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a b s t r a c t

The paper presents a detailed numerical study of an iterative solution to 3-D sound-hard
acoustic scattering problems at high frequency considering the Combined Field Integral
Equation (CFIE). We propose a combination of an OSRC preconditioning technique and a
Fast Multipole Method which leads to a fast and efficient algorithm independently of both
a frequency increase and a mesh refinement. The OSRC-preconditioned CFIE exhibits very
interesting spectral properties even for trapping domains. Moreover, this analytic precon-
ditioner shows highly-desirable advantages: sparse structure, ease of implementation and
low additional computational cost. We first investigate the numerical behavior of the
eigenvalues of the related integral operators, CFIE and OSRC-preconditioned CFIE, in order
to illustrate the influence of the proposed preconditioner. We then apply the resolution
algorithm to various and significant test-cases using a GMRES solver. The OSRC-precondi-
tioning technique is combined to a Fast Multipole Method in order to deal with high-fre-
quency 3-D cases. This variety of tests validates the effectiveness of the method and
fully justifies the interest of such a combination.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the problem of high-frequency scattering of time-harmonic acoustic waves by a bounded
sound-hard obstacle in three dimensions. Integral equation methods are used extensively for numerical computations of
solutions to such homogeneous scattering problems. These approaches apply the Green’s function formalism to reduce
the dimensionality of the problem by one. The governing boundary-value problem is then reduced to an integral equation
on the surface of the scatterer. The integral operators involved in these formulations are nonlocal and the discretization gives
rise to dense matrices. Moreover, one has to consider a sufficient number of points per wavelength (about 10 points) to cap-
ture the oscillatory behavior of the wave at high frequencies. The solution of these large and dense linear systems are han-
dled by Krylov-subspaces iterative solvers (e.g. GMRES [47]). The number of iterations to reach the convergence is strongly
linked to the spectral properties of the underlying integral operators. To be able to predict the convergence, one therefore
needs to investigate the eigenvalue distribution of the integral formulations for acoustic scattering problems. We focus
on the class of Combined Field Integral Equations (CFIE) [12,15,23,40] that share the unique solvability property in appro-
priate functional spaces. Recent studies have been achieved to understand the dependence of the condition number of
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the CFIE formulations in terms of both frequency and mesh size [10,11,25]. For a sound-hard obstacle, the CFIE formulations
involve the boundary Neumann trace of the double-layer potential which is a pseudodifferential operator of order 1 [48].
Thus, these formulations are integral equations of the first-kind and a sequence of corresponding eigenvalues tends to infin-
ity. The condition number of the CFIE formulations grows not only with the mesh discretization density but also with the
frequency. Thus, to make possible the use of iterative solvers for scattering problems, two kind of techniques have been
investigated for years: fast methods for the computation of matrix–vector products and preconditioners to speed up the con-
vergence of the solver.

On the one hand, for the numerical resolution of integral equations, it is still of importance to use a fast method for the
consideration of the integral operators of the initial equation. The Fast Multipole Method (FMM) is such a method that
speeds up the calculation of matrix–vector products where the matrix is obtained by discretization of an integral operator.
The method has been introduced by Rokhlin and co-workers (e.g. [22]) and was adapted to integral equations of wave prop-
agation in the 90s (e.g. [20,28,29,35,45]). The discretization of integral operators leads to dense matrices which correspond
to interactions between the degrees of freedom. The FMM strategy is essentially based on a choice of an expansion of the
Green’s kernel and a distribution of the degrees of freedom into boxes such that the interactions between the degrees of free-
dom are replaced by interactions between boxes. For Helmholtz fundamental solution, the most popular expansion is given
from the Gegenbauer series and the Funk–Hecke formula. It leads to a robust method at high frequency but that suffers from
unstabilities in the low-frequency regimes. However, strategies have been under development for a new expansion available
at any frequency regime (e.g. [30,39]).

On the other hand, efficient preconditioners have to be prescribed to yield fast convergence independent of both mesh
size and frequency. A first solution is to apply algebraic preconditioning techniques, like SPAI (SParse Approximate Inverse)
[16,17] or multi-grids methods [18]. However, even if these preconditioners improve solver performance, slow convergence
and convergence breakdown still arise when medium and high frequencies are considered. Analytic preconditioners offer a
very interesting alternative. This approach uses pseudo-inverse of the hypersingular operators. A judicious integral represen-
tation of the scattered field as a linear combination of single- and regularized double-layer potentials is considered. The
objective is to force the boundary integral operator arising from this representation to become a compact perturbation of
the identity operator. Several well-conditioned CFIE have been proposed recently [1,6,7,13]. We consider in this paper a
pseudo-differential operator preconditioning technique developed by Antoine and Darbas [6,7]. The so-called regularizing
operator is a high-frequency approximation to the Neumann-to-Dirichlet operator, and is constructed in the framework
of the On-Surface Radiation Conditions method [38,34,4,8]. The implementation of the underlying OSRC-preconditioned CFIE
has already been made, which validates the approach [25]. Moreover, we emphasize highly-desirable advantages of this
technique:

� the Padé-approximation of the regularizing pseudo-differential operator leads to a sparse matrix involving only the mass
and rigidity finite element matrices which makes its implementation rather easy,

� in the framework of an iterative solver, the additional computational cost per iteration is thus negligible compared to the
one related to the integral operators,

� to deal with high-frequencies, the resolution requires fast methods such as the FMM. Both techniques, the fast method
and the preconditioner, do not interact and are complementary.

This paper is organized as follows. In Section 2, we describe the scattering problem and recall the basic tools to obtain inte-
gral equations. In Section 3, we introduce the classical and OSRC-preconditioned CFIEs that we use. In Section 4, we present
the discretization and the resolution of the integral equation formulations. In Section 5, we introduce the geometries con-
sidered for the numerical tests. Section 6 is devoted to a numerical investigation of the eigenvalues of the classical and
OSRC-preconditioned CFIEs operators. Finally, in Section 7, we provide various numerical illustrations of the efficiency of
the method in terms of computation cost and speed of convergence. They show the adequacy with the spectral analysis (Sec-
tion 6) with or without FMM.

