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a b s t r a c t

This paper presents a convolution quadrature time-domain boundary element method for 2-D and 3-D

elastic wave propagation in general anisotropic solids. A boundary element method (BEM) has been

developed as an effective and accurate numerical approach for wave propagation problems. However, a

conventional time-domain BEM has a critical disadvantage; it produces unstable numerical solutions for

a small time increment. To overcome this disadvantage, in this paper, a convolution quadrature method

(CQM) is applied to the time-discretization of boundary integral equations in 2-D and 3-D general

anisotropic solids. As numerical examples, the problems of elastic wave scattering by a cavity are solved

to validate the present method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A boundary element method (BEM) is known as an effective

and accurate numerical approach for wave analysis, since a BEM

requires boundary discretization only and is easily applicable to

infinite or semi-infinite domains. A conventional time-domain

BEM for elastodynamics has been developed by several research-

ers [4,8,13,18]. Although the transient BEM analysis requires time-

domain fundamental solutions, such solutions cannot be found for

some engineering problems, such as wave propagation in viscoe-

lastic and fluid-saturated porous solids. In addition, the conven-

tional time-domain BEM generates unstable numerical solutions

unless a time increment is chosen adequately. Approaches for

improving numerical stability have been proposed in the recent

decade, e.g. the energetic wave formulation developed by Aimi

and Diligenti [2], and a convolution quadrature time-domain BEM

described below. Moreover, the BEM may also be unsuitable for

large scale problems, because the method requires high computa-

tional costs to solve large scale problems. In the past few decades,

the fast multipole BEM (FMBEM) has been developed for reducing

required computational time and memory for various large scale

problems. Alternatively, as a fast BEM in time-domain, the BEM

accelerated by the plane wave time domain (PWTD) algorithm has

been proposed [26]. However, the time-domain BEM still remains

to be improved.

Recently, a convolution quadrature time-domain BEM (CQ-BEM)

was developed by Schanz and Antes [22]. The CQ-BEM uses a

convolution quadrature method (CQM) for time-discretization in

boundary integral equations. The CQM, proposed by Lubich [14–17],

gives numerical approximation of convolution integrals. The approx-

imation formula based on the linear multistep method using back-

ward differential formula was derived firstly, and the Runge–Kutta

based CQM was developed subsequently, with the aim of good

performance in engineering applications [5]. This method is known

to improve the numerical stability of a time-domain BEM. While a

conventional time-domain BEM uses time-domain fundamental solu-

tions, the CQ-BEM requires Laplace-domain ones. Therefore, the CQ-

BEM can produce stable numerical solutions, even for a small time

increment which is not allowed in a conventional time-domain BEM.

In addition, the CQ-BEM can analyze wave propagation in viscoelastic

solids [23] and fluid-saturated porous solids [24] for which time-

domain fundamental solutions are not available. Because the funda-

mental solutions are expressed in the Laplace-domain, the CQ-BEM

can be readily accelerated by implementing the FMM.

In some engineering fields, consideration of anisotropy is

particularly important for wave analysis, and BEM has been

applied to such kind of problems [3,6,7,19,20,25]. The BEM

formulation for general anisotropic materials is much more

complicated than isotropic formulations. For example, in wave

analysis, Wang and Achenbach [30] derived time and frequency-

domain fundamental solutions for general anisotropy based on the

use of the Radon transform. Their fundamental solutions include

surface integration over the unit sphere in 3-D problems and line

integration over the unit circle in 2-D problems. A conventional
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time-domain BEM for wave analysis in general anisotropic elastic

solids has been developed by Wang et al. [31]. They solved wave

scattering problems by a cavity in anisotropic solids. A conven-

tional time-domain BEM, using traction BIEs, has also been applied

to dynamic crack analyses in anisotropic solids [27,32]. Recently,

elastic waves in general anisotropic elastic solids have been

analyzed by the CQ-BEM [9,10,33], but in 2-D crack problems only.

