as electrostatics, particle formulations of fluid mechanics,
and others. Although the literature on the subject provides theoretical error bounds for the FMM
approximation, there are not many reports of the measured errors in a suite of computational
experiments. We have performed such an experimental investigation, and summarized the results
of about 1000 calculations using the FMM algorithm, to characterize the accuracy of the method in
relation with the different parameters available to the user. In addition to the more standard diagnostic
of the maximum error, we supply illustrations of the spatial distribution of the errors, offering visual
evidence of all the contributing factors to the overall approximation accuracy: multipole expansion,
local expansion, hierarchical spatial decomposition (interaction lists, local domain, far domain). This
presentation is a contribution to any researcher wishing to incorporate the FMM acceleration to their
application code, as it aids in understanding where accuracy is gained or compromised. Copyright (©
2008 John Wiley & Sons, Ltd.

KEY WORDS: fast multipole method; order-N algorithms; particle methods; vortex method;
hierarchical algorithms

1. INTRODUCTION

In particle simulations, often the dynamics results from the summation of all pair-wise forces
in the ensemble of particles. Such situations arise in astrophysics, molecular dynamics, plasma
physics, and certain formulations of fluid dynamics problems, for example. The total field
of interest (gravitational, electrostatic, etc.) at one evaluation point requires adding the
contribution of all source points or particles, and so if both evaluation points and particles are
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numbered at N, a total of N2 operations is needed. This fact was for a long time an impediment
to the wider use of particle simulations, as the computational effort becomes prohibitive for
large numbers of particles.

The above scenario changed dramatically with the introduction of tree-codes and the fast
multipole method (FMM), which appear in the late 1980s for accelerated evaluation of N-
body problems. Tree-codes [1, 5] are generally perceived to be easier to grasp and program,
and provide a complexity of O(N log N). The FMM was introduced as an algorithm for the
rapid evaluation of gravitational or Coulombic interactions [12] and promises a reduction in
computational complexity to O(N). It has, since its dissemination, been adapted for many
applications: for fast evaluation of boundary elements [11], for vortex sheet problems with
desingularized equations [13], for long-range electrostatics in DNA simulations [10], and many
others. The impact of the FMM has been undeniably huge, resulting in it being chosen as one
of the Top 10 Algorithms of the 20th Century [9)].

Despite the great volume of work using and adapting the FMM in many application areas,
there remains some lack of insight regarding how the algorithm can be efficiently used to
obtain an accurate representation of the field of interest. The error of the FMM approximation
is estimated by theoretical bounds, which as could be expected reveal a trade-off between
accuracy and efficiency of the computation. However, there is not much literature providing
measurements of the accuracy of the approximation, in practice. One may often find such
assertions in published works as “only the first three moments of the expansion were used”, or
something to that effect. But just as often there is no information provided about the actual
errors which are observed. Of course, it is not easy to provide such measures of observed error,
as this would require additional computations using the direct O(N?) method, for comparison
purposes. Nevertheless, it is important for users of the algorithm to know what to expect in
terms of accuracy and efficiency, depending on the choice of algorithm parameters.

We aim to contribute to this gap in understanding by presenting a methodical investigation
into the accuracy of the FMM, when the underlying ‘client’ application is the calculation of the
velocity field induced by N regularized particles of vorticity. This application is rather more
demanding than the Newtonian force calculation, because in the latter case the gravitational
interaction is dominated by the first moment —due to the fact that all mass is positive.
Therefore, keeping only the first three moments could easily give the desired accuracy. On the
other hand, as in Coulomb electrostatic calculations, the vortex particles can be both positive
and negative, and thus an acceptable accuracy may require that more terms in the expansion
be kept.

For the purposes of this study, a prototype code of the FMM computation of the velocity
induced by N vortex particles was implemented using the Python' language. The nice features
of Python —such as dynamic typing, extensive numerical libraries, and high programmer
productivity— helped us produce a piece of software which is easy to use and easy to
understand. We have recently used this Python code as a starting point for a parallel version of
the code which, in collaboration with members of the developer team, is being incorporated to
the PETSc library for scientific computing[2]. Preliminary results with the parallel code were
presented [8] in the latest Parallel CFD Conferencet. Full code verification and scalability

fhttp://wuw.python.org/
thttp://www.parcfd.org//
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studies are ongoing. Our final aim is to contribute to the community of particle simulations
with an open source FMM implementation which is parallel, portable and extensible. For the
time being, the Python code is being made available publicly and we welcome correspondence
from interested researchers®.

Using the Python FMM code, more than 1500 calculations were performed, varying the
numerical parameters: N, the number of particles, [, the number of levels in the tree, and p,
the truncation level of the multipole expansion. We looked not only at the maximum error
in the domain, which would be the conventional approach; we also present results showing
how the error varies in space, revealing some interesting features of the method. Through
this presentation of the results, we believe a clear characterization of the nature of the FMM
approximation is obtained.

The paper is organized as follows. The next section presents an outline of the vortex particle
method, for completeness. In §3, we offer an overview of the FMM, with some details of our
implementation. Following, in §4, we discuss the sources of errors in the FMM algorithm. And
finally, §5 reports the detailed experiments using the FMM for evaluation of the velocity of N
vortex particles; the behavior of the method will be illustrated for varying parameters, as well
as the impact on the efficiency of the calculation, for different problem sizes.