2. The Helmholtz exterior problem and integral representation

Let us consider a bounded domain X� � R3 representing an impenetrable body with Lipschitz continuous boundary
C :¼ @X�. We denote by Xþ :¼ R3 nX� the associated homogeneous exterior domain of propagation. We are concerned with
the scattering of an incident time-harmonic acoustic wave uinc by the obstacle X�. We consider an incident plane wave of the
form

uincðxÞ ¼ e�ikninc �x;

characterized by the wavenumber k :¼ 2p=k, setting k as the wavelength of the signal. The direction of incidence �ninc is de-
fined by

ninc ¼ ðcosðhincÞ sinðuincÞ; sinðhincÞ sinðuincÞ; cosðuincÞÞT :
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The scattering angles ðhinc;uincÞ are expressed in the spherical coordinates system. The scattered field uþ satisfies the Helm-
holtz exterior boundary-value problem

Duþ þ k2uþ ¼ 0; in Xþ;

@nuþjC ¼ g ¼ �@nuincjC; on C;

lim
jxj!þ1

jxj ruþ � x
jxj � ikuþ

� �
¼ 0:

8>>><>>>: ð1Þ

We focus on a sound-hard boundary condition on C. Vector n is the unit normal to C outwardly directed from X�. The last
equation is the Sommerfeld radiation condition which describes the behavior of the solution at infinity. We have the follow-
ing existence and uniqueness result (see for instance [40]).

Theorem 1. We assume that

� X� is a bounded region in R3 with Lipschitz continuous boundary C,
� g 2 H�1=2ðCÞ.

Then, the exterior acoustic boundary-value problem (1) has a unique radiating solution uþ which belongs to the space

H1
locðX

þÞ :¼ v 2 D0ðXþÞ=wv 2 H1ðXþÞ; 8w 2 DðR3Þ
n o

:

The first main difficulty arising in the numerical solution of the exterior problem (1) is related to the unboundedness of
the computational domain Xþ. Integral equations method is one of the principal tools to overcome this concern. This ap-
proach is based on the classical potential theory [23]. It allows to reformulate problem (1) equivalently as an integral equa-
tion on the finite surface C. Let us recall the main notions. We first introduce the functional spaces [43]

H1
�ðDÞ :¼ H1ðD;X�Þ :¼ u 2 H1ðX�Þ; Du 2 L2ðX�Þ

n o
;

H1
þðDÞ :¼ H1

locðD;X
þÞ :¼ u 2 H1

locðX
þÞ; Du 2 L2locðX

þÞ
n o

:

For u 2 H1
�ðDÞ, the exterior (þ) and interior (�) trace operators of order j (j ¼ 0 or 1) can be defined by

c�0 : H1
�ðDÞ ! H1=2ðCÞ c�1 : H1

�ðDÞ ! H�1=2ðCÞ
u� # c�0 u� ¼ u�jC; u� # c�1 u� ¼ @nu�jC:

ð2Þ

We have the Green’s representation theorem [23,40].

Theorem 2. Let ðu�; uþÞ 2 H1ðX�Þ � H1
locðX

þÞ satisfying

Du� þ k2u� ¼ 0; in X�;

Duþ þ k2uþ ¼ 0; in Xþ;

uþ outgoing wave:

8><>:
Then, we have

Dðc�0 u�ÞðxÞ þ Lðc�1 u�ÞðxÞ ¼
u�ðxÞ; x 2 X�

0; x 2 Xþ

�
; ð3Þ

�Dðcþ0 uþÞðxÞ � Lðcþ1 uþÞðxÞ ¼
0; x 2 X�

uþðxÞ; x 2 Xþ

�
; ð4Þ

where the respective single-layer and double-layer potentials L and D are given by

LpðxÞ :¼
Z
C
Gðx; yÞpðyÞdCðyÞ; x R C; ð5Þ

DuðxÞ :¼ �
Z
C
@nðyÞGðx; yÞuðyÞdCðyÞ; x R C; ð6Þ

for ðp;uÞ 2 H�1=2ðCÞ � H1=2ðCÞ, and G is the fundamental solution of the Helmholtz equation in R3

Gðx; yÞ ¼ 1
4p

eikjx�yj

jx� yj ; x – y:
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The Cauchy data ðcþ0 uþ; cþ1 uþÞ become the new unknowns. The acoustic wave uþ in Xþ is uniquely determined from the
knowledge of these two surface fields. To obtain an integral equation on the boundary C to find these fields, we need the
trace formulae of the two potentials (see for instance [43]).

Proposition 1. The first and second traces on C of the single-layer and the double-layer potentials L and D are given by

c�0 � L ¼ cþ0 � L ¼ L

c�1 � L ¼ � I
2 þ N

cþ1 � L ¼ I
2 þ N

8><>:
c�0 � D ¼ � I

2 þM

cþ0 � D ¼ I
2 þM

c�1 � D ¼ cþ1 � D ¼ D

8><>:
where I is the identity operator and L; N; M and D the four elementary boundary integral operators expressed, for all x 2 C, by

LpðxÞ :¼
R
C Gðx; yÞpðyÞdCðyÞ;

NpðxÞ :¼
R
C @nðxÞGðx; yÞpðyÞdCðyÞ;

MuðxÞ :¼ �
R
C @nðyÞGðx; yÞuðyÞdCðyÞ;

DuðxÞ :¼ �@nðxÞ
R
C @nðyÞGðx; yÞuðyÞdCðyÞ:

ð7Þ

The Helmholtz representation (3), (4) allows the derivation of several integral equations, each with its own mathematical
properties (see for instance [9,23,24,40]). To this end, first or second trace is applied to (3), (4) and satisfaction of the bound-
ary condition leads to an integral equation posed on C.

3. Combined boundary integral equation formulations

This section presents the integral equation formulations that we compare in this paper: the classical Combined Field Inte-
gral Equation (CFIE) [33] and an OSRC-preconditioned CFIE proposed in [7].

3.1. CFIE

To solve the exterior sound-hard acoustic scattering problem (1), we consider the well-known CFIE: find the physical un-
known u ¼ �cþ0 ðuþ � uincÞ 2 H1=2ðCÞ solution to

I
2
þM þ gD

� �
u ¼ �cþ0 uinc � gcþ1 u

inc; on C; ð8Þ

with a coupling complex parameter g. This integral equation is constructed as a linear combination of the Magnetic Field
Integral Equation (MFIE)

I
2
þM

� �
u ¼ �cþ0 uinc; on C;

and the Electric Field Integral Equation (EFIE)

Du ¼ �cþ1 uinc; on C:

We have the following existence and uniqueness result [14].

Proposition 2. Consider C a Lipschitz continuous surface. The operator

I
2
þM þ gD;

defines an isomorphism from H1=2ðCÞ onto H�1=2ðCÞ for all k > 0 provided ImðgÞ– 0. Under this condition, the CFIE (8) is uniquely
solvable in H1=2ðCÞ for all frequency k > 0.

The reference CFIE considered in the paper is defined on C by

ð1� aÞ i
k

I
2 þM
� �

þ aD
	 


u ¼ �ð1� aÞ i
k c

þ
0 u

inc � acþ1 uinc; ð9Þ

setting g ¼ � a
ð1�aÞ ik with a 2 R n f0;1g.

