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Abstract

A domain decomposition approach is presented for the transient analysis of three-dimensional wave propagation problems. The subdomains are

modelled using the FEM and/or the BEM, and the coupling of the subdomains is performed in an iterative manner, employing a sequential

Neumann–Dirichlet interface relaxation algorithm which also allows for an independent choice of the time step length in each subdomain. The

approach has been implemented for general 3D problems. In order to investigate the convergence behaviour of the proposed algorithm, using

different combinations of FEM and BEM subdomains, a parametric study is performed with respect to the choice of the relaxation parameters. The

validity of the proposed method is shown by means of two numerical examples, indicating the excellent accuracy and applicability of the new

formulation.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In many fields of engineering mechanics, the Finite Element

Method (FEM) and the Boundary Element Method (BEM) are

valuable and frequently applied analysis tools. Each one of

these methods has its specific areas of application. The FEM,

for instance, is especially well suited for the analysis of

problems involving inhomogeneities or non-linear behaviour

of the considered solid bodies [1,2], while the BEM has some

advantages if stress singularities or unbounded subregions are

present, or- in dynamics-, if incident wave fields need to be

considered [3–5].

Therefore, for problems involving subregions with different

characteristics, it seems to be a natural approach to combine the

FEM and BEM within a single computational model, thus

making use of the respective advantages of both methods. This

is done by decomposing the considered domain into several

subdomains, where each subdomain, according to its specific

physics, is modelled either by the FEM or the BEM [6–8].

Then, the subdomains are coupled to each other, taking into

account the appropriate compatibility and equilibrium

conditions at the respective interface boundaries. This is called

the domain decomposition or subdomain approach.

Domain decomposition can also be useful within pure BEM

models, where no FEM subdomains are considered. Typically,

this is needed if regions with different material properties (e.g.

layered soils) or even different physics (e.g. in solid–fluid

coupling) are to be analysed [9–13]. Furthermore, a pure BEM

domain decomposition can also be employed in order to

improve the efficiency and the numerical properties of the

model [14], or to enable parallel computations [13–15].

Regarding applications in dynamics, a rather complete

overview over FEM–BEM and BEM–BEM coupling pro-

cedures is given by Beskos [16–18]. Usually, the coupling is

performed directly, i.e. the equations for all subdomains are

assembled into a single, global, equation system. Direct FEM–

BEM coupling in the time–domain is treated, e.g. by Karabalis

and Beskos [19], Fukui [20], and von Estorff and Prabucki [21]

for linear cases, and by Pavlatos and Beskos [22], Adam [23],

Abouseeda and Dakoulas [24], Yazdchi et al. [25], and

Firuziaan and von Estorff [26], taking non-linearities in the

FEM subdomain into account.

Alternatively, either staggered or iterative methods can be

used, where the equations for the subdomains are solved

separately. Thus, the assembly and solution of a global,

coupled equation system is avoided. Such an approach offers

considerable advantages over the direct coupling procedure.

First, specialized solvers can be used for solving the system

of equations of each subdomain, taking full advantage of the

respective matrix characteristics. For example, the FEM

system matrix usually is symmetric, while the BEM system
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matrix is not. This can be accounted for the choice of the

solvers in order to save computational time. Second, the use of

different time step lengths for the subdomain is possible. This is

an important advantage, especially in the BEM, where the

range of applicable time step lengths, resulting in a stable and

accurate solution, is limited. Finally, the numerical character-

istics of a global coupled system matrix are often very bad

when compared to the characteristics of the separate

subdomain matrices. The general disadvantage of being an

approximative method is not really an issue, since, the

approximation error becomes much smaller than the discretiza-

tion error, if appropriate convergence measures are employed.

In the staggered solution approach, which can be applied to

transient dynamic analyses only, the equations for each

subdomain are solved once at each time step, and predicted

values of the coupling boundary conditions are used. Hence,

the suitable choice of the predictor operator, which also

depends on the selected time integration scheme, as well as the

use of sufficiently small time steps, is crucial for the accuracy

of this procedure. The approach is described in detail by Park

and Felippa [27] for a variety of coupled dynamic problems in

mechanics. These authors also consider the inclusion of a

corrective iteration at each time step, but find that reducing the

time step size is more effective than an iterative solution for the

class of problems they are interested in, namely the coupling

of first-order and second-order algebraic equation systems.

Rizos and Wang [28] have developed a staggered FEM–

BEM coupling approach for the time–domain analysis of wave

propagation problems that furthermore allows for the selection

of different time step lengths in the subdomains. They use

a BEM that is based on B-Spline fundamental solutions,

and report good accuracy for several examples involving soil–

structure interaction.

However, staggered approaches should be used with great

care only, since their characteristics regarding stability and

accuracy of the solution is often not satisfactory [29].

