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a b s t r a c t

A new OðNÞ fast multipole formulation is proposed for non-oscillatory kernels. This

algorithm is applicable to kernels Kðx; yÞ which are only known numerically, that is their

numerical value can be obtained for any ðx; yÞ. This is quite different from many fast

multipole methods which depend on analytical expansions of the far-field behavior of K,

for jx� yj large. Other ‘‘black-box” or ‘‘kernel-independent” fast multipole methods have

been devised. Our approach has the advantage of requiring a small pre-computation time

even for very large systems, and uses the minimal number of coefficients to represent the

far-field, for a given L2 tolerance error in the approximation. This technique can be very

useful for problems where the kernel is known analytically but is quite complicated, or

for kernels which are defined purely numerically.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The fast multipole method (FMM) is a technique to calculate sums of the form

f ðxiÞ ¼
XN

j¼1

Kðxi; yjÞ rj; i ¼ 1; . . . ;N

in OðNÞ operations with a controllable error e. Historically, Greengard and Rokhlin [1] first developed a technique for the ker-

nel Kðx; yÞ ¼ 1=r ðr ¼ jx� yjÞ based on Legendre polynomials and spherical harmonics. The technique was later extended to

the oscillatory kernel eikr=jx� yj. Both these approaches require approximations of Kðx; yÞ for jx� yj sufficiently large (in a

sense which can be made precise) which are typically obtained using known analytical expansions such as:

eikr

ikr
¼

X1

m¼0

ð2mþ 1Þh
ð1Þ
m ðkjujÞjmðkjvjÞPmðcosðhÞÞ

where r ¼ jx� yj;u� v ¼ x� y with jv j < juj;h
ð1Þ
m is a spherical Bessel function of the third kind, jm is a spherical Bessel func-

tion of the first-kind, Pm is the Legendre polynomial of degreem, and h is the angle between u and v. By truncating the infinite

series and using other relations one can derive a fast OðNÞ or OðN lnNÞ method.

Extensions to general kernels are possible as evidenced by kernel-independent FMMs, see for example [2,3]. Fewer meth-

ods exist which allow building a fast OðNÞmethod using only numerical values of K, that is without requiring approximations

based on analytical expansions. These techniques are often based on wavelet decompositions [4,5], singular value decompo-

sitions [6,7], or other schemes [2,8].
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In Gimbutas et al. [7], a scheme based on singular value decompositions (SVD) is used. Using the usual tree decomposition

of the domain, they denote by Yb a cluster at level l and by Zb the union of Yb and its nearest neighbor clusters at level l. Then

Xb is defined as the complement of Zb. The kernel Kðx; yÞ can then be decomposed using a continuous SVD:

Kðx; yÞ �
Xn

l¼1

sl ulðxÞ v lðyÞ

where y 2 Yb and x 2 Xb. This low-rank approximation can be extended to produce multipole-to-multipole, local-to-local and

multipole-to-local (M2L) operators. The advantage of this technique is that the SVD guarantees an optimal compression.

Therefore the number of multipole coefficients that one operates with is minimal for a given approximation error in the

L2 norm. The drawback of this approach is the cost of pre-computing the SVD of K which can be very expensive for large

3-D domains.

Interpolation techniques can be used to construct fast multipole methods. This approach has not attracted a lot of atten-

tion but a few papers have used interpolation techniques (e.g. Chebyshev polynomials) in various ways as part of construct-

ing fast methods [9–11]. The reference [12] discusses an idea similar to this paper, with some differences, including the fact

that the multipole and local expansions are treated differently, whereas our scheme is more ‘‘symmetrical” and treats them

in a similar way. In addition, [12] focuses on a 1 dimensional FMM with the kernel 1=x, which is required by their fast algo-

rithm for interpolation, differentiation and integration.

The basic idea of an interpolation-based FMM is as follows. If we let wlðxÞ denote the interpolating functions, then:

Kðx; yÞ �
X

l

X

m

Kðxl; ymÞwlðxÞwmðyÞ

which is a low-rank approximation. This works for any interpolation scheme. The advantage of this type of approach is that it

requires minimal pre-computing. In addition, the only input required is the ability to evaluate K at various points. No kernel-

dependent analytical expansion is required. The drawback is that the number of expansion terms (indices l andm in the sum

above) is in general sub-optimal for a given tolerance e.

This paper proposes a new approach which essentially combines these two ideas. A Chebyshev interpolation scheme is

used to approximate the far-field behavior of Kðx; yÞ, i.e., when jx� yj large. This leads to an efficient low-rank representation

for non-oscillatory kernels. The multipole-to-local (M2L) operator then consists in evaluating the field due to particles lo-

cated at Chebyshev nodes. This operation can be done efficiently using an SVD. This makes the scheme optimal since the

M2L step is by far the most expensive. A key point is that the SVD needs to be computed only ‘‘locally”. More specifically,

given a tolerance e, if the kernel is translation-invariant, i.e., of the form Kðx� yÞ, then the cost of pre-computing the SVD

is OðlnNÞ; otherwise the pre-computing cost is OðNÞ. This is a true pre-computation since this calculation is independent

of the location of the sources yj and observation points xi, and only depends on the desired accuracy.