2. REVIEW OF THE VORTEX PARTICLE METHOD

For incompressible flow one has that V-u(x,t) = 0, and the two-dimensional vorticity transport
equation is expressed as,

ow
— +u-Vw=rvAw. 1
ot (1)
The vortex particle method proceeds by spatially discretizing the vorticity field onto particles
which have a radially symmetric distribution of vorticity, and thus the vorticity field is

effectively approximated by a radial basis function expansion as follows:

N
w(x, 1)~ we(x,1) = D Ti(t)Go, (x —x4(1)) - (2)
i=1

Here, the x; represent the particle positions, I'; are the circulation values assigned to each
vortex particle, and the core size is ;. The core sizes are usually uniform (o; = ), and the
characteristic distribution of vorticity (,,, commonly called the cut-off function, is frequently
a Gaussian distribution, such as:

—Ix?

o) = gz o () 0

The velocity field is obtained from the vorticity by means of the Biot-Savart law of vorticity
dynamics:

u(x,t) = /(V X G)(x — xw(x',t)dx" = /K(x —x"w(x, t)dx = (K xw)(x,1t)

Shttp://code.google.com/p/pyfmm/
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where K = V x G is the Biot-Savart kernel, with G the Green’s function for the Poisson
equation, and * representing convolution. For example, in 2D the Biot-Savart law is written
explicitly as,

-1 / (x —x') x W(XI’t)f{dx’.

u(x,t):ﬁ —

(4)

The vorticity transport is solved in this discretized form by convecting the particles with
the local fluid velocity, and accounting for viscous effects by changing the particle vorticity.
Hence, the unbounded vortex method is expressed by the following system of equations:

da);; =u(x;,t) = (K*w)(x;,t), Ccll—‘;} =vV3w. (5)

There are a variety of ways to account for the viscous effects represented by the second of
these equations, of which a discussion is offered in [4]. See also the book [7]. But the convection
of vorticity is always treated in the same way: by integration of the ordinary differential
equations for the particle trajectories. In this process, it is necessary at each step to calculate
the velocity at each particle location, using the Biot Savart law. Using a radially symmetric
distribution function, one can obtain an analytic result of the integral that appears in (4),
which results in an expression for the velocity at each point as a sum over all particles. For
the 2D Gaussian particle distribution, one has:

1 r?
K, (x) = W(—yaff) <1 - exp(—%g)> . (6)
where r? = 22 +y2. Thus, the formula for the discrete Biot-Savart law in two dimensions gives
the velocity as follows,

N
u,(x,t) = Y T; Ko (x — x;). (7)
j=1

As can be seen in Equation (7), calculating the velocity at one point takes N operations.
Thus, calculating the velocity at every point is an N-body problem.

The fact that the direct evaluation of the velocity field induced by N vortex particles is an
O(N?) calculation was for a long time an obstacle for wider acceptance of vortex methods. The
dissemination of the fast multipole method quickly provided an opportunity to make vortex
particle methods more efficient and perhaps even competitive with mainstream methods for
direct numerical simulation. Indeed, the vortex particle method has matured in the last, say,
15 years, and we now have demonstrations of highly competitive applications, such as for
example a recent calculation of aircraft trailing wakes involving a billion particles [6]. Such
results would be impossible without the FMM approximation of the Biot-Savart calculation.

3. IMPLEMENTATION OF THE FMM

3.1. Querview of the algorithm

The fast multipole method (FMM) is a fast summation algorithm typically used for accelerating
the computation of so-called N-body problems, that is, problems involving N bodies or
particles interacting with each other.
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Suppose that a function f can be defined to describe the influence of all the particles of
a system at any place; f is written as the sum of pairwise interactions with a set of source
particles, as follows:

N
fly) = ZCiK(y — ;). (8)

where ¢; are scalar values and z; represent the source particles. The assumptions when applying
the FMM are:

1. The evaluation of f(-) occurs at a large number of evaluation points {y; }. Typically, the
evaluation points include the source points.

2. Tt is common that the set of source points {x;} and the set of evaluation points {y;}
contain about the same number of members.

3. The kernel K that represents the pairwise interactions decays monotonically as it gets
further away from the origin, and should be smooth far from the origin; such kernel,
when evaluated far away from the source point, will enable us to compute the aggregate
effect of a cluster of source points instead of computing all pairwise interactions.

4. The kernel function K can be decoupled into terms that depend on the source points
and terms that depend on the evaluation points; this idea is clearly shown in equations
(10) and (11).

Under these conditions, in a system of N particles interacting with each other, the
algorithmic complexity of the direct calculation of Equation (8) at all evaluation points is
O(N?).

The fast multipole method is an order O(N) algorithm, and is based on the idea that the
influence of a cluster of particles can be approximated by an agglomerated quantity, when
such influence is evaluated far enough away from the cluster itself. The algorithm divides the
computational domain into a near-domain and a far-domain:

Near domain: contains all the particles that are near the evaluation point, usually a minor
fraction of all the N particles. The influence of the particles in the near-domain is
computed by directly evaluating the pair-wise particle interactions. The computational
cost of directly evaluating the near domain is not dominant as the near-domain is kept
small.

Far domain: contains all the particles that are far away from the evaluation point, which
ideally means most of the IV particles in the domain. The evaluation of the far domain
will be sped-up by evaluating the approximated influence of clusters of particles rather
than computing the interaction with every particle in the system; a sketch of this idea
is presented in Figure 1.