3.2. OSRC-preconditioned CFIE

In terms of numerical iterative resolution, even if CFIE (9) has the good property of being uniquely solvable, this equation
is a Fredholm integral equation of the first-kind and does not provide an interesting spectral behavior (see Section 6). In fact,
it involves the first-order, strongly singular and non-compact operator D. To expect an eigenvalue clustering and hence a fast
convergence of iterative solvers, the idea consists in composing the EFIE (operator D) with a regularizing operator of the
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opposite order before combining it with the MFIE. We adopt the approach of Antoine and Darbas [6,7]. Consider the exact
exterior Neumann-to-Dirichlet (NtD) map

Vex : H�1=2ðCÞ ! H1=2ðCÞ
cþ1 uþ # cþ0 uþ ¼ Vexcþ1 uþ:

ð10Þ

The NtD operator Vex is a non-local pseudodifferential operator of order �1. The following integral relation holds

�VexD ¼ I
2
�M; on C;

and then

I
2
þM � VexD ¼ I; on C:

In this ideal configuration, the solution u ¼ �cþ0 uinc þ Vexcþ1 uinc 2 H1=2ðCÞ is computed directly. However, as well-known, an
expression of the exact NtD is not available for a general surface C. Instead, an approximation eV of Vex is introduced to con-
struct the OSRC-preconditioned CFIE: find u ¼ �cþ0 ðuþ � uincÞ 2 H1=2ðCÞ such that

I
2
þM � eVD� �

u ¼ �cþ0 uinc þ eVcþ1 uinc; on C: ð11Þ

An efficient approximation eV is derived in [8] according to On-Surface Radiation Conditions (OSRC) method [4,5,34,38]

eV ¼ 1
ik

1þ DC

k2e

 !�1=2

; ð12Þ

where the operator DC is the Laplace–Beltrami operator over the surface C and the parameter ke ¼ kþ ie is complex-valued.
The small damping parameter e 2 R	 is introduced to regularize the square-root operator in the transition zone of grazing
modes. A suitable choice of e has been determined in [25]: e ¼ 0:4k1=3R�2=3 where R is the radius of the smallest sphere con-
taining X. We discuss the implementation of the operator eV in Section 4.2. We have the following existence and uniqueness
result:

Proposition 3. Consider C a smooth surface, the OSRC-preconditioned CFIE (11) is uniquely solvable in H1=2ðCÞ for any
wavenumber k and any damping parameter e – 0.

The proof [25] relies on two simple ingredients: the symbolic calculus and the Fredholm alternative. Indeed, the operatoreV has the desired regularizing effect on the operator D and the preconditioned CFIE (11) is a second-kind Fredholm integral
equation expressed by

I
2
þM � eVD ¼ 1

2
þ ke
2k

� �
I þ C; ð13Þ

where C is a compact operator. In the case of a non-smooth boundary, some tools and regularization techniques are given in
[21,14] for other combined field equations. These tools are not suitable for our Eq. (11) in the case of Lipschitz boundaries
and would require more investigation.

4. Discretization and implementation

We describe in this section our strategy for the computation of the proposed preconditioned integral equations.

4.1. Discretization and iterative resolution

For the numerical resolution, we consider a classical P1 boundary finite element discretization [19]. The surface mesh is
denoted by Ch. We define the total number of triangles by NT and the total number of vertices by NV . Let us designate by
nk ¼ k=hmax the density of discretization points per wavelength where hmax is the maximal length of the edges of the trian-
gles. The OSRC-preconditioned CFIE uses the CFIE integral operators and in addition only some differential operators in-
volved in the OSRC approach. The discretization of the later gives rise to sparse matrices. However, as well-known, the
discretization of integral operators leads to dense matrices. Moreover, the integrals involve singular kernels. To deal with
the hypersingular integral operator D, we have considered the following expression [43]

ðDu;wÞ ¼ �
Z
C

Z
C
Gðx; yÞ½k2uðyÞwðxÞnðxÞ � nðyÞ � curlCuðyÞ � curlCwðxÞ
 dCðyÞdCðxÞ;

that involves only weakly singular kernels. The singularities are then evaluated using a technique based on singular changes
of variables related to Duffy transformation [31].
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Let us denote by ½A
 2 CNV�NV the matrix associated with the linear discretization of a given integral operator A. We solve
the different dense non-symmetric linear systems with the iterative solver GMRES [47] with no restart in order to have a
precise idea of the impact of the OSRC technique on the convergence of the solver. The uses of the restart (with 20, 30 or
50 inner iterations) that we performed with the unit sphere and the cube with cavity, considered for the numerical tests,
were not successful for the CFIE operator. In the numerical results, by ‘‘iterations’’, we then always refer to ‘‘inner iterations’’.
Moreover, we always precondition the GMRES by the mass matrix. At each step of the solver, the solution of (11) needs the
computation of

Y ¼ ½I

2
þ ½M
 � ½eV 
½D
� �

X;

with X;Y 2 CNV . For the sake of efficiency

� a sparse direct solver is used to apply the OSRC preconditioner ½eV 
 (see Section 4.2),
� the single-level Fast Multipole Method is chosen to evaluate the dense matrix–vector products involving ½M
 and ½D
 (see
Section 4.3).

4.2. Discretization of the OSRC preconditioner

Let us explain how to compute accurately the square-root needed for the non-local pseudodifferential operator eV . A Padé
paraxial approximation of order Np of the square-root operator is used: a rotating branch-cut technique [41,8],

1þ DC

k2e

 !1=2

� C0 þ
XNp

j¼1

Aj

k2e
DC 1þ Bj

k2e
DC

 !�1

;

where C0; Aj and Bj; 1 6 j 6 Np are complex coefficients. They depend on the rotation angle hp of the usual branch-cut
fz 2 R; z < �1g of the square-root z #

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
. In this paper, we always take hp ¼ p=3. The unique solvability of the OSRC-pre-

conditioned CFIE (cf. Proposition 3) remains true even when we use such Padé approximants to localize the square-root
operator. The proof based on symbolic calculus can be easily adapted.

Specifically, the matrix–vector product Y ¼ ½eV 
X is realized by first solving Np Helmholtz-type sparse linear systems

Bj

k2e
½DC
 þ ½I


 !
Xj ¼ ½I
X; j ¼ 1; . . . ;Np;

and in a second step by solving the problem

½I
 þ ½DC

k2e

 !
Y ¼ 1

ik
C0 ½I
Xþ

XNp

j¼1

Aj

k2e
½DC
Xj

 !
:

The matrix �½DC
 represents the rigidity matrix on Ch. The operator eV has desirable advantages for preconditioners: sparse
structure, ease of implementation and low additional computational cost (see Section 7). We use MUMPS library (MUltifron-
tal Massively Parallel sparse direct Solver – http://mumps.enseeiht.fr/) to take advantage of the sparse structure of ½eV 
.
4.3. Single-level FMM

In order to reduce the computation cost related to the dense matrices, the FMM splits partially the interactions between
both the column and row entries of the matrices. This is done thanks to a separation of variables x and y in the Green’s kernel
Gðx; yÞ: the degrees of freedom are contained in boxes (called FMM boxes below – see Fig. 1), and the interaction between
two degrees of freedom is replaced by a succession of translations through the centers of the boxes that contain the degrees
of freedom. In a single-level FMM, only boxes of a same size, of a same level of an oc-tree are considered. In a multilevel
FMM, boxes from different levels are involved. The FMM strategy is illustrated in Fig. 2.