This article starts by discussing interpolation methods and in particular Chebyshev polynomials, which have several

desirable properties. Then we explain how one can construct an OðNÞ fast method from this interpolation scheme, and

how it can be further accelerated using singular value decompositions. Finally some numerical results illustrate the accuracy

and efficiency of the method.

2. Using Chebyshev polynomials as an interpolation basis

Consider sums of the form

f ðxiÞ ¼
XN

j¼1

Kðxi; yjÞrj; i ¼ 1; . . . ;N ð1Þ

where xi 2 ½�1;1� are observation points, rj are the sources, yj 2 ½�1;1� are the locations of the sources, N is the number of

observation points and sources, and the kernel Kðx; yÞ is continuous on ½�1;1� � ½�1;1�. These sums appear in many appli-

cations such as N-body problems and integral equations in electromagnetics and acoustics. A direct calculation of this sum

has a OðN2Þ complexity resulting from the multiplication of a N � N matrix K ij ¼ Kðxi; yjÞ with the N-vector of sources rj.

Since the number of observation points and sources is often very large computing the sum directly is intractable. An ap-

proach to improve the efficiency of this computation consists in using a low-rank approximation of the kernel:

Kðx; yÞ �
Xn

l¼1

ulðxÞv lðyÞ: ð2Þ

A fast summation method can be created by substituting the low-rank approximation (2) into the sum (1):

f ðxiÞ �
Xn

l¼1

ulðxiÞ
XN

j¼1

v lðyjÞrj: ð3Þ
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The outline for the method given by Eq. (3) is as follows:

1. First transform the sources using the basis functions v l:

W l ¼
XN

j¼1

v lðyjÞrj; l ¼ 1; . . . ;n:

2. Then compute f ðxÞ at each observation point xi using the basis functions ul:

f ðxiÞ �
Xn

l¼1

ulðxiÞW l; i ¼ 1; . . . ;N:

The computational cost of each step is OðnNÞ hence the fast summation method proposed above scales as Oð2nNÞ. When

n � N this is a significant reduction from the OðN2Þ scaling of the direct calculation.

A low-rank approximation of the kernel Kðx; yÞ can be constructed by introducing an interpolation scheme. To begin con-

sider a function gðxÞ on the closed interval ½�1;1�. An n-point interpolant that approximates gðxÞ can be expressed as

pn�1ðxÞ ¼
Xn

l¼1

gðxlÞwlðxÞ ð4Þ

where fxlg are the n interpolation nodes and wlðxÞ is the interpolating function corresponding to the node xl. For example if

the functions wlðxÞ are taken to be the Lagrange polynomials then pn�1ðxÞ is a ðn� 1Þ-degree polynomial approximation of

gðxÞ. Eq. (4) can be used to approximate the kernel Kðx; yÞ by first fixing the variable y and treating Kðx; yÞ as a function of x:

Kðx; yÞ �
Xn

l¼1

Kðxl; yÞwlðxÞ:

Now noting that Kðxl; yÞ is a function of y the interpolation formula (4) can be applied again to give

Kðx; yÞ �
Xn

l¼1

Xn

m¼1

Kðxl; ymÞwlðxÞwmðyÞ ð5Þ

which is a low-rank representation of the kernel Kðx; yÞ with

ulðxÞ ¼ wlðxÞ

v lðyÞ ¼
Xn

m¼1

Kðxl; ymÞwmðyÞ:

Although any interpolation scheme can be used to construct a low-rank approximation, the Chebyshev polynomials will

serve as the interpolation basis along with their roots as the interpolation nodes. Before justifying this selection we begin

by recalling some properties of Chebyshev polynomials.

The first-kind Chebyshev polynomial of degree n, denoted by TnðxÞ, is defined by the relation

TnðxÞ ¼ cosðnhÞ; with x ¼ cos h:

The domain of TnðxÞ is the closed interval ½�1;1�. TnðxÞ has n roots located at

xm ¼ cos hm ¼ cos
ð2m� 1Þp

2n

� �
; m ¼ 1; . . . ;n

and nþ 1 extrema located at

x0m ¼ cos h0m ¼ cos
mp

n

� �
; with Tnðx

0
mÞ ¼ ð�1Þm; m ¼ 0; . . . ; n:

The set of roots fxmg is commonly referred to as the Chebyshev nodes.

One advantage of using Chebyshev nodes is the stability of the interpolation scheme. While a scheme using equally-

spaced nodes on the ½�1;1� interval to interpolate a function gðxÞ suffers from Runge’s phenomenon and does not converge

uniformly as the number of nodes n becomes large, Chebyshev interpolation ensures uniform convergence with minimal

restrictions on gðxÞ. Another benefit afforded by interpolating at the Chebyshev nodes is the near-minimax approximation

of gðxÞ which gives a uniform approximation error across the interval ½�1;1�. This can be contrasted with the error behavior

in the regular multipole expansion of the Laplacian kernel 1=r using spherical harmonics. Similar to a Taylor series expan-

sion, the regular multipole expansion is very accurate around the center of the interval but suffers from larger errors near the

endpoints. Therefore to ensure a specified accuracy across the entire interval a high-order interpolant is needed in order to

adequately resolve the endpoints. The uniform error distribution of Chebyshev interpolation allows for the use of fewer