Furthermore, the stability and accuracy of both the BEM itself

and the staggered coupling approach impose requirements

on the choice of the time step durations, which may be

contradictory. Therefore, it is desirable to use a coupling

procedure that is stable and accurate for a wide range of time

step durations. This can be obtained by introducing corrective

iterations into the staggered algorithm [29,30].

If a corrective iteration at each time step is employed, where

the interface boundary conditions are iteratively updated until

convergence is achieved, one obtains an iterative coupling

method. Within the iteration procedure, a relaxation operator

may be applied to the interface boundary conditions in order to

enable or speed up convergence. In this case, the method can

also be called an interface relaxation method. An overview

over a variety of such techniques for static analyses, involving

FEM–BEM as well as BEM–BEM coupling, is given by El-

Gebeily et al. [31] and Elleithy and Tanaka [32]. These authors

also report a number of applications to potential flow as well as

elastostatic problems.

An interface relaxation algorithm for the iterative coupling

of one FEM and BEM domain was developed by Lin et al. [33]

and Feng and Owen [34] for application in two-dimensional

linear elastostatics. In that method, initially the displacements

at the interface are guessed and assigned to the BEM

subdomain as boundary conditions. The corresponding inter-

face forces are then determined from the BEM system of

equations and directly assigned to the FEM subdomain.

Thereafter, the FEM equation system is solved to obtain a

new guess of the interface displacements. Relaxed values of the

displacements are assigned to the BEM subdomain in turn,

starting the next iteration step, until convergence is achieved.

This algorithm was investigated in detail with respect to its

convergence characteristics by Elleithy and co-workers

[31,35]. It was found that the convergence of the algorithm

depends on a large number of influence factors, such as the

geometrical and material properties of the subdomains, the

specified types of the boundary conditions, the mesh density,

and, most important, on the relaxation parameter inherent to

the proposed algorithm.

The same algorithm was modified by Soares et al. [30] and

extended for application to 2D transient electrodynamics

problems, where different time step lengths in the two

subdomains can be employed. Furthermore, possible non-

linearities in the FEM subdomain are taken into account, and

the coupling iterations are performed very effectively together

with the FEM equilibrium iterations. Thus, in non-linear

transient analysis, the extra computational costs of the

corrective iterations—as compared to the staggered approach

without iterations—are very low, while the accuracy of the

solution is highly improved.

The original algorithm [33,34] may be considered as a

sequential Dirichlet–Neumann method with single relaxation,

while the modified method [30] may be considered as a

sequential Neumann–Dirichlet method with single relaxation.

The present paper deals with the extension of the latter, such

that an investigation of arbitrary 3D systems and BEM–BEM

as well as FEM–FEM coupling becomes also possible. For this

purpose, a second relaxation step is introduced. Hence, the new

algorithm may be called a sequential Neumann–Dirichlet

method with double relaxation. The new method is applied to

some illustrative problems in 3D transient elastodynamics. A

parametric study investigates the suitable choice of the

relaxation parameters, as well as the influence of the

combination of the analysis methods used for the subdomains,

and of the time step ratios.

In Section 2 of this paper, the formulation of the non-linear

transient elastodynamic FEM is outlined. Section 3 introduces

the transient elastodynamic BEM formulation which is used

here. Details about the proposed coupling algorithm are given

in Section 4. A parametric study is described in Section 5,

while Section 6 introduces the numerical examples to show the

accuracy of the proposed methodology.

2. Finite element method

Employing the displacement-based finite element method,

the dynamic equilibrium equations for a general solid body at a

given time t can be written as [1]
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where the upper left index t marks quantities at the current

time: tu is the vector of nodal displacements, tü is the vector of

nodal accelerations, and M is the time-independent mass

matrix. The matrix tKZ
tK(tu) denotes the stiffness matrix,

which may depend on the current deformation state tu as well

as on the deformation history, and tf is the vector of external

nodal forces.

The considered time period is divided into a number of time

steps, each having the duration Dt, and an implicit time

integration scheme, such as Newmark’s method, is applied.

Taking possible non-linearities of the stiffness matrix tK into

account, an incremental solution procedure is employed, where

at each time step an equilibrium iteration is performed.

Thus, in each iterative step an equation of the form

t�Dt
K̂DkuZ

tf C t
k�1r (2)

has to be solved, where the lower left index k marks quantities

at the current iteration step, Dku is the vector of nodal

displacement increments, contributing to the total nodal

displacements such that

kuZ kK1uCDku (3)

while t�DtK̂ is the effective tangent stiffness matrix, which

contains also influences from inertial effects, tf is the vector of

applied nodal forces, and t
k�1r is a vector that comprises

influences from inertial forces and from internal element

stresses corresponding to the previous step of the iteration.