The key idea behind the FMM is that particle influences can be clustered and expressed in
two different representations: as Multipole Expansions (MEs) and as Local Expansions (LEs).
These allow us to efficiently evaluate the particles’ influence. The MEs and LEs are Taylor (or
other) series that converge in different subdomains of space. The center of the series for an
ME is the center of the cluster of source particles, and it only converges outside the cluster of
particles. In the case of an LE, the series is centered near an evaluation point and converges
locally. The exact location where a series is centered is important as we can add together series
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(a) A multipole expansion (ME) of a cluster of source particles is used to
efficiently evaluate the field at particles located far away from the evaluation
points.
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(b) A local expansion (LE) is used in conjunction with MEs; the LE allows
efficient evaluation of a set of MEs at a common evaluation cluster.

Figure 1. Illustration of how multipole expansions (MEs) and local expansions (LEs) are used to
efficiently evaluate particle interactions.

that: share the same center and overlap their convergence domains. In Figure 1, we illustrate
how the FMM uses these expansion.

As previously stated, the first step of the FMM is to decompose the domain space. This is
accomplished by means of a hierarchical data structure (usually a tree structure) that is used
to decompose the domain into clusters of different sizes. We can always make a flat diagram
representing the tree structure as in Figure 2, regardless of the dimension of the domain (in
two dimensions, four branches stem from each node). With the branches of the tree structure
representing different regions of the domain, combinations of nodes of the tree are used to cover
the domain. Thus the tree structure supplies the definitions of the near and far domains. Using
the nodes of the tree to cluster the particles, clusters are selected for the MEs representing the
far domain.

The next step is to build the MEs for each node of the tree; this is done recursively: the
first MEs are built at the deepest level of the tree, level [, and then efficiently translated to
the center of the parent cell. This is referred to as the upward sweep of the tree. Then, in the
downward sweep, the MEs are first translated into LEs for all the boxes in the interaction list.
At each level, the interaction list corresponds to the cells of the same level that are in the far
field for a given cell. Finally, the LEs of upper levels are added up to obtain the complete far
domain influence for each box at the leaf level of the tree. These ideas are better visualized
with an illustration, as provided in Figure 3.

The total field at each evaluation point is thus the sum of the contributions of the near and
far domain:

f(y) — fnear(y) + ffar(y)
= Z ci Ky — ;) + Z ci K(y — ;). (9)

T; near y xz; far from y
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Figure 2. Sketch of a one-dimensional domain (right), divided hierarchically using a binary tree (left),
to illustrate the meaning of levels in a tree and the idea of a final leaf holding a set of particles at
the deepest level. In this one-dimensional example, level 0 is the whole domain, which is split in two
halves at level 1, and so on up to level [. In two-dimensions, instead each domain is divided in four,
to obtain a quadtree, while in three-dimensions, domains are split in eight to obtain an oct-tree

Upward Sweep

Translate ME
to grand-parent

To sibilin&: ME to LE

To child:
~  LE to LE
AN

Translate ME

to parent (}

\ Create

Multipole Expansion, ME

Figure 3. Illustration of the upward sweep and the downward sweep of the tree. Upward sweep: the

multipole expansions (ME) are created at the deepest level, then translated upwards to the center

of the parent cells. Downward sweep: the MEs are then translated to a local expansion (LE) for the

siblings at all levels deeper than level 2, and then translated downward to children cells. Finally, the
LEs are created at the deepest levels.
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The first summation of (9) performs the computation of the function f using the direct
method over the particles inside the near field. The second summation of (9) is approximated
by means of the fast multipole method. In order to be able to use the FMM approximation, the
kernel function K must allow the decoupling of the influence of the source particles z; and the
evaluation point y. After truncating the infinite series expansion, the kernel is approximated
by:

p—1

K(y—z) = am () fm(y)- (10)

m=0

Using (10) in (8) and rewriting the equations, we obtain an expression which is referred to
as multipole expansion:

f(yj)zz<

m=0 \1¢

N
Ciam(ﬂ%)> Jm(yj)- (11)

The series expansion of the kernel in Eq. (10) might not exactly represent or approximate
K for arbitrary values of x and y, but we expect that for particles located in the far-field
domain the effect of K will be smooth, and be approximately decoupled due to the fact that
the source particles {z;} and the evaluation points {y;} are well separated. By truncating
the infinite series in Eq. (10), the number of terms left after the truncation procedure will
control the accuracy of the approximation. The terms that are dependent on the source
points can be computed a single time at cost O(N). Then for N evaluations of Eq. (11),
only O(pN) operations are performed instead of the original O(N?) operations needed for
directly computing the interactions with Eq. (8). So far, we have introduced a general idea of
how the FMM works, but much of the details of the final O(N) algorithm have been left out.
For more details of the algorithm, we cite [12].

4. SOURCES OF ERROR IN THE FMM AS USED IN THE VORTEX METHOD

Before presenting our numerical experiments, let us review the sources of error in the FMM
approximation, as it applies to our ‘client’ application, the vortex particle method. Our
implementation is based on (i) replacing the kernel in the far field to ease the mathematical
derivation of MEs, and (%) using Taylor series for the MEs (other choices of series are possible).
We identify two different sources of errors, which we will refer to as errors Type I and Type II.

4.1. Error Type I

The first type of error occurs from the approximation of the Biot-Savart kernel (6) for all far
field interactions by a singular kernel (as in [13]). Thus, the original kernel has been replaced
by one for which it is more simple to construct the Multipole Expansion. The following kernel
is used for the series expansions:

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1-6
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u(z) = ZFi K(z — 2z) (12)

K(z) = 1 ( v ) (13)

_27r|z|2 —u

z = u+jv, u,v € Rz € C.