interpolation nodes to achieve a given accuracy and is nearly optimal in the minimax sense.
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Using the Chebyshev nodes of TnðxÞ as the interpolation nodes, the approximating polynomial pn�1ðxÞ to the function gðxÞ

can be expressed as a sum of Chebyshev polynomials

pn�1ðxÞ ¼
Xn�1

k¼0

ckTkðxÞ

where

ck ¼

2
n

Pn

l¼1

gðxlÞTkðxlÞ if k > 0

1
n

Pn

l¼1

gðxlÞ if k ¼ 0

8
>>><
>>>:

and xl are the roots of TnðxÞ. By rearranging the terms in the sum, pn�1ðxÞ can be written in the form of (4):

pn�1ðxÞ ¼
Xn

l¼1

gðxlÞSnðxl; xÞ

where

Snðx; yÞ ¼
1

n
þ
2

n

Xn�1

k¼1

TkðxÞTkðyÞ:

The rate of convergence of pnðxÞ to gðxÞ is given by two results from Chebyshev approximation theory [13]. First if gðxÞ has

mþ 1 continuous derivatives on ½�1;1�, then the pointwise approximation error for all x 2 ½�1;1� is

jgðxÞ � pnðxÞj ¼ Oðn�mÞ:

Second if gðxÞ can be extended to a function gðzÞ, where z is a complex variable, which is analytic within a simple closed

contour C that encloses the point x and all the roots of the Chebyshev polynomial Tnþ1ðxÞ then the interpolating polynomial

pnðxÞ can be written as

pnðxÞ ¼
1

2pi

Z

C

½Tnþ1ðzÞ � Tnþ1ðxÞ�gðzÞ

Tnþ1ðzÞðz� xÞ
dz

and its error is

gðxÞ � pnðxÞ ¼
1

2pi

Z

C

Tnþ1ðxÞgðzÞ

Tnþ1ðzÞðz� xÞ
dz:

Moreover if gðxÞ extends to an analytic function within the ellipse Er given by the locus of points 1
2
ðr expðihÞ þ r�1 expð�ihÞÞ

(for some r > 1 and as h varies from 0 to 2p and jgðzÞj 6 M at every point z on Er then for every real x 2 ½�1;1� the approx-

imating polynomial pnðxÞ exhibits spectral convergence:

jgðxÞ � pnðxÞj 6
ðr þ r�1ÞM

ðrnþ1 þ r�ðnþ1ÞÞðr þ r�1 � 2Þ
:

This exponential accuracy is yet another desirable aspect of using Chebyshev polynomials for the interpolation basis.

Identifying Snðxl; xÞ as the interpolating function for the node xl, it follows from Eq. (5) that a low-rank approximation of

the kernel Kðx; yÞ using Chebyshev polynomials is given by

Kðx; yÞ �
Xn

l¼1

Xn

m¼1

Kðxl; ymÞSnðxl; xÞSnðym; yÞ: ð6Þ

Substituting this expression into Eq. (1) and changing the order of summation we have

f ðxiÞ ¼
XN

j¼1

Kðxi; yjÞrj �
XN

j¼1

Xn

l¼1

Xn

m¼1

Kðxl; ymÞSnðxl; xiÞSnðym; yjÞ

" #
rj ¼

Xn

l¼1

Snðxl; xiÞ
Xn

m¼1

Kðxl; ymÞ
XN

j¼1

rjSnðym; yjÞ:

From this decomposition a fast summation method using Chebyshev interpolation can be constructed.

1. First compute the weights at the Chebyshev nodes ym by anterpolation:

Wm ¼
XN

j¼1

rjSnðym; yjÞ; m ¼ 1; . . . ;n
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2. Next compute f ðxÞ at the Chebyshev nodes xl:

f ðxlÞ ¼
Xn

m¼1

WmKðxl; ymÞ; l ¼ 1; . . . ;n

3. Last compute f ðxÞ at the observation points xi by interpolation:

f ðxiÞ ¼
Xn

l¼1

f ðxlÞSnðxl; xiÞ; i ¼ 1; . . . ;N

The computational cost of steps 1 and 3 are both OðnNÞ while step 2 is Oðn2Þ, hence for n � N the algorithm scales like

Oð2nNÞ.

The decomposition above can be extended to include kernels Kðx; yÞ that are defined over arbitrary rectangular domains

½a; b� � ½c; d� bymapping back to the square ½�1;1� � ½�1;1� via linear transformation. In addition this fast summationmethod

can be extended to higher dimensions by taking a tensor product of the interpolating functions Sn, one for each dimension.

For example consider a 3-D kernel Kðx; yÞ where x ¼ ðx1; x2; x3Þ and y ¼ ðy1; y2; y3Þ. The low-rank approximation of the kernel

Kðx; yÞ using Chebyshev polynomials can be expressed as

Kðx; yÞ �
X

l

X

m

Kðxl; ymÞRnðxl; xÞRnðym; yÞ ð7Þ

where

Rnðx; yÞ ¼ Snðx1; y1ÞSnðx2; y2ÞSnðx3; y3Þ

and xl ¼ ðxl1 ; xl2 ; xl3 Þ and ym ¼ ðym1
; ym2

; ym3
Þ are 3-vectors of Chebyshev nodes with li;mi 2 f1; . . . ;ng.