3. Boundary element method

Consider an arbitrary solid body, consisting of an

homogeneous, isotropic, linearly elastic material and subjected

to boundary conditions which are given as transient traction

loads or imposed displacements at the surface of the body or as

an incident displacement wave field. The surface is discretized

by means of elements, which are connected by their nodes, and

the boundary conditions are selected in such a way that all

displacements remain small compared to the dimensions of the

body. Moreover, a time period, divided into a finite number of

time steps, each having the duration Dt, shall be considered,

and it is assumed that the body under investigation is initially

at rest.

The time-domain boundary element method then yields an

algebraic equation of the form [4,5,36]

1
T

tuZ
1
U

ttC
X

mK1

kZ1

ððm�kþ1ÞDtUkDttKðm�kþ1ÞDt TkDtuÞC tuinc

(4)

which is valid at any time step m, referring to the time instance

tZmDt, and relates the nodal values of the surface tractions to

those of the displacements. In Eq. (4), tT and tU are the so-

called influence matrices for the retarded time t, tu and tt are

the vectors of nodal displacements and tractions at time t, and
tuinc are displacements referring to an incident wave field,

e.g. caused by an earthquake. The sum on the right hand side

represents the (known) influence of all previous time steps.

In order to use concentrated nodal forces instead of surface

tractions, it is necessary to transform the fractions in Eq. (4)

into nodal forces. Therefore, a transformation matrix A is

introduced, which facilitates the computation of energetically

equivalent nodal forces from given tractions [13], and which

therefore is defined by tfZAtt, with tf being the vector of nodal

forces.

Introducing this transformation matrix into Eq. (4) yields

1
T

tuZ
1 �U

tf C th; (5)

where the matrix 1 �U is given by 1 �UZ
1UAK1 Furthermore, the

sum term and the term representing the influence wave field in

Eq. (4) have been replaced by the abbreviation th.

Before Eq. (5) can be solved, the matrices and vectors have

to be re-arranged, yielding

Y
txZX

tyC th; (6)

where vector tx contains the unknown nodal forces and

displacement values at the current time step, while in ty the

according known values are assembled. Note that the matrices

X and Y are constant for all time steps. Eq. (6) is solved time

step by time step, starting from tZDt and continuing in a time-

marching manner.

4. Iterative coupling of two subdomains

4.1. Domain decomposition

Consider an arbitrary 3D solid body U, which is

decomposed arbitrarily into two subdomains U1 and U2.

Each subdomain can be treated using either the FEM or the

BEM, i.e. the Eqs. (2) and (6) are used, respectively. It is

required that the locations of the nodal points of both

subdomains match along the interface.

The coupling of the subdomains is ensured by imposing the

appropriate compatibility and equilibrium conditions at the

interface boundaries. In the proposed method, these conditions

are formulated as compatibility of the displacements and

equilibrium of the forces at the interface nodes, i.e.

u1;c Z u2;c (7)

and

f 1;c C f 2;c Z 0; (8)

where the subscripts 1,c and 2,c mark the coupled nodal

degrees of freedom in U1 and U2, respectively.

For each subdomain, the time step duration may be chosen

arbitrarily. Thus, the time step durations for all subdomains can

be adjusted according to stability and accuracy considerations,

which in turn depend on the applied analysis method and the

material parameters. The shorter one of the two time steps is

labelled as the reference time step

Dtref ZminðDt1; Dt2Þ; (9)
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where the time step durations associated with U1 and U2 are

denoted by Dt1 and Dt2, respectively. The domain, for which

the reference (i.e. shorter) time step duration is defined, is

called reference domain hereafter, and its associated quantities

are marked by the subscript ‘ref’, while quantities associated to

the other, non-reference, domain are marked by the subscript

‘long’, such as

Dtlong ZmaxðDt1; Dt2Þ: (10)

4.2. Iterative coupling algorithm

The proposed algorithm is based on the sequential

Neumann–Dirichlet method with single relaxation, which has

been developed by Soares et al. [30] for 2D investigations. In

the present work, however, a second relaxation pass is

introduced in order to improve the convergence behaviour.

Thus, a sequential Neumann–Dirichlet method with double

relaxation is obtained. Moreover, the model has been extended

to the investigation of 3D problems.

As outlined previously, the computations for each sub-

domain are performed separately, and the coupling of the

subdomains, i.e. the satisfaction of the coupling conditions (7)

and (8), is enforced at a number of discrete time instances,

namely at each reference time step

m
tref ZmDtref ; mZ 1; 2; 3;. (11)

Due to the possibility that the durations of the time steps are

different, the two subdomain equations generally cannot be

solved for the same instance of time. Instead, the equations are

solved for different times mtref (reference domain) and ptlongZ

pDtlong, pZ1, 2, 3,. (non-reference domain), and the values

from the non-reference domain are interpolated or extrapolated

in order to obtain the values at the time instance mtref, at which

the coupling is performed. Correspondingly, extrapolation or

interpolation is employed to obtain the values at the non-

reference time ptlong from those at the reference time, where

necessary.