In this paper, the single-level FMM that we consider is based on the Gegenbauer series and Funk–Hecke formula. For in-
stance, an efficient calculation of the matrix–vector product ½L
X with matrix

½L
i j ¼
Z
C

Z
C
Gðx; yÞujðyÞuiðxÞdCðyÞdCðxÞ; i; j ¼ 1; . . . ;NV ;

can be expressed thanks to such an expansion for i far from j:

½L
i j �
XP
p¼1

cp
X

B=B\suppui–;
gðpÞ
i;B

X
eB=eB\suppuj–;

T ðpÞ

B;eB f ðpÞ
j;eB ;

with
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cp ¼
ik

ð4pÞ2
wp;

gðpÞ
i;B ¼

Z
B\suppui

eik<sp ;x�CB>uiðxÞdCðxÞ;

f ðpÞ
j;eB ¼

Z
eB\suppuj

e
�ik<sp ;y�CeB>ujðyÞdCðyÞ;

and T ðpÞ

B;eB is the translation operator from the FMM box eB to the FMM box B given by the expression

T ðpÞ

B;eB ¼
XL
‘¼1

ð�iÞ‘ð2‘þ 1Þhð1Þ
‘ ðkjCB � CeB jÞP‘ðcosðsp;CB � CeBÞÞ; ð14Þ

where wp; sp are the quadrature weights and points for the integration on the unit sphere involved in the Funk–Hecke for-
mula. The summation ‘‘

PP
p¼1’’ comes from the discretization of the Funk–Hecke formula while the summation ‘‘

PL
‘¼1’’ is a

truncation of the Gegenbauer series. Moreover, CB denotes the center of the FMM box B, hð1Þ
‘ is the spherical Hankel function

of the first kind of degree ‘, and P‘ is the Legendre polynomial of degree ‘. The parameters L and P are estimated thanks to the
empirical formula [35] L ¼ kdþ CðkdÞ3, and the choice of the discretization of the unit sphere such that P ¼ ðLþ 1Þð2Lþ 1Þ,
where d is the diameter of the FMM boxes.

This leads to an algorithm of complexity which is N3=2
V for a single-level FMM and NV ln

2NV for a multilevel FMM. For more
details on the FMM, we refer for example to the papers [20,28,29,35,45]. This choice leads to a FMM which is known to be
unstable at ‘‘low-frequency regimes’’. This occurs for any frequency when the mesh density nk is large compared to the usual
value nk ¼ 10. This comes from the translation operator T ðpÞ

B;eB (14) which sums Hankel functions. In the Gegenbauer series, the
diverging behavior of the Hankel function is controlled by the converging Bessel function. But the considered FMM expan-

Fig. 1. FMM boxes: a mesh (left) and corresponding FMM boxes (right).
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sion separates the Hankel function such that the translation operator (14) becomes unstable at low-frequency regimes. In
this paper, we effectively meet with this issue (cf. Remark 1).

5. Presentation of the test geometries

For the numerical results, we have considered several geometries for different purposes as presented below. The geom-
etries were generated using Gmsh [32].

First, the unit sphere enables us to validate the code by comparison with the analytical solution.
A second concern is the consideration of domains with cavity. We have intensively studied a cube with cavity that takes

inspiration in the 2-D trapping domain defined by Betcke and Spence [11] (cf. Fig. 3, left). This 3-D geometry is the cube
½�1;1
3 with the rectangular cavity ½0;1
 � ½�p=10;p=10
 � ½�p=10;p=10
, shown in Fig. 3 (right). A second cavity domain
consists in a 3-D spherical trapping object given in Fig. 4 (left), generated by the revolution around the X-axis of a 2-D C-
shape contour (Fig. 4, right). The 2-D contour is defined with the help of four circles; for each of them, the couple (cen-
ter, radius) is respectively ðO;1:4Þ; ðO;1Þ; ðA;0:2Þ; ðB; 0:2Þ. The two last centers are given by applying rotations of angles
p=5 and �p=5 and center O ¼ ð0;0Þ to the point (0,1.2).

The cone-sphere (Fig. 5, left) and the submarine offer configurations with singularities. The cone-sphere is based on the
unit sphere and has the apex located at the point (5,0,0). Moreover, for this geometry, the cone and the sphere are tangent to
each other at the interface. As a last example, we consider the geometry of a submarine shown in Fig. 5 (right). The charac-
teristic length are: length = 43 m, thickness � 4–7 m, high � 4–7 m. This example presents a sharp and irregular shape at the
back (around point (43,0,0)), and is characterized by very large length.
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6. Spectral analysis

In order to analyze the convergence properties of the GMRES algorithm for solving the usual and OSRC-preconditioned
CFIEs (9) and (11), let us observe previously in this section the eigenvalue behavior of the involved integral operators. To
this end, we use a code implemented with the library MELINA++,1 and the library ARPACK++.2 MELINA++ is a finite element
(FE) library that provides the FE discretization of the integral operators and standard differential operators. To compute numer-
ical eigenvalues, ARPACK++ implements the ‘‘Implicit Restarted Arnoldi Method’’ (IRAM), which combines Arnoldi factorizations
with an implicitly shifted QR method.

6.1. Spherical case

We consider the unit sphere as the scatterer. Spherical harmonics form a basis of eigenvectors for the elementary integral
operators. Explicit expressions of the eigenvalues of the CFIE operators are known [3,7,25,36]. In the case of the OSRC-pre-
conditioned CFIE, we know such an analytic expression either with the exact square-root operator in eV (cf. (12)) or with the
complex Padé approximation (cf. Section 4.2) for the localization of eV . In this section, we designate by ‘‘analytical eigen-
values’’ the exact eigenvalues obtained with the exact square-root operator and by ‘‘Padé-analytical’’ the ones obtained con-
sidering Padé approximants. The eigenvalues computed with our code based on a BEM discretization are called ‘‘numerical
eigenvalues’’.