3. A black-box FMM with Chebyshev interpolation

In the previous section a fast summation method was constructed for continuous kernels based on a low-rank approxi-

mation using Chebyshev polynomials. However if the kernel contains discontinuities in its domain, e.g. the Laplacian kernel

1=jx� yj, this low-rank representation is not applicable. In order for the low-rank approximation (6) to accurately represent

the kernel, the observation and source intervals need to be well-separated, i.e., the two intervals are non-overlapping. Hence

(6) can be thought of as a far-field approximation of the kernel Kðx; yÞ. Local interactions involving observation points and

sources in non-well-separated intervals can also be computed with the far-field approximation by subdividing the intervals.

On this refined scale, interactions between well-separated observation points and sources can be treated by (6). Applying

this refinement recursively produces a multilevel fast summation method. A black-box fast multipole method (bbFMM)

can be constructed by combining this multilevel scheme with the FMM tree structure as detailed in [1]. Our method is a

black-box in the sense that the functional form of the low-rank approximation (6) is independent of the kernel. Let the root

level of the tree (level 0) be the computational interval containing all observation points and sources. The algorithm for a j-

level 1-D bbFMM is as follows:

1. For all subintervals I on level j compute the weights at the Chebyshev nodes yIm by anterpolation:

W I
m ¼

X

yj2I

rj Snðy
I
m; yjÞ; m ¼ 1; . . . ; n

2. For all subintervals I on level k compute the weights at the Chebyshev nodes yIm by recursion, j� 1 P k P 0 (M2M):

W I
m ¼

X

J; child
interval of I

X

m0

W J
m0 Sn yIm; y

J
m0

� �
; m ¼ 1; . . . ;n

3. Calculate the far-field contribution at the Chebyshev nodes xIl for all subintervals J in the interaction list of I on level k,

0 6 k 6 j (M2L):

gI
l ¼

X

J in interaction
list of I

X

m

W J
m K xIl ; y

J
m

� �
; l ¼ 1; . . . ; n

4. Letting f Il ¼ gI
l for all subintervals I on level 0, then for each subinterval I on level k, 1 6 k 6 j, add the effect of the far-field

sources by interpolating the field from the parent interval on level k� 1 (L2L):

f Il ¼ gI
l þ

X

l0

f Jl0 Sn xIl ; x
J
l0

� �
; l ¼ 1; . . . ;n

where J is the parent of I.
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5. Finally compute f ðxiÞ, where xi is in subinterval I on level j, by interpolating the far-field approximation and adding the

nearby interactions:

f ðxiÞ ¼
X

l

f Il Snðx
I
l ; xiÞ þ

X

J; nearest neighbor
interval of I

X

yj2J

rj Kðxi; yjÞ; i ¼ 1; . . . ;N

An analogous algorithm can be written for the 3-D bbFMM using (7).

4. Fast convolution using SVD compression

In the FMM the largest contribution to the computational cost is the multipole-to-local (M2L) operation described in step

3 of the bbFMM algorithm. As such the optimization of this operation is important for an efficient fast summation method.

One way to reduce the cost is to produce a more compact multipole and local expansion. Here we propose using the singular

value decomposition to compress the low-rank approximation generated by Chebyshev interpolation.

To find such a low-rank approximation of the kernel we look to minimize the approximation error with respect to a spec-

ified norm. For sums of the form (1) where the distribution of observation points and sources is assumed to be uniform, a

natural estimate of the error introduced by replacing the kernel Kðx; yÞ with a low-rank approximation eK ðx; yÞ is

e ¼

Z 1

�1

Z 1

�1

½Kðx; yÞ � eK ðx; yÞ�2 dxdy

� 	1=2

where the domain of Kðx; yÞ is ½�1;1� � ½�1;1�. This expression can be approximated using a Chebyshev quadrature for the

double integral

e0 ¼
Xn

l¼1

Xn

m¼1

xx
l x

y
m½Kðxl; ymÞ �

eK ðxl; ymÞ�2
" #1=2

where fxlg and fymg are the Chebyshev nodes and

xx
l ¼

p

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2l

q

xy
m ¼

p

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2m

q

are the corresponding weights. Defining the matrices Klm ¼ Kðxl; ymÞ, eKlm ¼ eK ðxl; ymÞ, ðXxÞll ¼ xx
l , and ðXyÞmm ¼ x

y
m, the error

e0 can be expressed in terms of the Frobenius norm:

e0 ¼ kðXxÞ
1
2KðXyÞ

1
2 � ðXxÞ

1
2 eKðXyÞ

1
2kF ð8Þ

Observe that for the low-rank approximation (6), we have eK ¼ Kwhich gives e0 ¼ 0. However, we are interested in obtaining

a compressed low-rank approximation, so we look for eK such that: rankðeKÞ < rankðKÞ. The solution to this constrained min-

imization aof (8) is given by a theorem from numerical linear algebra which states that the best rank-r approximation of an

n-by-n matrix A, where r 6 n, with respect to the Frobenius norm corresponds to picking the r left and right singular vectors

of the SVD of A with the largest singular values [14]. Let the SVD of ðXxÞ
1
2KðXyÞ