In the time-domain BEM scheme, which was outlined in

Section 3, the surface tractions or nodal forces usually are

assumed to remain constant within each time step, while the

displacements are assumed to vary linearly with time.

Therefore, in the case of BEM nodal forces, constant time

interpolation or extrapolation is employed, while in all other

cases linear interpolation or extrapolation is used.

At any reference step m, the non-reference step number p is

chosen such that

m
trefKwDtlong%

p
tlong!

m
tref C ð1KwÞDtlong; (12)

where wR0 is a parameter which controls the update of the

time ptlong in order to avoid extreme extrapolations. This

means, if wZ0, always ptlongR
mtref holds. If wO0, however, in

cases when otherwise pK1tlong would be only slightly smaller

than mtref, the update of the non-reference time is delayed and
ptlong!

mtref is enforced.

The effect of w on the determination of the coupling forces

at the time t1—in the case that the reference domain is U2—is

shown in Fig. 1. Accordingly, the effect on the determination of

the coupling displacements at t2 in the case that the reference

domain is U1 is similar. The authors found a choice of wz0.2

to be generally suitable.

Further details on the proposed algorithm are given in

Table 1.

The formulation includes two independent relaxation

operations (steps 2.4.4 and 2.4.9 in Table 1), controlled by

the parameters uu and uf. In order to obtain some information

about how to choose these parameters, a parametric study has

been performed (see Section 5).

4.3. Convergence criteria

When using iterative solution procedures, the appropriate

identification of convergence is essential. In the present study,

four different convergence criteria are employed, which will be

outlined in the following.

The first of the convergence criteria is based on a

displacement increment measure and is given by

jj
tref
k u�1;cK

tref
k�1 u2;cjj2

jj
tref
k u2;cjj2

!3u (13)

The second criterion is based on an unbalanced forces

measure:

jj
tref
k f�2;c C

tref
k�1 f 1;cjj2

jj
tref
k f 1;cjj2

!3f (14)

Fig. 1. Effect of the parameter w on the determination of the coupling forces t1fc at time t1Z
p
tlong in the case that the reference domain is U2.
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Note that due to (8) the coupling forces at U1 are reversed

when compared to those at U2.

When domain decomposition is used, the coupling

interfaces may be located at some distance from the zones,

where loads are applied. Therefore, in wave propagation

problems, it may take several time steps for the waves to reach

a coupling interface. During that time period, i.e. before any

wave has reached the interface, the interface itself remains in

tranquillity. Consequently, the exact solution for the coupling

forces as well as for the displacements at the coupling interface

is zero. In such cases, both of the aforementioned convergence

measures are not appropriate, since they employ a division by

zero (or by a quantity which is very close to zero).

Therefore, two additional convergence measures are

introduced, which compare the displacement increments and

the unbalanced forces at the coupling interface to the

prescribed displacements and forces, respectively, at other

parts of the boundaries. The first of these criteria is

jj
tref
k u�1;cK

tref
k�1 u2;cjj2

jjtrefupjj
!3v (15)

where

jjtrefujjZ
X

2

kZ1

ffiffiffiffiffiffiffiffiffiffiffi

nkdof;c

nkdof

s

jjtrefujj2

 !

(16)

is a weighted norm of the prescribed displacements at the

subdomains, where nkdof and nkdof;c are the total number of

degrees of freedom and the number of coupled degrees of

freedom, respectively, of the domain no. k. The vector trefuk;p

contains the prescribed nodal displacements in the domain no.

k at the current time.

A second, similar criterion can be constructed for the

coupling forces. One obtains

jj
tref
k f�2;c C

tref
k�1 f 1;cjj2

jjtref f pjj
!3g (17)

where

jjtref f pjjZ
X

2

kZ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nkdof;c

nkdof
jjtref f k;pjj2

s
 !

(18)

is a norm of the prescribed nodal forces, and tref f k;p is a vector

that contains the prescribed nodal forces in the domain no. k.

Convergence is assumed to be achieved either if criteria (13)

and (14) are satisfied, or if criteria (15) or (17) is satisfied.

With respect to the fact that in the cases when the criteria

(15) or (17) are to be applied, the exact solution is zero, i.e.

much smaller than the applied forces or displacements, the

tolerances 3v and 3g should be chosen considerably smaller than

3u and 3f. In this way, it is also guaranteed that the latter

convergence criteria do not spoil the accuracy of the results in

those time steps, where the interface is no longer in tranquillity.

In all the examples presented hereafter, the convergence

tolerances 3uZ3fZ1.0!10K3 and 3vZ3gZ1.0!10K5 are

chosen.