In Fig. 6, we compare the analytical and the numerical eigenvalues of the CFIE integral operators for the wavenumber
k ¼ 11:85, with the mesh density nk ¼ 10. For the numerical results, we choose the Padé order Np ¼ 8.
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Fig. 5. Left: cone-sphere – right: submarine.
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Fig. 6. Unit sphere: distribution of the eigenvalues, k ¼ 11:85; nk ¼ 10.

1
http://anum-maths.univ-rennes1.fr/melina/

2
http://www.ime.unicamp.br/�chico/arpack++/
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The analytical eigenvalues of the CFIE operator coincide with the numerical ones. The numerical eigenvalues of the OSRC-
preconditioned operator are well clustered at a point near to (1,0) which is the accumulation point of the analytical ones.
Now, let us observe how the Padé approximation impacts on the clustering of the eigenvalues. To this aim, for different
Padé orders, we compare the Padé-analytical eigenvalues to the analytical ones in Fig. 7, and the numerical eigenvalues
to the Padé-analytical ones in Fig. 8. In both Figs. 7 and 8, the Padé-analytical eigenvalues are the same.

For both the Padé-analytical and numerical eigenvalues, more precise is the Padé approximation, better is the clustering
of the eigenvalues around the point (1,0). The figures show a spiral curve which is absorbed by the accumulation point pro-
gressively when the Padé order Np increases. This curve has been an interesting tool to determine the influence of the Padé
approximation on the accuracy of the resolution strategy. Indeed, the Padé approximation presents two critical points: when
z is close to �1 and when z is large. When k becomes large, some eigenvalues of the discretized operator ½DC
=k2e may be close
to �1; when nk is large, some eigenvalues of ½DC
=k2e become large. However, this phenomenon does not really affect the
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Fig. 7. Unit sphere: distribution of the analytical eigenvalues versus Padé order Np , for k ¼ 10; nk ¼ 11:85.
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condition number in our configurations (see Fig. 9). As we can see, the condition number of the OSRC-preconditioned CFIE
remains between 1.2 and 1.7 independently of the Padé order, the frequency and the mesh density so far. More precisely, in
Fig. 9(b) and (c), this condition number lies between 1.2 and 1.31. This is not the case for the CFIE. The linear dependance of
the CFIE condition number on nk is related to the dispersion of the eigenvalues in the elliptic part. These eigenvalues which
lie on the real line x ¼ 0 are associated with evanescent modes (high-order spatial modes). The dependance on k comes from
the small-magnitude eigenvalues linked to a grazing mode.

6.2. Cavity domains

Several studies of the conditioning and spectral properties of the combined boundary integral equations exist in the
canonical case when C is a circle or a sphere [37,36,2] since a complete theory of conditioning is available. Recent results
[10,11] have been obtained for more general two-dimensional domains (convex, non-convex, polygon, starlike polygon,
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trapping domains) in the case of the acoustic sound-soft scattering problem. Let us note that the CFIE is a second-kind
boundary integral equation for the sound-soft scattering problem. This is no more true for the sound-hard boundary condi-
tion. In [10], the derived estimates show that the condition number depends on the geometry of C, asymptotically as k ! 1.
For instance, the dependence on k is more pronounced for the case of a trapping obstacle than for the case of a circle or a
square. Moreover, in [11], Betcke and Spence have conjectured numerically that the classical CFIE operator is coercive uni-
formly in k, for all sufficiently large wavenumbers k, for all non-trapping domains. Then, it is interesting to observe numer-
ically how the OSRC-preconditioned CFIE behaves for such scattering objects in the sound-hard case.

Fig. 9. Unit sphere: condition number.
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First, we consider the two-dimensional trapping domain chosen by Betcke and Spence: an open cavity of width p=5 (cf.
Fig. 3, left). We take Np ¼ 8 and hp ¼ p=3. We draw in Fig. 10 the eigenvalues of the CFIE operators taking k ¼ 32 and nk ¼ 10.
Moreover, we plot in Fig. 11 the condition number of the two integral operators with respect to k (resp. nk) for nk ¼ 10 (resp.
k ¼ 23). The eigenvalues of the CFIE operator are dispersed in the elliptic part. Moreover, small eigenvalues close to zero ap-
pear in the hyperbolic zone. Consequently, the condition number of the CFIE grows with both the mesh density nk and the
increase of k. The dependence on nk comes from the large-magnitude eigenvalues, and the one on k from the small-magni-
tude eigenvalues. Note that most of the eigenvalues of the OSRC-preconditioned CFIE are again well clustered around the
point (1,0). However, there are a few small eigenvalues and at least one of them can be very close to zero at a resonance
frequency (a multiple of 5, cf. [11]). We can observe the phenomenon in Fig. 12 for k ¼ 20. This leads to a light dependence
(compared to the CFIE) of the condition number on k accentuated at resonance frequencies.

Now, let us consider 3-D trapping domains, the cube with cavity (Fig. 3, right) and the sphere with cavity (Fig. 4). The first
one is intensively considered as a 3-D generalization of the trapping domain by Betcke and Spence. The second domain con-
firms the results in a configuration where the cavity offers a wider hidden part. Figs. 13 and 14 show that the behavior of the
eigenvalues is similar to what we already observed in the 2-D case: dispersion in the elliptic part and eigenvalues in a neigh-
borhood of zero in the hyperbolic zone for the CFIE; clustering around a point near to (1,0) for the OSRC-preconditioned CFIE.
In Figs. 15 and 16, we compare the behavior of the condition number for both the CFIE and the OSRC-preconditioned CFIE
versus the wavenumber k or versus the mesh density nk. First of all, let us look at the case of the CFIE. For a fixed wavenum-
ber, as expected, we clearly see that the increase of the condition number is linked to the increase of the largest eigenvalue
magnitude. We also check that the smallest-magnitude eigenvalues do not really vary and do not affect the condition num-
ber at fixed wavenumber. On the contrary, for a fixed mesh density, we see that the increase of the condition number is
linked to the decrease of the smallest eigenvalue magnitude and we observe that the largest-magnitude eigenvalues do
not really affect the condition number. In the case of these domains with cavity, which generate trapping phenomena,
the OSRC-preconditioning does not completely vanish the dependencies on k and nk.
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However, this approach strongly reduces these dependencies and the condition number is very small compared to the one
of the CFIE: the condition number of the OSRC-preconditioned CFIE lies between 7 and 11 in Fig. 15 (left), and between 2 and
13 in Fig. 15 (right); moreover the largest (resp. smallest) eigenvalue magnitude of the OSRC-preconditioned CFIE is strongly
smaller (resp. larger) than the one of the CFIE.