So, instead of using the original kernel (6) in the whole domain, we use the kernel of Equation
(13) in the far field. This approximation can achieve machine precision if used far enough away
from the source, due to the rapid decay of the Gaussian. An approximation error is introduced
to the original velocity field, u(z), when neglecting the Gaussian influence in (6). An error
bound can be constructed for the approximate velocity field, u'(2):

—la?\ (&
u(2) = '(2)] < e ( o ) (Z n—) | (14)
=1

Here, a is the minimum distance between an evaluation point and any particle in the far
field. The parameter o corresponds to the particles’ characteristic size, and the values of I'; are
the circulation of the particles. The value of a, in practice, is given by the size of the smallest
box of the FMM tree; therefore, to keep error Type I as small as possible, at machine error in
fact, @ must chosen so that it is a given multiple of the particle characteristic sizes, o.

4.2. Error Type IT

This type of error is an unavoidable part of using Multipole Expansions. As explained in § 3,
an ME is an infinite series expansion, which exactly represents the kernel of interest, in our
case the kernel in Eq. (13). In practice, the infinite series needs to be truncated in order to be
used, as in Eq. (11), and by keeping only p terms of the infinite series we introduce a truncation
error. Due to the nature of the series expansion used here, many terms must be retained if
one wishes to accomplish high accuracy (say, machine precision). This will have an impact on
the efficiency of the method, as there is a considerable computational overhead at the time
of translating the expansions in both the upward and downward sweeps, when the number of
terms p is large. In our client application, we based our approximation in the following series

expansion:
1 o0 .
T E a™. (15)

m=0

We rewrite equation (13) in complex notation and using the series expansion (15) we obtain
an expression for the conjugate velocity, as follows:

* - al jrl m —m—1
[u(y)]* = Z*% (@i —2.)™ | (y — 24) : (16)

m=0 \i=1

Here, x; corresponds to the source points, y is the evaluation point, and x, corresponds to
the center of a cluster of particles approximated by a multipole expansion. It is important to
note that Equation (16) converges to Equation (13) only when |z — z.| < |y — 2./, due to a
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10 F. A. CRUZ, L. A. BARBA

restriction in the series expansion used, Equation (15). In practice, Equation (16) can only be
used if truncated; by keeping only p coefficients we introduce the truncation error as follows:

e’} N jF
> (Z— 27; (zi —x*)m> (y—a) ™.

m=p \i=1

(17)

Here, [u(y)]* is the original infinite series and [u(y)]}, is the same series but truncated after p
terms. Using Equation (17) as an starting point, we can build an error bound for the truncated

Equation (16):
fu(w)]* — ()] §A<1 b ) (18)

ly—z.[1-0
where,
N
I

A= — 19
;% (19)

r
b> . 20
= (20)

From Equation (18) it is important to note the parameter b, which is defined in (20) as
the ratio between the radius of the multipole expansion cluster, r, and the distance from the
cluster to the evaluation point. The effect of b on the error bound is that as the evaluation
point is closer to the cluster, the error should also increase in magnitude.

5. RESULTS OF NUMERICAL EXPERIMENTS

In the previous section, we discussed the expected sources of errors when accelerating the
particle interactions of our client application. In this section, we present a characterization
of the errors by means of different graphical representations of numerical experiments, and
discuss how the actual observed errors relate to our theoretical expectations.

In order to characterize the errors introduced by our implementation, described in the
beginning of §4, we present two different experimental setups, which were used in a combined
total of more than 1500 numerical experiments. For a number of illustrative computational
experiments, we present the results in the form of the maximum observed errors and the spatial
distribution of the errors, in order to reveal the relationship between the different errors and
the choice of algorithm parameters.

5.1. Experimental setups

In our numerical analysis we make use of two different experimental setups. For each
experimental setup we define the particle parameters (position, circulation, and core radius of
all particles) for which we study the effects of different choices of FMM parameters:

Level Number of levels in the hierarchical space decomposition, represented by the letter L.
Terms Number of terms of the Multipole Expansion that are kept, see Eq. (11), represented
by the letter p.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1-6
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Figure 4. One-dimensional profiles for the magnitudes of vorticity and velocity given by the Lamb-

Oseen vortex. In the Lamb-Oseen vortex, the vorticity is concentrated at the origin and rapidly decays

with distance, whereas the velocity is zero at the origin and its magnitude at first grows to then slowly
decays with the distance. Parameters used: I'o = 1, v = 0.0005 and ¢t = 4 in Eq. (21).

5.1.1. LO-setup: Lamb-Oseen experiment setup — The first experimental setup corresponds
to the use of the FMM in the evaluation of the velocity of the vortex particle representation
of a viscous flow problem. The particles of the system are positioned on a lattice distribution
in a square domain of a given size. The separation between particles is given by a constant
spacing parameter h, obtained from the relation g = 0.8 representing the overlap of the
smooth vortex particles (more details about the significance of this parameter can be found
in [4]). The parameter o corresponds to the the core sizes of the particles, it is uniform for
all the particles and set to o = 0.02. The circulation of the particles, I';, is obtained from the
Lamb-Oseen vortex distribution as I'; = h2w(r;,t — 02 /2v), with 7; representing the particle
location, and w evaluated with Eq. (21). The justification of this shifted-time initialization for
the Lamb-Oseen vortex distribution can be found in Ref. [3]. The time parameter ¢ is fixed
at t = 4 and v = 0.0005 is the constant viscosity value. For this case, the evaluation points
correspond to the same source points and interactions are computed against all particles in
the system (without self interaction). In practice we are solving an N-body problem.