5. Parametric study

The convergence characteristics of the sequential Dirichlet–

Neumann FEM–BEM iterative coupling method was studied

Table 1

Algorithm for the iterative coupling

1. Initial settings. Set t1Z0, t2Z0 and DtrefZmin(Dt1, Dt2) (note that either t1htref, t2htlong or t1htlong, t2htref
2. Time loop over all reference time steps

2.1 Update reference time: tref/trefCDtref
If trefOtstop, finish the analysis

If tlong!trefKwDtlong update non-ref. time: tlong/tlongCDtlong
2.2. Update time ratio parameter: lZ(tlongKtref)/Dtlong

2.3. Set iteration counter kZ0. Choose initial coupling forces tref
0

f 1;c

2.4 Iterative loop until convergence

2.4.1 If t1stref, perform time extrapolation of coupling forces in order to obtain forces at time t1

t1
k f 1;cZ

tref
k f 1;c if U1 is a BEM domain

ð1KlÞK1ð
tref
k f 1;cKlt1�Dt1 f 1;cÞ if U1 is a FEM domain

(

2.4.2 Apply t1
k f 1;c as boundary conditions to U1, and solve system of Eqs. (2) or (6), respectively, for this domain (at time t1). Displacements

t1
k u

�
1;c are obtained

2.4.3 If t1stref, time interpolation of displacements to obtain displacements at time tref :
tref
k u�1;cZ ð1KlÞ

t1
k u

�
1;cCl t1KDt1u1;c

2.4.4 Perform relaxation of the displacements:
tref
k u2;cZuu

tref
k u�1;cC ð1KuuÞ

tref
k�1u2;c

2.4.5 If t2stref, perform time extrapolation of displacements to obtain displacements at time t2:
t2
k u2;cZ ð1KlÞK1ð

tref
k u2;cKl t2�Dt2u2;cÞ

2.4.6 Apply
t2
k u2;c as boundary conditions to U2, and solve system of Eqs. (2) or (6), respectively, for this domain (at time t2) Coupling forces

t2
k f

�
2;c are obtained

2.4.7 If t2stref, perform time interpolation of coupling forces in order to obtain forces at time tref:
tref
k f�2;cZ

t2
k f

�
2;c if U1 is a BEM domain

ð1KlÞ
t2
k f

�
2;cClt2�Dt2 f 2;c if U1 is a FEM domain

(

2.4.8 Check for convergence If convergence is achieved, jump back to 2.1 and start next time step

2.4.9 Perform relaxation of the coupling forces in order to obtain the new coupling forces for U1:
tref
kþ1f 1;cZKuf

tref
k f�2;cC ð1Kuf Þ

tref
k f 1;c

2.4.10 Update iteration counter k/kC1. Go back to 2.4.1

3 End of analysis
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extensively by Elleithy and co-workers [31,35]. Interestingly,

these researchers found that the initial guess of the interface

displacement does not influence the existence of convergence.

(It only has a slight effect on the rate of convergence, though.)

Whereas, the convergence does depend on the mesh density of

the subdomains, the specified types of boundary conditions,

and the geometrical as well as material properties. Most

importantly, it depends on the selection of the relaxation

parameter.

It seems natural that these findings can be transferred to the

time-domain algorithm proposed in the present paper. More-

over, the choice of the analysis methods for the subdomains, as

well as the choice of the respective time step durations, may

also influence the convergence behaviour. In order to obtain

some information about these factors and to provide some

guidelines on the selection of the relaxation parameters uf and

uu, parametric study has been performed.

An elastic rod (length 12 m, cross-section 6 m!6 m),

consisting of an homogeneous, linearly elastic material with

Young’s modulus EZ1.0!106 kN/m2, Poisson’s ratio nZ

0.25, and mass density rZ1.0 t/m3 (P-wave velocity c1Z

1095.5 m/s), is analyzed. The rod is fixed at one end, and

excited by a surface traction at the other, free end, while the

remaining surfaces are fraction free (Fig. 2 left). The excitation

varies in time in the form of a sine function with a period of

TZ0.025 s.

The computational model is decomposed into two sub-

domains, each having the dimensions 6 m!6 m!6 m and

being modelled using either the FEM or the BEM (Fig. 2 tight).

Elements with quadratic shape functions are used (FEM: 20-

node solid elements BEM: 8-node surface elements). The

length of all element edges is 2 m.

For the two subdomains, four different combinations of

analysis methods are considered: (I) BEM–BEM, (II) FEM–

FEM, (III) FEM–BEM and (IV) BEM–FEM. In the two latter

cases, the BEM domain is the upper part of the rod, i.e. that

part, where the load is applied, while the FEM domain is the

lower part with the fixed end. The difference between the

models is, that in Model (III), U1 is the FEM subdomain, while

in Model (IV), U1 is the BEM subdomain (adopting the

notation from Section 4 and from the algorithm given in

Table 1).