1
2 be denoted by

ðXxÞ
1
2KðXyÞ

1
2 ¼ URVT

where the columns of U are the left singular vectors, the columns of V are the right singular vectors, and R is a diagonal ma-

trix whose entries are the singular values of ðXxÞ
1
2KðXyÞ

1
2 in order of decreasing magnitude. The optimal rank-r approximation

of K for Eq. (8) is then

eK ¼ ðXxÞ�
1
2UrRrV

T
r ðX

yÞ�
1
2 ð9Þ

where Ur is the first r columns of U;Vr is the first r columns of V, and Rr is a diagonal matrix containing the first r singular

values. It should be noted that if the compression was done by computing the SVD of K instead of ðXxÞ
1
2KðXyÞ

1
2 then, using a

similar argument as above, it can be shown that the error in the low-rank approximation is minimized for a distribution of

sources and observation points concentrated on the boundaries. However for a uniform distribution, the reduced-rank ma-

trix in (9) gives the optimal compression.

We now proceed to show how to compress the M2L operator using the SVD compression described above. With the same

notation as in the previous section, the M2L operation between observation points fxlg and sources located at fymg can be

expressed as the matrix-vector product

g ¼ Kw

where gl ¼ gðxlÞ, Klm ¼ Kðxl; ymÞ, and wm ¼ Wm. Then g can be approximated by
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~g ¼ eKw ¼ ðXxÞ�
1
2UrRrV

T
r ðX

yÞ�
1
2w:

The compressed low-rank approximation reduces the cost from an n-by-nmatrix-vector product to two n-by-rmatrix-vector

products. This calculation can be further streamlined so as to involve mainly r-by-r matrices. To begin consider the M2L

operation in 3-D for an observation cell on level k of the FMM tree. Each observation cell interacts with up to

63 � 33 ¼ 189 source cells, with each interaction indexed by its transfer vector. The union of transfer vectors over all obser-

vation cells on level k forms a set of 73 � 33 ¼ 316 vectors. Assuming a translational invariant kernel, there are 316 unique

M2L operators on level k, each one corresponding to a particular transfer vector. Let KðiÞ denote the 3-D M2L operator for the

i-th transfer vector. Then this collection of M2L operators, with the appropriate weighting in 3-D, can be expressed either as a

fat matrix

Kfat ¼ ðXxÞ
1
2Kð1ÞðXyÞ

1
2 ðXxÞ

1
2Kð2ÞðXyÞ

1
2 � � � ðXxÞ

1
2Kð316ÞðXyÞ

1
2

h i

with the ðXxÞ
1
2KðiÞðXyÞ

1
2 blocks arranged in a single row, or as a thin matrix

Kthin ¼ ðXxÞ
1
2Kð1ÞðXyÞ

1
2; ðXxÞ

1
2Kð2ÞðXyÞ

1
2; � � � ; ðXxÞ

1
2Kð316ÞðXyÞ

1
2

h i

with the ðXxÞ
1
2KðiÞðXyÞ

1
2 blocks arranged in a single column. Here Xx and X

y are the 3-D analogs of the weighting matrices used

in (8).

To construct compact multipole and local expansions we perform two SVDs, one on Kfat and the other on Kthin:

Kfat ¼ ðXxÞ
1
2Kð1ÞðXyÞ

1
2 ðXxÞ

1
2Kð2ÞðXyÞ

1
2 � � � ðXxÞ

1
2Kð316ÞðXyÞ

1
2

h i
¼ UR Vð1ÞTVð2ÞT � � � Vð316ÞT

h i

Kthin ¼ ðXxÞ
1
2Kð1ÞðXyÞ

1
2; ðXxÞ

1
2Kð2ÞðXyÞ

1
2; � � � ; ðXxÞ

1
2Kð316ÞðXyÞ

1
2

h i
¼ Rð1Þ

;Rð2Þ
; � � � ;Rð316Þ

h i
KST :

Observe that if the kernel is symmetric then Kthin ¼ KT
fat so the two SVDs are just transposes of each other. The pre-compu-

tation cost for these SVDs is OðjÞ since the dimensions of these matrices are independent of the problem size.

The cost of the convolution for the i-th transfer vector between KðiÞ and a vector of sources w can be reduced by employ-

ing these two SVDs as follows. First begin by introducing the weighting matrices Xx and X
y and substituting in the i-th block

of Kthin.

KðiÞ
w ¼ ðXxÞ�

1
2ðXxÞ

1
2KðiÞðXyÞ

1
2ðXyÞ�

1
2w ¼ ðXxÞ�

1
2RðiÞ

KSTðXyÞ�
1
2w

Next the identity matrix STS can be inserted between K and ST after which the i-th block of Kthin is replaced.