In this paper, the formulation of a CQ-BEM for 2-D and 3-D

general anisotropic solids is presented, and the validity of our

proposed method is numerically tested. Note that the proposed

formulation is based on the CQM with respect to the linear

multistep method using backward differential formula. Parallel

computing techniques, such as OpenMP, and MPI (Message Passing

Interface) are utilized for numerical computations.

2. Problem statement

In this paper, a Latin suffix takes the values 1, 2 and 3, and a

Greek suffix takes the values 1 and 2 only, unless otherwise stated.

In addition, summation convention is valid for repeated indices

throughout this paper.

Let us consider a wave scattering problem in an infinite,

homogeneous, and linear anisotropic elastic solid V as shown in

Fig. 1. If the scatterer's boundary in the solid V is represented as

SðS¼ S1 [ S2; S1 \ S2 ¼∅Þ, with the unit outward normal vector n,

the equations of motion at point x and time t are given as follows:

sij;jðx; tÞþρbiðx; tÞ ¼ ρ €uiðx; tÞ ð1Þ

where sijðx; tÞ and uiðx; tÞ represent the stress and displacement

components, respectively. In addition, biðx; tÞ represents the body

force component, and ρ is the density of the solid V. The dot

notation shows differentiation with respect to time t, and the

symbol ð Þ;i represents the partial derivative with respect to xi.

According to linear elasticity theory, the stress–strain relation is

expressed as follows:

sijðx; tÞ ¼ Cijklϵklðx; tÞ ð2Þ

where Cijkl is the fourth order elastic tensor of the solid V, and

ϵklðx; tÞ represents the strain component expressed as follows:

ϵklðx; tÞ ¼
1

2
uk;lðx; tÞþul;kðx; tÞ

� �

: ð3Þ

The stress–strain relation as shown in Eq. (2) can be also expressed

using the following contracted notation known as the Voigt

notation [28]:

sIðx; tÞ ¼ CIJϵJðx; tÞ ðI; J ¼ 1;2;…;6Þ: ð4Þ

In Eq. (4), the strain component ϵJðx; tÞ is defined as

ϵ1 ¼ ϵ11; ϵ2 ¼ ϵ22; ϵ3 ¼ ϵ33; ϵ4 ¼ 2ϵ23; ϵ5 ¼ 2ϵ13; ϵ6 ¼ 2ϵ12:

ð5Þ

Moreover, the fourth order elastic tensor Cijkl is related to the

tensor CIJ expressed in the Voigt notation in Eq. (4) by

I ¼
i : i¼ j;

9�ðiþ jÞ : ia j;

(

ð6Þ

J ¼
k : k¼ l;

9�ðkþ lÞ : ka l:

(

ð7Þ

Eqs. (6) and (7) yield the following associations: if I,J¼1,2 or 3, the

stress and strain components in Eq. (4) correspond to axial

components. On the other hand, if I,J¼4,5 or 6, they correspond

to the shear components.

The total wave field uiðx; tÞ can be expressed by the super-

position of the incident and scattered wave fields represented by

uin
i ðx; tÞ and usc

i ðx; tÞ, respectively, as follows:

uiðx; tÞ ¼ uin
i ðx; tÞþusc

i ðx; tÞ: ð8Þ

Moreover, the initial and boundary conditions are given as follows:

uiðx; tÞ ¼ _u iðx; tÞ ¼ 0; t ¼ 0; ð9Þ

uiðx; tÞ ¼ un

i ðx; tÞ; xAS1; ð10Þ

tiðx; tÞ ¼ tni ðx; tÞ; xAS2; ð11Þ

where ti ðx; tÞ is the traction component expressed as follows:

tiðx; tÞ ¼ sijðx; tÞnjðxÞ ¼ CijklnjðxÞuk;lðx; tÞ: ð12Þ

In addition, un

i ðx; tÞ and tni ðx; tÞ denote the prescribed values on

boundaries S1 and S2, respectively.