For the cube with cavity, in Fig. 17, we exhibit a resonance frequency around k ¼ 5:2 where the OSRC-preconditioned CFIE
has an eigenvalue that comes very close to zero. In Fig. 18 (left) we show the condition number versus k, in linear scale,
where we considered numerous values of k, with four different meshes, whereas Fig. 18 (right) offers the same graph with
a semi-logarithmic scale. To differentiate the different meshes, the curves are drawn alternatively using dashed and solid
lines for the CFIE and using dashed and dotted lines for the OSRC-preconditioned CFIE. Fig. 18 (left) clearly indicates that
the resonance effect is attenuated by the OSRC-preconditioning. Fig. 18 (right) offers another element on the behavior of
the condition number versus nk: at the interface between two meshes (change of line style in the figure), we can observe
that the values computed with a coarse mesh are smaller than the ones computed with a finer mesh. This is clear for the
condition numbers of the CFIE. For the OSRC-preconditioned CFIE however, this phenomenon is much less visible and we
can observe a very good transition from a mesh to another. The highlighted resonance frequencies are characterized by
the presence of one or two eigenvalues close to zero: when two of them are near zero, they are close enough to interpret
them as one eigenvalue with multiplicity 2. Moreover, it seems that this number of eigenvalues close to zero is the same
with or without preconditioning (independently of the mesh for the case k ¼ 5:2 where two meshes were used for this fre-
quency). A comparable behavior is visible for the sphere with cavity in Fig. 19 (right).

Finally, in Fig. 19 (left), the condition number is considered versus the Padé order for the cube with cavity. The behavior is
more significative than it is for the unit sphere considered previously. A first conclusion could be that the Padé order has to
be chosen larger for domains with cavity than for the sphere.
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6.3. Cone-sphere and submarine

The cone-sphere is considered in literature for its sharp apex. We hereby study the eigenvalue behavior for the cone-
sphere presented in Section 5. For this example, we consider the Padé order Np ¼ 8. Fig. 20 shows the eigenvalues of the CFIE
and the OSRC-preconditioned CFIE operators taking k ¼ 8:8 and nk ¼ 10. We report in Fig. 21 the condition number with re-
spect to the wavenumber k for the mesh density nk ¼ 10, and with respect to nk for k ¼ 5:8. Despite the strong singularity of
the geometry, the OSRC-preconditioning technique is again as efficient as for the sphere. In Fig. 21, for the OSRC-precondi-
tioned CFIE, the condition number lies between 1.9 and 2.9 versus nk and between 2.1 and 2.15 versus k.

The submarine introduced in Section 5 is considered as a rather realistic example. Let us remind the reader that this ob-
ject is 43 m long. This explains a choice of smaller wavenumbers. Once more, we consider the Padé order Np ¼ 8. Fig. 22
shows the eigenvalues of the CFIE and the OSRC-preconditioned CFIE operators taking k ¼ 2:5 and nk ¼ 10. Fig. 23 gives
the condition number with respect to the wavenumber k for the mesh density nk ¼ 10, and with respect to nk for k ¼ 1:5.
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For the OSRC-preconditioned CFIE, this value lies between 2:5 and 2.9 versus nk and between 2.3 and 2.6 versus k. This
behavior is also very interesting in view of an iterative solution and even remarkable for the considered object.

7. Numerical results

This section is devoted to numerical simulations validating the OSRC-preconditioned CFIE coupled with the single-level
FMM (SLFMM). First, we validate the numerical results with the Mie series solution of the bistatic Radar Cross Section (RCS)
of the conducting unit sphere. The RCS is given by

RCSðhÞ ¼ 10log10ð4pja0ðhÞj
2Þ; ð15Þ
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where h is the angle of diffusion and a0ðhÞ the scattering amplitude. Then, we test the method on the different scatterers
considered in previous sections. These non-smooth objects are not in the functional setting considered in this paper for
the well-posedness of the usual and OSRC-preconditioned CFIEs. However, the usual CFIE has been solved successfully for
many industrial test-cases in this context. For all scatterers, we examine the influence of an increase of the frequency and
of a mesh density on the GMRES convergence. The convergence criterion for all the presented examples is identical: the iter-
ations are stopped when the initial residual has decreased by a factor of 10�3. As expected, all numerical experiments attest
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the spectral analysis described previously. The considered meshes were obtained using Gmsh [32]. All the tests were run on
an Intel (R) Xeon (R) CPU – E5620 – 2.40 GHz.

7.1. Unit sphere

As a usual validation test, we first consider the unit sphere. For all the presented results in this section, the incident wave
is a plane wave with incident direction �ninc ¼ ð0;0;�1Þ. Concerning the complex Padé approximation, we fix Np ¼ 2. Fig. 24
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shows the RCS for different wavenumbers from k ¼ 11:85 to k ¼ 47:4 taking nk ¼ 10. One can check that the results obtained
with our approach match with the Mie Series solution. The relative errors are given in Table 1. The OSRC-preconditioned CFIE
formulation yields the same accuracy as the CFIE.

To validate the efficiency of the preconditioner, we now focus on the GMRES convergence versus the mesh density for a
given wavenumber or versus the wavenumber for a given mesh density. We plot in Fig. 25 the number of iterations to
reach convergence with respect to k for nk ¼ 10 (left) and with respect to nk for k ¼ 10 (right). The number of iterations
drastically increases with both wavenumber and density of discretization per wavelength for the codes without OSRC pre-
conditioning (CFIE or CFIE + FMM). On the contrary, we can see that it is independent of these two parameters when we
use the OSRC preconditioning technique. These numerical 3-D high-frequency tests well fit with the previous eigenvalue
analysis.

More precisely, in Table 2, we show the CPU costs of the different codes (with or without SLFMM; with or without OSRC
preconditioning). More details are given in Tables 3 and 4. In these tables, we use the following notations.

Fig. 24. Normalized RCS for various wavenumbers k ðnk ¼ 10Þ.

Table 1
Relative k � k2 and k � k1 errors on the normalized RCS ðnk ¼ 10Þ.

k CFIE CFIE + FMM CFIE + OSRC + FMM

k � k2 k � k1 k � k2 k � k1 k � k2 k � k1
4.76 6.3e�3 7.9e�3 5.5e�3 6.7e�3 6.8e�3 8.2e�3
11.85 2.5e�3 2.9e�3 3.9e�3 4.9e�3 2.2e�3 2.3e�3
23.7 – – 1.67e�2 2.07e�2 1.02e�2 9.3e�3
47.4 – – – – 2.46e�2 4.21e�2
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Fig. 25. Unit sphere: convergence of GMRES solver.

Table 2
Global costs versus k taking nk ¼ 10.

k Total CPU time Total CPU time Total CPU time
CFIE CFIE + SLFMM CFIE + SLFMM + OSRC

4.76 7 min 4200 13 min 4700 2 min 4200

11.85 9 h 43 min 4 h 33 min 32 min 4000

23.7 > 15 days 214 h 44 min 6 h 20 min
47.4 – – 48 h 48 min

Table 3
Precomputation and global resolution cost versus k taking nk ¼ 10.