KðiÞ
w ¼ ðXxÞ�

1
2RðiÞ

KSTSSTðXyÞ�
1
2w ¼ ðXxÞ�

1
2ðXxÞ

1
2KðiÞðXyÞ

1
2SSTðXyÞ�

1
2w

Now substituting in the i-th block of Kfat and inserting the identity matrix UTU between U and R we have

KðiÞ
w ¼ ðXxÞ�

1
2URVðiÞTSSTðXyÞ�

1
2w ¼ ðXxÞ�

1
2UUTURVðiÞTSSTðXyÞ�

1
2w ¼ ðXxÞ�

1
2U UTðXxÞ

1
2KðiÞðXyÞ

1
2S

h i
STðXyÞ�

1
2w:

Consider the term inside the square brackets:

UTðXxÞ
1
2KðiÞðXyÞ

1
2S ¼ RVðiÞTS ¼ UTRðiÞ

K:

This shows that the rows and columns of UTðXxÞ
1
2KðiÞðXyÞ

1
2S decay as quickly as the singular values found in R and K. Hence

the product KðiÞw can be approximated by keeping only the first r singular vectors in each of the SVDs. Let Ur and Sr denote

the r left singular vectors and r right singular vectors, respectively. Using these reduced SVDs a fast convolution method

involving compressed multipole and local expansions can be formulated. The M2L operation, step 3 in the bbFMM algorithm,

can now be done as follows. Using the notation adopted in the bbFMM algorithm we have:

0. Pre-computation: compute the compressed M2L operators for all transfer vectors i ¼ 1; . . . ;316 on level k;0 6 k 6 j

Ci;k ¼ ðUk
r Þ

TðXxÞ
1
2Ki;kðXyÞ

1
2Sk

r

3a. Pre-processing: compute the compressed multipole coefficients for all source cells I on level k; 0 6 k 6 j

wI
c ¼ ðSk

r Þ
TðXyÞ�

1
2 wI

3b. Convolution: calculate the compressed local coefficients for all observation cells I on level k, 0 6 k 6 j; let iðI; JÞ

denote the index of the transfer vector representing the interaction between cells I and J

gI
c ¼

X

J in interaction
list of I

CiðI;JÞ;k
wJ

c
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3c. Post-processing: compute the coefficients of the local expansion for all observation cells I on level k; 0 6 k 6 j

gI ¼ ðXxÞ�
1
2Uk

r gI
c

Most of the computational cost in the fast convolution algorithm is concentrated in step 3b which involves reduced-rank

matrix-vector products. Without the SVD compression, the cost of the M2L operation corresponds to full-rankmatrix-vector

products.

The cost and memory requirements of the pre-computation step can be reduced for the case of homogeneous kernels.

Recall that a function Kðx; yÞ is homogeneous of degree m if Kðax;ayÞ ¼ amKðx; yÞ for any nonzero real a. In this case the

M2L operators can be determined for interactions between observation and source cubes with unit volume and two SVDs

are performed. Letting DðiÞ represent the compressed M2L operators constructed from these two SVDS then, for a cubic com-

putational cell with sides of length L, the operators on each level of the FMM tree are scaled versions of DðiÞ:

CðiÞ;k ¼
L

2k

� �m

DðiÞ:

Hence only one set of operators, fDðiÞg, needs to be computed and stored because CðiÞ;k can be easily computed from DðiÞ. In

addition only the singular vectors from the two SVDs are needed for the fast convolution algorithm because singular vectors

are invariant under multiplicative scaling of the matrix. In that case the cost of the pre-computation is Oð1Þ for any problem

size.

This is summarized in Table 1. In the general case, the SVD provides only limited savings because a new SVD has to be

computed for every cluster. If the method is applied many times for a given tree, this is still computationally advantageous.

5. Numerical results

In this section we will present numerical results for the bbFMM. The accuracy of the method will be examined as well as

the computational cost. Results for five kernels will be detailed: (1) the Laplacian kernel 1=r, (2) the kernel 1=r4, (3) the

Stokes kernel I3�3=r þ ð~r �~rÞ=r3 where~r is the 3-dimensional position vector, (4) the 3-D isotropic multiquadric radial basis

function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=aÞ2 þ 1

q
where a is a scaling constant, and (5) the isotropic Gaussian function exp½�ðr=aÞ2� where a is a scaling

constant.

5.1. Compression using SVD

We start by examining the amount of compression that can be achieved in the M2L operation by using the SVDs of the

kernel matrices Kfat and Kthin. In Fig. 1 the singular values of the Laplacian kernel matrices are plotted for various number of

Table 1

Computational cost of pre-computation. The pre-computation includes all steps which depend only on the boxes in the tree and are independent of the

particles’ location and rj . The kernel is Kðx; yÞ. Notations: N: number of particles, j: number of levels.

Kernel type Cost

General case OðNÞ

Translational invariant OðjÞ

Homogeneous Oð1Þ

Symmetric Cost is reduced by 2

Fig. 1. Singular values for the Laplacian kernel. The relative singular value magnitude (vertical axis) is plotted as a function of the singular value index

(shown on the horizontal axis). The subsequent plots (Figs. 2–5) show the decay of the singular values for four other kernels. The legend is the same for all

plots.
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Chebyshev nodes n. Since the Laplacian kernel is symmetric the singular values of Kfat and Kthin are identical. For each n the

singular values are scaled such that the largest singular value is normalized to 1. The index of the singular values ð1; . . . ;n3Þ is

represented on the horizontal axis. The left subfigure shows the singular values obtained by setting up the kernel matrices

and performing the SVD in double precision while the right subfigure corresponds to single precision. Taking the curve for

n ¼ 10 as the best approximation to the continuous SVD, observe that the double-precision singular values are accurate up to

approximately the index n3=2 [12]. This suggests that the kernel matrices can be compressed by a factor of 2 without ad-

versely affecting the accuracy of the method. In the single-precision plot, we see that the amount of compression is less

as the curves deviate at an index greater than n3=2. The leveling of the curves around 10�8 reflects the roundoff error in-

curred by using single precision.