The time step duration Dt for the calculations is chosen to be

optimal with respect to stability and accuracy of the BEM.

Therefore, it mainly depends on the spatial discretization and

on the wave propagation velocities in the material. Frequently,

the dimensionless parameter b is employed, which is given by

bZ
cDt

lb
; (19)

where c is the wave propagation velocity corresponding to the

predominant wave form (P- or S-wave) in the problem, and lb is

a discretization parameter, which may be chosen as the mean

value of the distances between neighbouring nodes.

In the time-domain BEM, the value of b is restricted to a

very small range, where stable and satisfactory results are

achieved. This range is frequently reported to be about 0.7!

b!1.2 for 3D elastodynamics [5,37,38].

In the present case, the value bZ1.0 is used, and the

predominant wave form is the P-wave with cZc1Z

1095.5 m/s. Owing to the homogeneity of the mesh, lb is

easily determined to be 1.0 m in the present case. Thus, from

Eq. (19) one obtains an optimal time step duration of DtBEZ

0.91!10K3 s for the BEM subregion.

In the parametric studies, equal time step durations DtFEZ

DtBE for both subdomains are employed. Additionally, Model

(III) is analysed using different time step ratios DtFE/DtBEZ1.5

(Model IIIb), 0.7 (IIIc), 0.5 (IIId) and 0.3 (IIIe).

With each one of the abovementioned models, parametric

studies are performed with respect to the relaxation parameters

uu and uf. Each of the parameters is varied in the range from

0.2 to 1.0 in steps of 0.05. The considered problem then is

solved for 20 time steps, and the average number of iterations

per time step is determined. If after 30 iterations, no

convergence could be achieved, the calculation is stopped.

The results of the parametric studies are shown in Figs. 3

and 4. It can be seen that the convergence characteristics are

very different, depending on the subdomain analysis methods

as well as on the time step ratios.

The further (dependence on the subdomain analysis

methods) is in accordance with the findings of Elleithy and

Tanaka [39], who formally analysed the convergence

behaviour of the Dirichlet–Neumann FEM–BEM coupling

algorithm (with single relaxation), where the Dirichlet inter-

face boundary data is applied to the FEM domain, and

compared it to the behaviour of the same algorithm, where the

Dirichlet data is applied to the BEM domain instead [31].

They found that the conditions of convergence, in particular

the choice of the relaxation parameter, are formally different in

the two variants of the method. A parametric study confirms the

formal findings.

As one can see from the results given in Fig. 3, the same

seems to be true for the four variants of the Neumann–Dirichlet

subdomain coupling algorithm analysed in the present paper.

Moreover, the dependence on the two relaxation parameters is

nearly symmetric in all cases analysed here. Therefore, in these

Ω
u

Ω
l

X3

X2

X1

12 m

6 m 6 m

p(t)

Fig. 2. Elastic rod model for the parametric study: boundary conditions (left)

and discretization (right).
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cases the parameters may be chosen identical, or one of them

may be dropped at all.

From Fig. 3, it can be seen that the range from which the

relaxation parameters can be chosen is very large for FEM–

BEM coupling, while it is considerably smaller for FEM–FEM

and BEM–BEM coupling. In the case of BEM–FEM coupling,

it proves to be very difficult to achieve convergence at all.

Optimal combinations of uu and uf exist in all cases; however,

the optimum is found at different locations.

In order to address the effect of the time step ratio on the

solution convergence, Model (III) is investigated for different

time steps lengths of the FEM subdomain. From Fig. 4, it is

observed that for very small FEM time step durations (as

compared to the BEM time step durations), the convergence

behaviour becomes even more favourable. Whereas, if the

time step ratio is 0.7 or 1.5, convergence cannot be ensured

for combinations, where both relaxation parameters are close

to one.

To conclude, it is very difficult to obtain general guidelines

for the choice of the relaxation parameters. One recommen-

dation seems to be obvious for cases, where an FEM and a

BEM subdomain are involved: always take the FEM

subdomain as U1 in the proposed algorithm. Moreover, if in

such cases the time step durations can be chosen equally, or

with a small ratio DtFE/DtBE, both relaxation parameters

should be chosen close to one. The combination uuZ1.0

and ufZ0.75 seems to be a good choice in the majority of

those cases.
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Fig. 3. Results of the parametric study for Models (I)–(IV) withDtFE/DtBEZ1.0: average no. of iterations per time step in dependency of the relaxation parametersuu

and uf.

O. von Estorff, C. Hagen / Engineering Analysis with Boundary Elements 30 (2006) 611–622 617



Finally, it should be mentioned that the employment of a

second relaxation substep (‘double relaxation’) seems to be of no

significant advantage in the linear calculations analysed here.