Case k T00 T0F T0P Tg Nit

C 4.76 7 min 4000 – – 20056 23
CF 4.76 – 80034 – 13 min 1300 25
COF 4.76 – 80034 3:6� 10�2 2 min 3300 4

C 11.85 9 h 39 min – – 3 min 4900 47
CF 11.85 – 8 min 2400 – 4 h 24 min 53
COF 11.85 – 8 min 2400 3:5� 10�2 24 min 1500 4

CF 23.7 – 10 min 4200 – 214 h 33 min 173
COF 23.7 – 10 min 3900 10063 6 h 09 min 4

CF 47.4 – – – – –
COF 47.4 – 18 h 22 min 80035 30 h 25 min 5

Table 4
Computation costs per GMRES iteration versus k taking nk ¼ 10.

Case k Tit Tmv Tc Tf To

C 4.76 1:1� 10�1 1:1� 10�1 – – –

CF 4.76 310074 – 290014 2006 –
COF 4.76 380034 – 350024 30009 1:8� 10�2

C 11.85 40088 40088 – – –
CF 11.85 4 min 5900 – 4 min 1500 430084 –
COF 11.85 6 min 0300 – 5 min 0800 540073 6:4� 10�2

CF 23.7 1 h 14 min – 1 h 13 min 1 min 0800

COF 23.7 1 h 32 min – 1 h 31 min 1 min 2300 2:5� 10�1

CF 47.4 – – – – –
COF 47.4 6 h 05 min – 5 h 45 min 20 min 1300 10012
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� CPU time
� (T00, T0F, T0P) = precomputation (matrices ½M
 and ½D
, close interactions of FMM, OSRC preconditioner)
� Tg, Tit = Total CPU for the solution of the system, total CPU time per iteration
� Tmv = Total CPU time for the computation of dense matrix–vector products per iteration
� Tc (resp. Tf) = Total CPU for the calculation of the close (resp. far) interactions per iteration
� To = Total CPU for the application of the OSRC preconditioner per iteration

� Nit = Number of iterations to reach convergence of the GMRES solver
� C = CFIE; CF = CFIE + SLFMM; COF = CFIE + SLFMM + OSRC

As one can see, the application of the OSRC preconditioning technique considerably reduces the global cost of the resolution
and does not really affect the cost per iteration. Recall that the operators involved in the preconditioning technique are dif-
ferential operators. Then, the cost of applying the regularizing operator eV per iteration is negligible. Thus, the cost per iter-
ation is essentially the one of FMM matrix–vector products. For instance, the global cost is multiplied by 8 when the
wavenumber is multiplied by 2 from 23.7 to 47.4. This is precisely the cost of the single-level FMM (SLFMM) since its the-
oretical complexity is about ðk2Þ3=2 ¼ k3 and 8 ¼ 23.
Remark 1. The use of the FMM should be discussed in this approach. Of course, we would not have been able to run some of
the tests without FMM due to the sizes of the discretized systems, but how does the FMM impacts on the OSRC technique?
The different tests performed show that the FMM does not affect the OSRC technique as far as the accuracy of the FMM is
reasonable. When the mesh density becomes too large, the problemmeets with low-frequency regimes. This is clearly visible
in Fig. 26 and Table 5 for the case nk ¼ 32 where the code has converged to a wrong solution.

Remark 2. Finally, we conclude this section on the influence of the Padé order on the convergence. For the test-case k ¼ 47:4
and nk ¼ 10, we note that only 3 GMRES iterations are required with Np ¼ 10 against 4 taking Np ¼ 4;6;8 and 5 for Np ¼ 2.
This corroborates the behavior of the condition number for such a scatterer (cf. Fig. 9(a)). The extra cost per iteration added
by an increase of the Padé order is negligible (a few seconds). At high-frequencies, the global cost per iteration is about some
hours (for instance 6h for k ¼ 47:4, essentially due to the FMM cost). So, it is interesting to increase the Padé order and save
one iteration or more.

7.2. Cavity domains

We consider first the cube with cavity defined in Section 6.2, hit by an incident plane wave which generates reflexions in
the cavity and given by the incident direction �ninc ¼ �ð

ffiffiffi
3

p
=2;0;1=2Þ. We consider Np ¼ 8 in agreement with the spectral

observations in Section 6. The cost related to the OSRC operator is still negligible compared to the cost related to the integral
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Fig. 26. Normalized RCS for various discretization densities nk .

Table 5
Relative k � k2 and k � k1 errors on the normalized RCS (k ¼ 15).

nk CFIE CFIE + FMM CFIE + OSRC + FMM

k � k2 k � k1 k � k2 k � k1 k � k2 k � k1
8 4.1e�3 8.8e�3 7.3e�3 1.1e�2 5.4e�3 4.9e�3
16 2.5e�3 3.4e�3 6.9e�3 1.3e�2 5.3e�3 8.5e�3
32 – – – – 5.3e�1 5.6e�1
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operators. Fig. 27 shows the RCS obtained with the code CFIE + OSRC + FMM for different wavenumbers when the mesh den-
sity is given by nk ¼ 10 on left, and the same quantity for different mesh densities when the wavenumber is k ¼ 8 on right.
For the figure on the right, the reference solution is obtained with the code CFIE + FMM with the mesh density nk ¼ 12:5
which is in the usual framework of the FMM. GMRES residuals and the number of GMRES iterations versus wavenumber
for the mesh density nk ¼ 10 and versus mesh density for the wavenumber k ¼ 8 can be observed in Fig. 28. The number

Fig. 27. Normalized RCS.

Fig. 28. Convergence of GMRES: iterations and residuals.
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of GMRES iterations exactly exhibits the same behavior according to both the parameters k and nk than the condition num-
bers of the CFIE operators (cf. Section 6.2). A light peak is visible at the resonant frequency k ¼ 20 for the resolution of the
OSRC-preconditioned CFIE (the iterative resolution of the CFIE is out of reach at such a frequency). The efficiency of the OSRC-
preconditioned CFIE is here again highlighted. Fig. 28(d) shows the residual behavior around a resonance frequency. Close to
such a frequency, the presence of small eigenvalues, distributed away from the cluster of eigenvalues at (1,0), slows down
convergence of the GMRES. For k ¼ 5:2, we can observe a plateau from iteration 7 to 12 in the GMRES residual curve. This
plateau is not present in non-resonant cases.

Fig. 29. Normalized RCS.