The analytical solution of the velocity field of the Lamb-Oseen vortex is used to compare
the results obtained using the Biot-Savart velocity, Equation (7) accelerated via the FMM.
Also, the direct evaluation, obtained from summing all N? particle interactions, is used to
cross check the results.

The analytical solution for the vorticity field of the Lamb-Oseen vortex is:

FO —7“2
] 21
dmvt P ( 4ut ) 1)
where 2 = 22 + y2. Figure 4 shows the spatial distribution of vorticity given by the Lamb

Oseen vortex and the magnitude of the velocity field that it creates, with the parameters we
have chosen, v = 0.0005 and ¢t = 4.

w(r,t) =

2
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12 F. A. CRUZ, L. A. BARBA

5.1.2. SS-setup: Single source experiment setup — The second experiment corresponds to
a setup without physical relevance, in which we have a single source particle with nonzero
parameters, I' = 1 and o = 0.02, that is located at the center of a square shaped domain.
The influence of the particle can be directly evaluated at any location of the domain by means
of Eq. (7). A set of evaluation points were located on a lattice distribution across the square
domain. For this experimental setup, we are interested in comparing the results obtained from
the direct solution of the system against the results obtained from the FMM implementation.

5.2. Experimental Results

To start, we present the results obtained when using the Lamb-Oseen vortex as the problem
set up. The first set of graphs, Figures 5 and 6, corresponds to the maximum measured error of
the FMM approximation, for different algorithm parameters and problem sizes. The FMM is
used to compute the velocity at all IV particles of the system and the result is then compared
against the analytical solution of the problem and normalized by the maximum velocity of the
system. Each datapoint on the plots corresponds to a single experiment run for a given set
of parameters. On these plots we can see the behavior of the measured error for the choice of
level and truncation number in the algorithm. The curves in the plots represent the change of
the measured error at a fixed FMM level (L) when varying the truncation number (p).

It is worth noting that as the separation between the particles is fixed (parameter h from
§5.1.1), in order to introduce more particles into the calculation we increased the size of the
problem domain. The domain size affects the space partitioning and hierarchical structure of
the FMM. Bigger domains require that the boxes of the quadtree be bigger in order to cover
the domain with a fixed number of levels, L. From the point of view of an evaluation point, a
bigger domain implies that the near domain of a particle covers more space, and that the far
field is located further away from the evaluation point.

A second set of plots, in Figures 7, 8, 9, and 10, characterizes the spatial structure of the error
of the FMM approximation for a Lamb-Oseen problem setup with 11449 particles. Each plot
corresponds to a single experiment with fixed parameters: level of refinement L and truncation
number p. The magnitude of the error obtained when evaluating the velocity for every particle
is represented by the color bar in log 10. The plots of the spatial distribution of the error reveal
the spatial structure of the approximations and the close relationship of the error with the data
structure used in the algorithm. On the plots we can see the error structure that depends on
the approximation of the far field and the one that depends on the number on terms retained
for the Multipole Expansion, p (errors Type I and Type II).

To focus on the change of the error of approximating the kernel with its singular version
(error Type I) as the distance to the far field increases, we compare the Lamb-Oseen setup in
three experiments with the same parameters for level of refinement (L) and truncation number
(p) but different problem sizes: 3969, 7744, and 19044 particles. Using the setup described
before, Figure 11 presents more clearly the effects of the approximation of the far field using
the singular kernel; as the the size of the domain increases the distance to the far field also
grows, decreasing the effect of the kernel substitution.

Figures 12, 13, 14 show the change of the spatial distribution of the error incurred by the
FMM for a problem with a single source particle. On each figure, we compare the distribution
of the error when more terms of the multipole expansion are kept for a fixed level, where
each plot presents a single experiment for a fixed set of parameters (level and truncation
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Figure 5. Maximum measured error of the FMM calculation of the velocity, with respect to the
analytical value at every evaluation point. Each marker represents one full evaluation of the FMM
velocity, with a given choice of level L and truncation p on the abscissa.
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Figure 6. Maximum measured error of the FMM calculation, with respect to the analytical value of
the velocity at every evaluation point. Each marker represents one full evaluation of the FMM velocity,
with a given choice of level L and truncation p on the abscissa.
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Figure 7. Evolution of the spatial distribution of the error made by the FMM when compared against
the analytical solution of the test problem Lamb Oseen with problem size 11449, FMM hierarchy up
to level 2 and varying the number p of Multipole Coefficients retained.
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Figure 8. Evolution of the spatial distribution of the error made by the FMM when compared against
the analytical solution of the test problem Lamb Oseen with problem size 11449, FMM hierarchy up
to level 3 and varying the number p of Multipole Coefficients retained.
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Figure 9. Evolution of the spatial distribution of the error made by the FMM when compared against
the analytical solution of the test problem Lamb Oseen with problem size 11449, FMM hierarchy up
to level 4 and varying the number p of Multipole Coefficients retained.
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Figure 10. Evolution of the spatial distribution of the error made by the FMM when compared against
the analytical solution of the test problem Lamb Oseen with problem size 11449, FMM hierarchy up
to level 5 and varying the number p of Multipole Coefficients retained.
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Figure 11. Evolution of the distribution of the error when the distance of the far domain approximation

increases at a given level L and truncation point p. Columns show experiments for problem sizes

N = (3969, 7744,19044) from left to right. First row, has parameters | = 4 and p = 13. Second row,
has parameters [ = 4 and p = 19.

point). Figures 12, 13, 14 present the experiments for 8836 evaluation points for levels 3, 4
and 5 respectively. Figure 15 shows the evolution of the distribution of the error when the
refinement increases for a problem of fixed size.