The second substep may be dropped without deteriorating the

characteristics of the algorithm. However, if non-linear material

behaviour is taken into account in one ormore of the subdomains,

the double relaxation clearly improves the convergence

characteristics of the algorithm. This is shown by some non-

linear calculations which were performed by the authors.

Systematic studies on this point are being done at present.

Moreover, further studies, considering the stiffness ratios

and other factors, should be undertaken for the proposed

algorithm, as it was done previously, e.g. for several

FEM–BEM iterative coupling algorithms applied to stationary

problems in Ref. [31].

6. Numerical examples

6.1. D-wave propagation

By means of an illustrative example, the validity of the

results obtained from the proposed method is shown. The

results axe compared to analytical solutions as well as to

solutions obtained by a direct coupling approach.

The employed model is very similar to that from the

parametric studies given in Section 5, but with slightly different
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per time step in dependency of the relaxation parameters uu and uf.
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dimensions and material parameters. The discretization is

chosen much finer, employing elements with linear shape

functions and with an edge length of 0.5 m constantly (Fig. 5).

For this example, only an FEM–BEM model is considered,

where the FEM subdomain is the upper, loaded part of the rod.

Thus, the discretization consists of 1000 finite elements and

600 boundary elements.

The material parameters, corresponding to a linearly elastic

material, are: Young’s modulus EZ2.66!105 kN/m2, Pois-

son’s ratio nZ0.33, and mass density rZ2.0 t/m3 (P-wave

velocity c1Z443.9 m/s).

The boundary conditions are chosen in a way that the results

allow a comparison with a ID problem, for which an analytical

solution exists [38]. The rod is subjected to a Heaviside forcing

function p(t)Z4.0 kN/m2 H(t) at the top surface, while at all

other surfaces, the normal displacements are restraint to zero.

The time step duration for the BEM subdomain is DtBEZ

0.00125 s (bZ1.11). Two different time steps for the FEM

subdomain are selected, namely DtFEZ1.0 DtBE and 0.5 DtBE.

Furthermore, for one calculation, some numerical damping is

introduced by selecting values for the Newmark time

integration parameters [1] which slightly deviate from the

trapezoidal rule: dZ0.36 and aZ0.70.

The convergence parameters are chosen as uuZ1.0 and

ufZ0.75, corresponding to the optimal range of these

parameters found from the parametric study. The average

number of iterations per time step was 3.7, 3.4 and 2.9,

respectively, in the three calculations.

The response of the rod is investigated at three points

(Fig. 6), namely at point A at the center of the loaded (top)

surface, at point B at the center of the bottom surface, and at

point C at the center of the coupling interface. The respective

results are shown in Figs. 7–9, where they are compared to the

analytical solution (thick solid line).

The case with DtFEZ1.0 DtBE was also analysed by a direct

coupling approach [40]. The results were found to be identical

to those obtained by the proposed iterative coupling algorithm,

and are therefore not explicitly shown here. The computer

times, however, were considerably different: 14,000 CPU

seconds for the iterative coupling as opposed to 25,500 CPU

seconds for the direct coupling, measured on a normal PC with

a 1000 MHz Pentium IV processor. In these timings,

computation of the BEM influence matrices is not included.

10 m

5 m 5 m

Ω1 (FEM)

Ω2 (BEM)

X3

X2

X1

Fig. 5. FEM–BEM discretization of the elastic rod employed for the 1D wave

propagation example.

Fig. 6. Locations of the evaluation points A–C in the elastic rod model.

Fig. 7. Vertical displacements at points A and C, considering different time step

relations and Newmark parameters.

Fig. 8. Vertical restraint forces at point B (bottom of the rod), considering

different time step relations and Newmark parameters.
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In both cases, LU decomposition is employed for the solution

of the equation systems, where the system matrix or matrices

are decomposed only once for all time steps (since they are

constant).

From the curves it can be observed that the displacement

results obtained with the new coupling approach do match the

analytical solution very well (Fig. 7), while the traction results

exhibit some non-physical oscillations, when the trapezoidal

rule is applied for the time integration (Figs. 8 and 9). These

oscillations can be considerably reduced by choosing larger

values of the Newmark parameters. Furthermore, it can be

observed that the use of different time step durations in the

subdomains is very important, since FEM analyses usually do

not give proper results for time step durations that are best

suited for BEM analyses. Using a smaller time step duration for

the FEM subdomain than for the BEM one yields results that

are much closer to the analytical solution than in the case of

identical time step durations for both subdomains.

6.2.. Slender wall excited by incident wave

The next example deals with a more realistic earthquake-

engineering example, namely a slender wall, which is excited

by an incident displacement wave. The considered system is

shown in Fig. 10. The soil (i.e. a reasonable part of the traction-

free surface of the halfspace) is discretized with 132 boundary

elements, while the wall is represented by 32 finite elements.