Fig. 30. Convergence of GMRES: iterations and residuals.
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Remark 3. In Section 7.1, we mentioned the instability of the FMM. One could overcome the problem of low-frequency
regimes by considering larger FMM boxes but this implies an increase of the cost related to the close interactions. Indeed, for
the case k ¼ 8 and nk ¼ 26, we first considered the automatically suggested level of FMM boxes (level 5) and obtained the
convergence indicated in Fig. 28 (26 iterations) and the RCS shown in Fig. 27 (right). Then, we tried the same test case with a
lower level (level 4 with larger FMM boxes): The convergence was the same (26 iterations) and the RCS looked very similar
but the global CPU cost was multiplied by a factor 2 due to a strong increase of the close interactions. We also considered the
same test case with FMM level 5 and OSRC Padé order Np ¼ 4 instead of 8, and obtained convergence after 31 iterations
instead of 26. This observation may suggest that the instability of the FMM did not affect the convergence of the code
CFIE + OSRC + FMM for mesh densities up to nk ¼ 26, but the choice of the Padé order has to be chosen larger for finer mesh
densities in the case of the cube with cavity as suggested by the spectral analysis.

The second trapping domain we consider is the sphere with cavity (Fig. 4) hit by the incident plane wave given by the
incident direction �ninc ¼ �ð

ffiffiffi
3

p
=2;0;1=2Þ. Some RCS are illustrated in Fig. 29. For example, the RCS obtained for k ¼ 7 for

various mesh densities (Fig. 29(c)) are in agreement with the reference solutions (Fig. 29(d)): the two plots share the RCS
for nk ¼ 12 with the code CFIE + OSRC + FMM. The behavior of the GMRES solver versus the parameters k and nk is given
in Fig. 30. The results are comparable to what we observe for the cube with cavity.

Table 6
Number of iterations versus incident direction taking nk ¼ 8, and k ¼ 8.

Incident direction CFIE CFIE + SLFMM CFIE + SLFMM + OSRC

(�1,0,0) 171 176 7
(1,0,0) 177 182 7
(0,0,�1) 230 235 7
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Fig. 31. Normalized RCS for various mesh densities, k ¼ 8.

Fig. 32. Normalized RCS for nk ¼ 10.
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7.3. Cone-sphere and submarine – two industrial oriented test-cases

The essential characteristic of the cone-sphere is its sharp apex toward the direction (1,0,0) from its centroid. We then
consider three incident directions: ð�1;0;0Þ parallel to the axis of the cone, where the incident wave hits the cone-sphere on
the sharp apex, (1,0,0) which hits the sphere part of the cone-sphere, and ð0;0;�1Þ which hits the object perpendicularly to

Fig. 33. Convergence of GMRES: iterations and residuals.

Fig. 34. Normalized RCS: various wavenumbers, nk ¼ 10.

Fig. 35. Normalized RCS: various mesh densities, k ¼ 2:5.
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its axis. Table 6 indicates how the resolution convergence depends on the incident direction with the code CFIE or
CFIE + FMM while it is not the case for the code CFIE + OSRC + FMM. Figs. 31 and 32 give the RCS for different incident direc-
tions, wavenumbers or mesh densities. The dependency to the parameters k and nk are illustrated in Fig. 33. Let us note again
the benefit of the analytical preconditioner.

The case of the submarine is illustrated in Figs. 34, 35 for the RCS and Fig. 36 for the GMRES convergence when the inci-
dent direction is �ð

ffiffiffi
3

p
=2;0;1=2Þ. For k ¼ 2:5, Fig. 35 (right) exhibits the stability of the RCS versus the mesh density obtained

with the code CFIE + OSRC + FMM while Fig. 35 (left) indicates that the code CFIE + FMM do not offer the same property. We
can guess that this instability is related to the very low convergence of the GMRES. In Fig. 35 (left), the results labeled ‘‘Ref’’
were obtained with the code CFIE + FMM for the mesh densities nk ¼ 10 and nk ¼ 16:8 and do not really match (relative
(�l2; l1) differences: (0.1846, 0.4127)). In Fig. 35 (right), the results are obtained with the code CFIE + OSRC + FMM with
mesh densities from 10 to 30 and agree to each other (relative (�l2; l1)-differences: (0.0212, 0.0679) to (0.0280, 0.1051)).
A common curve is visible in both left and right plots of Fig. 35: nk ¼ 16:8 in solid-line style. The instability essentially occurs
in the illuminated zone which corresponds to the back of the submarine. Concerning the GMRES convergence, Fig. 36 gives a
behavior comparable to what we observed for the unit sphere. The method seems suitable even for such an industrial ori-
ented test-case.

8. Conclusion and perspectives

In this paper, we have drawn a detailed numerical study of the classical and the OSRC-preconditioned CFIEs for the iter-
ative solution of the acoustic sound-hard scattering problem. The developed strategy is based on the use of an OSRC precon-
ditioner to accelerate the chosen iterative solver (GMRES), and the use of the Fast Multipole Method (FMM) to reduce the
iteration cost.

A thorough study of the eigenvalue behavior was realized in order to illustrate the impact of the OSRC preconditioning
technique on the spectrum of the CFIE operator. Moreover, this spectral analysis allows to precisely understand the influence
of the different parameters of the technique, and more specifically of the Padé approximation. This work shows that Padé
approximants are an adequate tool. It happens that even a rough approximation leads to good preconditioning properties.
As a first conclusion, this experiment attests that the preconditioner fulfills the expected improvements.

The resolution scheme (OSRC preconditioning and FMM) was applied to several numerical test-cases: for smooth and
non-smooth obstacles (singularities, cavity domains). The convergence of the GMRES, with respect to both physical and
mesh parameters, corroborates the spectral analysis. The speed of convergence is strongly improved by the OSRC precondi-
tioning and the application of FMM does not disturb this benefit. Consequently, only a few GMRES iterations are required to
obtain the same accuracy as the CFIE with no preconditioning when we increase the frequency or the mesh density. More-
over, the computation cost follows the FMM behavior: indeed, the algorithm complexity is essentially governed by the FMM
due to the low computation cost of the preconditioner. Combining the OSRC preconditioner and the FMM is a very efficient
approach to solve the CFIE at high frequencies, even for trapping domains.

However, in the case of trapping domains, near the resonance frequencies, the solver is still slightly influenced by few
eigenvalues close to zero. To deal with this issue, the deflated GMRES [42,46] may be a response to avoid this remaining
dependance of the convergence for trapping scatterers at resonance frequencies.

The combination presented here can be extended to the iterative resolution of the Maxwell exterior problem using the
strategy developed in [25–27]. The OSRC preconditioning approach has already been successfully applied to the impedance
case [44]. In a future work, we aim to carry out the study of the spectral behavior of the CFIE and OSRC-preconditioned CFIE

Fig. 36. Convergence of GMRES: iterations and residuals.
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operators for Maxwell exterior problem with perfectly conducting condition, and the study of the contribution of the FMM
on the resolution phase.
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