A different view of the distribution of the error is presented in Figure 16, corresponding to a
set of plots based on a LO-setup with 19044 particles for levels 2, 3,4, and 5. Each plot shows
the measured error at each particle versus the index of the particle. It can be seen how, at
level L = 5, error Type I first appears, above main band representing the FMM errors.

Finally, we present two plots where we compare the bounds for error Type I, §4.1, and
error Type II, §4.2, against experimental setups. Figure 17 corresponds to errors Type I in
an experiment based on SS-setup 5.1.2. The plot shows the maximum measured error when
varying the minimum distances to far field (as explained in §4.1). Figure 18 corresponds to
errors Type II based on the LO-setup with 11449 particles. The plot compares the maximum
measured error on a fixed experiment, while varying the parameter p of the FMM for a fixed
parameter L = 4.

5.8. Discussion of results

We structure the discussion of the results as follows: first we discuss the relationship between
the spatial decomposition and the distribution of the measured errors, then we discuss the
effects of the sources of errors by type.

5.83.1. Discussion of the spatial distribution of the error — On the figures that show the
spatial distribution of the error (Figures 7, 8, 9, 10, 8, 9, and 10), at first glance, the errors seems
to take a box-shaped distribution. The observed shapes are consequence of the underlying
clustering chosen at the space decomposition stage. The figures of the spatial distribution of
the error show that the field reconstructed by the FMM is not a continuous one.
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Figure 12. Evolution of the spatial distribution of the error made by the FMM for a problem with a
single particle as a source and 8836 evaluation points distributed in a lattice, FMM hierarchy up to
level 3 and varying the number p of Multipole Coefficients retained.
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Figure 13. Evolution of the spatial distribution of the error made by the FMM for a problem with a
single particle as a source and 8836 evaluation points distributed in a lattice, FMM hierarchy up to

level 4 and varying the number p of Multipole Coefficients retained.
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Figure 14. Evolution of the spatial distribution of the error made by the FMM for a problem with a
single particle as a source and 8836 evaluation points distributed in a lattice, FMM hierarchy up to
level 5 and varying the number p of Multipole Coefficients retained.
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Figure 15. Evolution of the distribution of the error when the refinement increases for a problem of

fixed size. In the Image is possible to see the evolution of the error as we vary the number of levels

used by the FMM, columns from left to right show levels 3, 4 and 5 respectively. Row one and two
compares the error against the FMM truncation numbers 13 and 19 respectively.

The accuracy of the field reconstructed by the FMM depends on the spatial decomposition
and the particle distribution. Hence, how the near field and far field are constructed have an
important role in the accuracy of the FMM. As explained in §3, the near and far fields vary in
space, and can be significantly different for two evaluation points that are infinitesimally close
to each other (when they fall in two adjacent boxes). Therefore, the spatial error distribution
has the underlying geometry of the space decomposition.

As an example, let us use Figure 8; this figure is composed by a set of images that show
the distribution of the error in the velocity field. Each image corresponds to an experiment
based on the Lamb Oseen experimental setup of §5.1.1, where only the number of terms used
by the FMM is varied from p = 5 to p = 31. In all the experiments presented in Figure 8, the
initialization of all 11449 particles is the same, and the FMM level parameter is fixed at L = 3.
In the spatial distribution of the error for the experiment with p = 5 (for small values of p the
FMM approximation of the far field is of lower accuracy), there are two distinguishable areas of
error, an inner area with errors in the order of 107!2, and an outer area with errors in the order
of 107, The reason for the high contrast in the error observed between these two areas lies
in the how the space is decomposed, and how the interactions are computed by the FMM for
each of the evaluation points in the system. On the one hand, for the evaluation points located
in the low error area, the space decomposition results in a near field —where all calculations
are computed directly and without approximation— containing the source particles with the
largest circulation (as presented in §2), and thus the inner area obtains a low error. On the
other hand, for the evaluation points located in the high error area, all the source particles
with the largest circulations are located in the far field. Therefore, almost all the contribution
to the velocity comes from the source particles located in the far field and is approximated by
the FMM, which for low values of p, as in this case with p = 5, achieves low accuracy. Finally,
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Figure 16. Measured error for all the particles in a experiment based on LOsetup with 19044 particles,
fixed p = 31. Each image shows the error for different parameter level, with L = [2, 3,4, 5].

for different values of p (Figure 8), the accuracy of the approximation improves as the number
of terms p increases, as expected.

5.8.2. Discussion of error Type I — As explained in §4.1, this type of error results from
neglecting the Gaussian part of the original velocity kernel exclusively for far field interactions.
This type of error depends on the circulation of the source particles in the far field, and the
distance to the far field (see §4.1 for details).