Figs. 2 and 3 are similar plots for the 1=r4 and Stokes kernels, respectively. For the Stokes kernel the indices of the singular

values are 1; . . . ;3n3. We stopped at n ¼ 7 because we ran out of computer memory. The 9 components of the 3� 3 Stokes

kernel were treated simultaneously. The memory requirement can be reduced by treating each component one at a time, or

by using a parallel computer with distributed memory.

While the rate of decay of the singular values for homogeneous kernels is scale-invariant, this is not the case for inhomo-

geneous kernels such as the 3-D isotropic multiquadric radial basis function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=aÞ2 þ 1

q
. In Fig. 4 the double-precision sin-

gular values for two radial basis functions, a ¼ 1 and a ¼ 8, are shown. When a � 1 or a ¼ Oð1Þ (e.g. Fig. 4(a)) the profile is

similar to that obtained for the Laplacian kernel and hence the kernel matrices can be compressed by keeping only half of the

Fig. 2. Singular values for the 1=r4 kernel.

Fig. 3. Singular values for the Stokes kernel. In this plot, n ranges from 3 to 7.

Fig. 4. Singular values for two 3-D isotropic multiquadric radial basis functions. Double precision was used.
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singular values. However for a 	 1 (e.g. Fig. 4(b)) the decay is much more rapid since the radial basis function is well-

approximated by the constant 1 around the origin. The implication of this behavior for the multilevel FMM scheme is that

fewer singular values can be retained for deeper levels in the tree, thereby reducing the computational cost. This illustrates

that in order to achieve the best compression for a particular kernel, the decay behavior of the singular values needs to be

studied on a case-by-case basis.

Fig. 5 shows the double-precision singular values for the isotropic Gaussian function exp½�ðr=aÞ2� with a ¼ 1 and a ¼ 8.

For a 	 1 the Gaussian is well-approximated by the constant 1 around the origin. Therefore Fig. 5(b) is very similar to

Fig. 4(b).

In all subsequent benchmarks, the kernel matrices were compressed by retaining only the largest n3=2 singular values

except for the Stokes kernel where 3n3=2 were kept.

5.2. Interpolation error

To investigate the Chebyshev interpolation error we looked at a system of 10,000 uniformly distributed sources in a cubic

computational domain with edge length 1. Each source was assigned a strength of +1 or �1 such that the computational cell

has zero net source strength. The observation points were chosen to be identical to the source locations and the pairwise

interactions between these points were computed for each of the five kernels. To compute the error a subset of 100 obser-

vation points was used. The relative error in the observation values was measured with respect to the L2 and L1 norms for

various n by using the values obtained by direct calculation as the reference solution. Letting f FMMðxiÞ and f dirðxiÞ be the

observation values computed with bbFMM and direct calculation, respectively, the errors are given by

e2 ¼

P100
i¼1 f FMMðxiÞ � f dirðxiÞ

� �2
P100

i¼1 f dirðxiÞð Þ
2

" #1=2

ð10Þ

and

e1 ¼
max

16i6100
f FMMðxiÞ � f dirðxiÞ
�� ��

max
16i6100

f dirðxiÞj j
: ð11Þ

Fig. 6 shows that for the Laplacian kernel the error in both norms exhibits spectral convergence when double precision is

used. However for single-precision the error levels off for large n as roundoff error degrades the solution. Similar results were

observed for the 1=r4 (Fig. 7) and Stokes (Fig. 8) kernels. It should be noted that for the Stokes kernel we do not see the single-

precision error curve level off because the roundoff error is minimal for the values of n tested.

Fig. 5. Singular values for two isotropic Gaussian functions. Double precision was used.

Fig. 6. Interpolation error for the Laplacian kernel. The relative L2- and L1-norm errors are defined by Eqs. (10) and (11), respectively.
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Fig. 7. Interpolation error for the 1=r4 kernel.

Fig. 8. Interpolation error for the Stokes kernel.

Fig. 9. Interpolation error for various 3-D isotropic multiquadric radial basis functions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=aÞ2 þ 1

q
. Double precision was used.

Fig. 10. Interpolation error for various isotropic Gaussian functions exp½�ðr=aÞ2�. Double precision was used.
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In Fig. 9 the error is plotted for various isotropic radial basis functions. The a ¼ 8 curve displays a higher rate of conver-

gence than for a ¼ 1 due to the rapid decay of singular values observed in Fig. 4(b). For large n the curve levels off due to

roundoff error. When a � 1 the radial basis function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=aÞ2 þ 1

q
approaches the homogeneous function r=a. As a result

the error curves for a ¼ 1=16 and a ¼ 1=8 are nearly identical.

For the isotropic Gaussian function (Fig. 10), the a ¼ 8 curve displays a faster rate of convergence than for a ¼ 1 as pre-

dicted by the rapid decay of singular values seen in Fig. 5(b). Roundoff error is responsible for the curve leveling off at large

values of n. The convergence rate is slower for small a (e.g. a ¼ 1=16 and a ¼ 1=8Þ because the function exp½�ðr=aÞ2� becomes

less smooth. In addition when a � 1 the contributions from the far-field are negligible compared to those from the near field.

As a result the error for the a ¼ 1=16 case is small despite the poor rate of convergence for the far-field expansion.