All elements have edge lengths of 2.0 m and are based on

quadratic shape functions in space. The material parameters are

given in Table 2.

The input motion is applied as an incident plane wave field,

where the time variation is given by a Ricker wavelet [23] with

a dominant period of T0Z0.0536 s, corresponding to the

second mode of vibration of the wall when considered as a

rigidly supported cantilever beam, and an amplitude of aZ

0.02 m. The time shape of the Ricker wavelet is shown in

Fig. 11. The wave propagation direction is given by the vector

pZ(0, 1, K1)T, while the direction of particle displacements

(polarization) is dZ(1, 0, 0)T, such that the wall is excited in its

‘weak direction’ (x).

The convergence parameters uuZ1.0 and ufZ0.75 are

used, and the time step duration for the BEM subdomain is

DtBEZ0.0013 s (bZ1.0). Three analyses are performed,

employing different time steps for the FEM subdomain,

namely DtFEZ1.0 DtBE, 0.5 DtBE and 0.25 DtBE.

The displacement responses of the system are evaluated at

four distinct points of the wall (see Fig. 10, left): point A is

located at the center of the top surface of the wall, Points B and

C can be found at its upper edges, and Point D is assumed at the

center of the bottom cross-section, i.e. at the soil–structure

interface. The time histories of the displacements at these

four points are given in Figs. 12 and 13. It can be seen that

resonance oscillations are excited, with the observed period

being different from the dominant period of the incident wave.

Some higher modes are excited in the longitudinal (y) direction

of the wall, as can be seen from comparison of the responses at

the three points at the top of the wall. This is due to the fact that

the incident SH wave does not reach the wall over its whole

length at the same time, but rather propagates along the footing

of the wall. Since, the wave propagation speed inside the wall

is significantly higher than in the soil, superposition of

refracted and reflected waves generates a complicated pattern

within the wall, exciting a 2D oscillation mode. It is interesting

to note that at the edges much higher amplitudes are observed

than at the center.

Fig. 9. Vertical coupling forces at the interface (point C), considering different

time step relations and Newmark parameters.

Fig. 10. Wall–soil system under consideration: discretization (right) and

locations of the evaluation points A–D (left). All element edge lengths are

2.0 m.

Table 2

Material parameters used in the model

Wall Soil

Mass density (r (t/m3) 1.8 1.8

Young’s modulus, E (kN/m2) 1.0!107 5.0!107

Poisson’s ratio n (–) 0.25 0.4

P-wave velocity, c1 (m/s) 2582.0 771.5

S-wave velocity, c2 (m/s) 1490.7 314.9

Fig. 11. Time shape of the incident wave (Ricker wavelet).
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Comparing the results obtained with different FE time step

durations, once more some differences in the calculated

responses are observed. The smaller the FE time step size,

the smaller the amplitudes of vibration. This corresponds to the

observations from the elastic rod example (Section 6.1), where

the displacement amplitudes are over-estimated, when large FE

time step durations are used (Fig. 7).

7. Conclusion

An iterative coupling algorithm for FEM and BEM

subdomains in 3D, transient elastodynamic analyses has been

presented, which may be categorized as the sequential

Neumann–Dirichlet method with double relaxation.

The major advantage of this approach, as compared to

conventional, direct coupling procedures, can be seen in the

fact that the subdomain system equations are solved separately,

using solution algorithms which are optimized with respect to

the employed subdomain a methods. Consequently, the

systems of equations to be solved are much smaller than the

conventional coupled systems. In addition, the iterative

coupling offers two advantages: it is straightforward to use

different time steps in each subdomain, and, moreover, to take

into account non-linearities (in the FEM subdomain) in the

same iteration loop that is needed for the coupling.

By means of a parametric study, the convergence

characteristics of the proposed algorithm were investigated. It

was found that the convergence behaviour is considerably

influenced by the employed combination of subdomain

analysis methods (FEM and/or BEM), and by the selection of

the respective time step durations. Moreover, the convergence

behaviour strongly depends on the choice of the two relaxation

parameters which are contained in the algorithm. In the linear

calculations analysed in this paper, however, the second

relaxation substep is of no significant advantage. Whereas,

some further calculations indicate that clear advantages exist, if

non-linearities are taken into account.

The validity of the proposed method has been shown by

means of two numerical examples. First, a 3D, finite rod was

analysed, simulating a 1D wave propagation problem. The

results were compared to the analytical solution as well as to

results obtained by the conventional direct coupling method,

and it was seen that the proposed algorithm yields excellent

accuracy. Second, the response of a slender wall to an

incident ‘seismic’ wave field was analysed, illustrating the

applicability of the algorithm to more sophisticated, 3D

problems.
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