The first thing to note, is that errors Type I only happen for interactions with sources
located in the far field of an evaluation point, as explained in §3. In the case of a source
particle located in the near field of an evaluation point, the interaction with the particle is not
approximated but calculated with the original kernel, therefore no error Type I is present. In
order to further understand these ideas, let us look into the experiments based on SS-setup (see
§5.1.2). In this setup, only one source particle is present and its influence is evaluated in the
domain using a lattice of evaluation points, thus it is easy to isolate the different approximation
errors. Figures 12, 13, and 14, correspond to experiments based on SS-setup for 8836 evaluation

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1-6
Prepared using nmeauth.cls



CHARACTERIZATION OF THE ACCURACY OF THE FAST MULTIPOLE METHOD 25

Max Error p=31, 1=4

0 | | |
Error ——
Error Bound ---------

Log10 error

-12 \ <

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
Distance to far field

Figure 17. Experiments based on SS-setup showing the maximum measured error for a fixed set of

parameters (p = 31, L = 4) but varying the distance to far field. Each marker represents one full

evaluation of the FMM velocity. The numerical results are compared against the bound of error Type
1.
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Figure 18. Experiment based on LO-setup with 11449 particles showing the maximum measured error

of the FMM calculation of the velocity, with respect to the analytical value at every evaluation point.

Each marker represents one full evaluation of the FMM velocity. The numerical results are compared
against the bound of error Type II.
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points for levels 3, 4, and 5 respectively. In the figures, a square-shaped low-error area can be
observed. This area surrounds the source particle that is located at the center of the domain,
and corresponds to the evaluation points that have the source particle located inside their
near domain. Depending on the levels of the space decomposition, the size of the near domain
varies and so does the size of the low-error area.

Let us look now at the error bound presented in §4.1. In the error bound we can directly
observe the dependence of the bound with respect to the distance from the evaluation point to
the source particle. Furthermore, from the bound we can expect the error to rapidly decay with
the distance due to its exponential nature. This idea is confirmed in the numerical experiments;
take as an example Figure 14 for p = 31: in the scatter plot of the error, a radially symmetric
‘hot spot’ of error with center on the source particle corresponds to error Type I, and as
expected, the error rapidly decays with distance. In the same figure but for plots with different
parameter p, this same spot can be observed but it is mixed with other sources of error and is
harder to observe. This error can also be observed in Figure 13 but it is harder to see as the
far field is located further away and this type of error is smaller. For the case of Figure 12,
this error can no longer be observed as the distance to the far field is far enough to reduce the
error to a lower level than the other errors present.

Let us look now at a more complex setup as in the case of the LO-setup (see §5.1.1). For
this setup we performed the experiments presented in Figures 7, 8, 9, and 10. Every one of
these experiments has 11449 source particles with non-zero circulation, thus there are 11449
sources of error Type I. Only the number of levels L varies among the figures, taking values
of 2, 3, 4, and 5 respectively. For the LO-setup with multiple sources of error, the distribution
of error Type I takes a shape that is significantly different from the previously presented ‘hot
spot’ structure. For example, let us take the case of Figure 10 with p = 31; in this plot we can
observe a ‘grid’ of high errors. The grid-shape is conformed by the particles at the borders of
the boxes at the maximum level of refinement (L) in the quadtree. The error concentrates at
the border of the clusters which accumulate the maximum of error Type I, as they are closer to
the sources of the errors. As this type of error rapidly decays with the distance, points located
at the center of a cluster are less exposed to this type of error.

The previous examples demonstrate that the distance between the source particles and the
evaluation points is the driving factor behind error Type I, and that the error rapidly decays
with the distance. These ideas are presented more clearly if we take the bound for the error
Type 1 developed in §4.1 and compare it against measured errors in experimental setups.
Figure 17 presents the measured error for numerical experiments based on SS-setup 5.1.2. In
the experiments, we vary the distance to the far field while we keep all the other parameters the
same: 1 source particle, 8836 evaluation points, and parameters of the FMM p = 31 and L = 4.
Under this setup, the maximum errors correspond to errors Type I for all values of distance
to far field smaller than 0.12; for values larger than this, the maximum error is dominated by
errors Type II. It can also be seen that the bound holds, but the bound is overestimating the
errors by a couple of orders of magnitude. The reason for this is that the source particle is
located at a larger distance from the evaluation point than the estimated distance to the far
field.

5.8.3. Discussion of error Type II — As explained in §4.2, this type of error is the product
of truncating the infinite series that forms the Multipole Expansion that represents the far
field interactions. The approximation depends on the number of terms (p) that are kept, and

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1-6
Prepared using nmeauth.cls



CHARACTERIZATION OF THE ACCURACY OF THE FAST MULTIPOLE METHOD 27

the composition of the far field (on the particle distribution and circulation). The accuracy of
the ME can be controlled by the user by choosing the number of terms kept in the expansion.
In this way, any accuracy can potentially be achieved.

This type of error is determined by the accuracy of the Multipole Expansions used to
represent the influence of the particles contained in the far field. Looking at the error bound
in §4.2, the error Type II also depends on the ratio between the radius of the cluster and the
distance from the cluster to an evaluation point (r/(zx—y)), and the circulation of the particles
that are inside the cluster. All of these factors can be controlled, so any given accuracy can
potentially be achieved. Of all the factors, the number of terms kept by the ME is the more
important one for controlling this error, as the other two factors are up to certain extent less
flexible as they greatly rely on the spatial decomposition (near field and far field construction,
and clustering of particles).