3. Convolution quadrature time-domain boundary element

method (CQ-BEM)

3.1. Time-domain BEM formulation

For the exterior problem as shown in Fig. 1, the time-domain

BIEs derived from the Betty–Rayleigh reciprocal theorem are

expressed as

ϵðxÞuiðx; tÞ ¼ uin
i ðx; tÞþ

Z

S

Uijðx;y; tÞntjðy; tÞ dSðyÞ

�

Z

S

W ijðx; y; tÞnujðy; tÞ dSðyÞ ð13Þ

where Uijðx; y; tÞ and W ijðx; y; tÞ represent displacement and trac-

tion fundamental solutions in time-domain, respectively. In addi-

tion, ϵðxÞ is the free term [11], which depends on the shape of the

boundary. If a piecewise constant boundary element approxima-

tion for spatial discretization is considered, ϵðxÞ becomes

ϵðxÞ ¼

1 : xAV

1=2 : xAS

0 : otherwise:

8

>

<

>

:

ð14Þ

It is obvious that the presented formulation can treat domains

with edges and corners, when the edge of boundary elements

coincides with the corners. However, this formulation may not be

adequate to analyze the domain with sharp corner, such as crack.

In Eq. (13), n denotes the Riemann convolution, defined as

f ðtÞngðtÞ ¼

Z t

0
f ðt�τÞgðτÞ dτ: ð15Þ

Normally, the BIEs given by Eq. (13) can be directly discretized in

time-domain. However, as mentioned before, this time discretiza-

tion sometimes causes numerical instability. Therefore, in the

following section, time-discretization procedure using the CQM

is introduced to overcome the difficulty.

3.2. Discretization of time-domain BIEs using the CQM

The CQM, proposed by Lubich [14–17], provides numerical

approximation of the convolution integral defined in Eq. (15)

and improves numerical stability in the time stepping procedure.Fig. 1. An infinite, homogeneous, anisotropic solid with a cavity.
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The CQM approximates the convolution defined in Eq. (15), as

follows:

f ðnΔtÞngðnΔtÞ ¼ ∑
n

k ¼ 0

ωn�kðΔtÞgðkΔtÞ ð16Þ

where Δt is the time increment and ωkðΔtÞ represents quadrature

weights. The quadrature weights ωkðΔtÞ with error magnitude OðϵÞ

are determined by the Laplace transform of the function f(t) and a

linear multistep method as follows:

ωmðΔtÞ ¼
1

2πi

Z

jzj ¼ R

f̂
γðzÞ

Δt

� �

z�m�1 dz ð17Þ

where ^ð Þ represents the Laplace transform. Moreover, the quad-

rature weight as shown in Eq. (17) can be approximated numeri-

cally, using the L-point trapezoidal rule as follows:

ωmðΔtÞ ¼
R

�m

L
∑
L�1

l ¼ 0

f̂
γðzlÞ

Δt

� �

e�2πiml=L ð18Þ

where i is the imaginary unit, and R is a CQM parameter given by

R¼ ϵ1=2L: ð19Þ

In addition, γðzlÞ represents the quotient of generating polyno-

mials, which can be written as

γðzlÞ ¼ ∑
k

i ¼ 1

1

i
ð1�zlÞ

i; zl ¼Re�2π il=L: ð20Þ

Note that Eq. (20) corresponds to a backward differential formula

of order k. In practical applications, first or second order backward

differential formulas should be used in Eq. (20) to ensure high

precision solutions.

Now, the CQM is applied to the time-discretization of Eq. (13).