5.3. Computational cost

To examine the computational complexity of bbFMM, a system of N uniformly distributed sources in a cubic computa-

tional domain with edge length 1 was used. Each source was assigned a strength of +1 or �1 such that the computational

cell has zero net source strength. The observation points were chosen to be identical to the source locations and the sources

interacted according to the Laplacian, 1=r4; and Stokes kernels. As the number of sources N was varied from 104 to 106 the

FMM computation time (cost of the M2M, M2L, and L2L operations and cost of direct interactions) was measured for

n ¼ 5 and n ¼ 10 and plotted in Fig. 11. For a given number of sources the number of levels in the FMM tree was selected

to achieve a computational balance between the M2L operations and the direct interactions, the two most expensive steps in

the method. We observed the correct OðNÞ complexity for the three kernels.1 The kinks in the curves result from increases in

the number of levels in the tree.

5.4. Comparison with analytic multipole expansion

To study the efficiency of the SVD compression, a comparison was done with the analytic multipole expansion of the

Laplacian kernel using Legendre polynomials for a system consisting of two well-separated cubes. The source cube was cen-

tered at the origin while the observation cube was centered at ð1=2;0;0Þ. Both cubes have edge length (1/4). Letting~ri denote

Fig. 11. Computational cost for the Laplacian, 1=r4 , and Stokes kernels. Two choices for the number of Chebyshev nodes ðnÞ were made for each kernel.

1 For homogeneous distributions of points, this complexity can be achieved using a tree with a constant depth. This is the algorithm we implemented. If the

distribution of points becomes too inhomogeneous, an adaptive tree [15] with a varying number of levels must be used in order to achieve an OðNÞ complexity.
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the position vector of the i-th observation point and~rj the position of the j-th source, the p-th order analytic multipole expan-

sion of the observational value is given by

f ð~riÞ ¼
1

ri

XN

j¼1

qj

Xp�1

l¼0

rj
ri

� �l

Plðcos hijÞ ð12Þ

where Pl is the Legendre polynomial of degree l and

cos hij ¼
~rTi~rj
ri rj

To derive a separable expansion, i.e.,~ri and~rj appear in separate factors, Pl can be replaced by 2lþ 1 spherical harmonics.

Then this expansion can be rewritten in terms of a finite number of spherical harmonics. For a p-th order multipole expan-

sion the number of spherical harmonics coefficients is

Xp�1

l¼0

ð2lþ 1Þ ¼ pþ 2
Xp�1

l¼0

l ¼ pþ ðp� 1Þp ¼ p2:

This comparison was carried out for two systems. The first system is constructed by placing 63 � 43 ¼ 152 charges on the

faces of the cubes, such that, on each face, we have 62 ¼ 36 charges distributed on a regular grid. Charge strengths were

alternated between +1 and �1 in a checkerboard fashion. In the second system the 152 charges were uniformly distributed

within each cube. For various values of p, the L2-norm error in the observational values was computed using the values ob-

tained by direct calculation as the reference solution. The error was also determined when retaining p2 singular values in the

bbFMM. We used n ¼ 10 Chebyshev nodes in each direction for both test problems. Fig. 12 shows the errors for the two sys-

tems. The values of p2, which were varied from 12 ¼ 1 to 162 ¼ 256, are plotted on the horizontal axis. From the plots, the

SVD compression is at least as good as the analytic multipole expansion with respect to the L2-norm error. For the case on the

left (charges confined to the surface) the difference between the two methods is more substantial for large p. This is because

the multipole expansion is similar to a Taylor series and therefore does not do a good job of approximating charges near the

boundaries of the computational domain. The SVD compression with the Chebyshev-based expansion, however, is able to

resolve those charges more accurately.

6. Conclusion

We have presented a new black-box or kernel-independent fast multipole method. The method requires as input only a

user defined routine to numerically evaluate Kðx; yÞ at a given point ðx; yÞ. This is very convenient for complex kernels, for

which analytical expansions might be difficult to obtain. This method relies on Chebyshev polynomials for the interpolation

part and on singular value decompositions to further reduce the computational cost. Because of the SVD, we can prove that

the scheme uses the minimal number of coefficients given a tolerance e. The pre-computing time of the method was ana-

lyzed and was found to be small for most practical cases. The numerical scheme was tested on various problems. The accu-

racy was confirmed and spectral convergence was observed. The linear complexity was also confirmed by numerical

experiments.

A limitation of the current approach is that the M2L operator is dense. This, probably, cannot be avoided if one uses an

SVD. However, if one agrees to choose a different expansion, involving more terms, it is sometimes possible to design meth-

ods with diagonal M2L operators. Even though more coefficients are used, one may end up with a faster algorithm overall.

This is the case for example with the plane wave version of the FMM for 1=r [16]. In that case, a specialized algorithm can be

faster than the proposed scheme. It remains to be seen if a black-box method can be derived using diagonal operators.

Another issue is the extension to periodic boundary conditions, in particular to the case of conditionally convergent series

like Kðx; yÞ ¼ 1=r, which converge only for a cell with zero net charge.

Fig. 12. Error comparison between the SVD compression and the analytic multipole expansion. Left: charges distributed on the surface of the cubes. Right:

random uniform charge distribution.
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