Knowing the factors that control error Type II, we can now observe the figures for the error
distribution. The number of terms kept by the ME has a straight forward effect on the accuracy.
Examples of varying p for different experimental parameters are shown in Figures 5 and 6.
From the plots in both figures, we can see that by increasing p the accuracy of the method
improves, as expected. Note that this happens for all the cases where error Type I is not
dominant, when error Type I is dominant; the maximum error stays constant independently
of how many terms are kept by the ME.

It is also worth noting the major role of the spatial decomposition on this type of error.
As example, let us take the experiments presented in Figure 7 for lower values of p (say
p =15,7,9,11,13,15]). In these plots, a clear distinction between two areas of high and low
error can be appreciated, product of the differences in the spatial decomposition for different
evaluation points. On the one hand, we have a square-shaped inner area of low error; the main
contribution on the velocity for the points in this area is obtained by direct interactions, and
a small contribution is added by the FMM. On the other hand, an outer area of high errors,
where the main contribution for the evaluation of the velocity at these points comes from the
source particles located in the far field, thus the ME approximation plays an important role
in this case. It can also be seen that as the ME improves, so does the overall error (see same
Fig. 7 for p = [27, 29, 31]).

6. CONCLUSIONS

The Fast Multipole Method (FMM) has offered dramatic increase in the computation
capability for all processes dominated by pair-wise interactions, or N-body problems. In
many applications, such as gravitational systems, high accuracy may not be an issue, and
furthermore such a system is dominated strongly by the first moment (due to the fact that all
mass is positive). In other applications, the accuracy of the overall numerical scheme may have
been dominated by factors such as spatial discretization or time stepping errors. However, as
high-order methods become more commonplace, and as the availability of powerful computers
becomes more widespread, scientists may have the need to know and control the accuracy of
the FMM approximation more finely.

The literature on the FMM algorithm supplies theoretical error bounds. However these may
not be very tight and moreover they are not very illustrative as to the behavior of the method,
except for providing simple ideas like a decrease of error with increasing truncation number.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 00:1-6
Prepared using nmeauth.cls



28 F. A. CRUZ, L. A. BARBA

In the literature, one rarely finds reports of measured errors when using the algorithm. This
of course is not practical in most cases, as a comparison with either an analytical solution or
with the direct O(NN?) summation would be required. We take precisely this approach, and use
some simple experimental setups to discover the behavior of the FMM errors with respect to
the different parameters and choices that the user would normally make: number of particles,
levels in the tree, truncation level.

Users of the FMM will have a client application which will provide them with a given kernel,
representing the influence among particles. One can approximate the kernel by another (such
as %) with good accuracy, but this implies the need to keep box sizes at the deepest level
large compared with the kernel width. The kernel substitution has the aim of simplyfying
the mathematics of the expansions. It makes sense to reduce the human effort required
for the implementation in this way, but only if the consequences of the approximation are
well understood by the practitioner. We believe that the experiments presented in this work
illustrate very well the effects of approximating the force or influence kernel by a simpler one
which applies in the far field.

The spatial distribution of the error incurred by the FMM offers visual evidence of all
the contributing factors to the overall approximation accuracy: multipole expansion, local
expansion, hierarchical spatial decomposition (interaction lists, local domain, far domain). This
presentation is a contribution to any researcher wishing to incorporate the FMM acceleration
to their application code, as it aids in understanding where accuracy is gained or compromised.

Potential users of the FMM may wish to perform some experiments similar to those presented
here, varying algorithm parameters, to get a good grasp of the error behavior for their problems.
In this sense, we offer an experimental design which will help users apply the FMM algorithm
with good knowledge of what it is doing.

In addition to the understanding of the accuracy of the FMM approximation, a user would
also require knowledge of the efficiency obtained, as of course there is always a trade-off between
accuracy and computational efficiency. We have not presented speed-up tests or measures of
the calculation times, because using a Python prototype which is not optimal in terms of speed
may offer misleading results. Moreover, the problem sizes which we manage are small and likely
not in the range of noticeable acceleration with the FMM. Realistically, one will observe the
expected speed-up of the algorithm with tens or hundreds of thousands of particles. In this
range of problem size, experimentation aiming to measure the errors of the algorithm would
be very cumbersome (unless an analytical solution were available).

In conclusion, we suggest that whenever the application calls for controlled and high
accuracy, the user may want to follow the example of this work to characterize the errors
for his/her application, and then follow this by some speed up tests at larger problem sizes.

We are making our Python FMM code available (via Google Code) to the community, and
welcome any correspondence with interested readers.

To end, we offer an opinion with regards to the areas of future progress in the field. The
FMM algorithm is mature and optimal, but still rather difficult to program. We anticipate
that there remain the following areas for progress:

1. Algorithm acceleration through hardware. There are already a few researchers
investigating, for example, the use of graphical processing units (GPUs) with the FMM.
We are also carrying out some work in this area.

2. Better representation of kernels, that provide more accuracy with less truncation number.
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As already mentioned, the Taylor series are the easiest to deal with mathematically, but
converge rather slowly. In applications demanding high accuracy, perhaps other series
representations would provide a better solution, as long as the human effort required for
the mathematical derivations and programming are acceptable.

. Generality and portability. We refer to having tools that work with different kernels and
the availability of software library components for wider dissemination and impact of the
algorithm in multiple applications. In this context, we have initiated collaboration with
the development team of the PETSc library to produce a parallel and portable version of
the FMM which can be distributed to the wider community of computational scientists.
This work will be available in the coming months.
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