Dividing the boundary S into boundary elements and assuming the

piecewise constant approximation, the discretized time-domain

BIEs are derived as follows:

1

2
uðnÞ
M;i ¼ uinðnÞ

M;i þ ∑
n

k ¼ 1

∑
Ne

N ¼ 1

½Aðn�kÞ
MN;ij t

ðkÞ
N;j�Bðn�kÞ

MN;ij u
ðkÞ
N;j�;

ðxAS; M¼ 1;2;…;Ne; n¼ 1;2;…;NtÞ ð21Þ

where Ne and Nt represent the number of boundary elements and

total time steps, respectively. In addition, AðmÞ

MN;ij and BðmÞ

MN;ij are

influence functions expressed as follows:

AðmÞ

MN;ij ¼
R

�m

L
∑
L�1

l ¼ 0

Z

SN
Û ijðx

M ; y; slÞ dSðyÞ

� �

e�2π iml=L; ð22Þ

BðmÞ

MN;ij ¼
R

�m

L
∑
L�1

l ¼ 0

Z

SN
Ŵ ijðx

M ; y; slÞ dSðyÞ

� �

e�2π iml=L ð23Þ

where sl ¼ γðzlÞ=Δt. From Eqs. (22) and (23), it can be observed that

the influence functions AðmÞ

MN;ij and BðmÞ

MN;ij include Laplace-domain

displacement and traction fundamental solutions, Û ijðx; y; sÞ and

Ŵ ijðx; y; sÞ, respectively.

3.3. Laplace-domain fundamental solutions for general

anisotropic solid

As shown in Eqs. (22) and (23), Laplace-domain fundamental

solutions are required to compute the influence functions. In this

research, these fundamental solutions for elastic solids of general

anisotropy are derived from the Laplace transform of the time-

domain ones derived by Wang and Achenbach [30]. Applying the

Laplace transform to the time-domain fundamental solutions

yields the Laplace-domain ones as follows:

Û ijðx; y; sÞ ¼

Z 1

0
Uijðx; y; tÞe

� st dt ¼ Û
S

ijðx; yÞþÛ
D

ij ðx; y; sÞ ð24Þ

where Û
S

ijðx; yÞ and Û
D

ij ðx; y; sÞ represent the static and dynamic

parts of the fundamental solutions, respectively.

For 3-D problems, Û
S

ijðx; yÞ and Û
D

ij ðx; y; sÞ are expressed as

follows:

Û
S

ijðx; yÞ ¼
1

8π2r

Z

jnj ¼ 1
Γ�1
ij ðnÞ dLðnÞ; ð25Þ

Û
D

ij ðx; y; sÞ ¼ �
1

8π2

Z

jnj ¼ 1
∑
3

m ¼ 1

smd
m
i d

m
j

ρc2m
e� smjn�rj dLðnÞ ð26Þ

where cm and dmi are the phase velocity and the component of the

polarization vector, respectively, which are functions of the pro-

pagation vector n. In addition, r¼ x�y, r¼ jrj and sm ¼ s=cm. In Eq.

(25), ΓijðnÞ represents the Christoffel tensor given by

ΓijðnÞ ¼ Cipjqnpnq: ð27Þ

The 3-D fundamental solutions involve the numerical integration

over the unit sphere as shown in Fig. 2. In addition, the traction

fundamental solution Ŵ ijðx; y; sÞ is obtained using the relation

Ŵ ijðx; y; sÞ ¼ �CjpqrnpðyÞÛ iq;rðx; y; sÞ ð28Þ

where npðyÞ represents the unit normal vector on the boundary S.

For 2-D problems, the Laplace-domain fundamental solutions

are expressed as follows:

Û ijðx; y; sÞ ¼
1

8π2

Z

jnj ¼ 1
∑
3

m ¼ 1

d
m
i d

m
j

ρc2m
Φðn; r; smÞ dLðnÞ ð29Þ

where

Φðn; r; smÞ ¼ esmjn�rjE1ðsmjn � rjÞþe� smjn�rj½E1ð�smjn � rjÞþ iπ�: ð30Þ

In Eq. (30), E1ðzÞ represents the exponential integral [1]. As shown

in Eq. (24), the 2-D fundamental solutions can be decomposed into

static and dynamic parts using the following two relations. The

first one is a series expansion of E1ðzÞ as follows:

E1ðzÞ ¼ �γ� ln z� ∑
1

n ¼ 1

ð�1Þnzn

n � n!
ð arg z oπÞ:

�

�

�

� ð31Þ

The other one is another form of the Christoffel tensor ΓijðnÞ as

Γ�1
ij ðnÞ ¼ ∑

3

m ¼ 1

d
m
i d

m
j

ρc2m
: ð32Þ

Using Eqs. (31) and (32), the static and dynamic parts of the

fundamental solutions can be obtained as follows:

Û
S

ijðx; yÞ ¼ �
1

4π2

Z

jnj ¼ 1
Γ�1
ij ðnÞln n � r dLðnÞ;

�

�

�

� ð33Þ

Û
D

ij ðx; y; sÞ ¼
1

8π2

Z

jnj ¼ 1
∑
3

m ¼ 1

d
m
i d

m
j

ρc2m
ΦDðn; r; smÞ dLðnÞ: ð34Þ

The function ΦDðn; r; sÞ in Eq. (34) is given by

ΦDðn; r; sÞ ¼Φðn; r; sÞþ2 lnjn � rj: ð35Þ

Fig. 2. Numerical integration over the unit sphere.
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The static part Û
S

ijðx; yÞ of Eq. (33) can be expressed in the closed

form proposed by Wang [29], derived using a residue theorem as

follows:

Û
S

ijðx; yÞ ¼
1

π
Im ∑

3

m ¼ 1

AijðηmÞ

∂ηDðηmÞ
lnðr1þr2ηmÞ

� �

þRij ð36Þ

where

Rij ¼ �
1

π
Im ∑

3

m ¼ 1

AijðηmÞ

∂ηDðηmÞ
lnðηmþ iÞ

� �

: ð37Þ

In Eqs. (36) and (37), ∂η is given by ∂η ¼ ∂=∂η, and the constant term

Rij is necessary to maintain the quiescent field ahead of the wave

fronts generated by a point force and inessential in the elastostatic

fundamental solution. In Eq. (36), AijðηÞ and DðηÞ represent the

cofactor matrix and determinant of ΓijðmÞ, respectively, where

m¼ f1; ηgT . The superscript T denotes the transpose of a vector.

Moreover, ηm are distinct roots of the following characteristic

equation:

DðηmÞ ¼ 0; Im½ηm�40 ðm¼ 1;2;3Þ: ð38Þ

Note that the dynamic part of the 2-D fundamental solutions

expressed by Eq. (34) involves the numerical integration over the

unit circle as shown in Fig. 3. The corresponding traction funda-

mental solution Ŵ ijðx; y; sÞ for 2-D problems can be obtained using

the following relation:

Ŵ ijðx; y; sÞ ¼ �CjαqβnαðyÞÛ iq;βðx; y; sÞ: ð39Þ

4. Numerical evaluation of the influence functions

The influence functions given by Eqs. (22) and (23) include

Laplace-domain fundamental solutions for general anisotropic

elastodynamics. These fundamental solutions given by Eqs. (25)

and (26), and Eq. (34) involve the integration over the unit sphere

and circle, respectively. In our proposed method, these integra-

tions are numerically evaluated. However, numerical evaluation of

these integrations is time-consuming. In this section, some

numerical techniques for efficient calculation are introduced.

4.1. Numerical evaluation of the fundamental solutions

For 3-D problems, the numerical integration is implemented

with respect to the azimuthal and polar angles, θ and ϕ, as shown

in Fig. 2. Using the (pþ1)-point Gauss–Legendre rule for θ and the

(2pþ1)-point trapezoidal rule for ϕ, the integration over the unit

sphere is performed as follows:
Z

jnj ¼ 1
f ðnÞ dLðnÞ ¼

Z 2π

0

Z π

0
f ðϕ; θÞ sin θ dθ dϕ

¼

Z 2π

0

Z 1

�1
f ðϕ; cos �1xÞ dx dϕ

¼ ∑
2p

I ¼ 0

∑
pþ1

J ¼ 1

η
p
I f ðϕ

p
I ; λ

p
J Þw

p
J ð40Þ

where wJ
p and λJ

p are the J-th weight and the arccosine of the J-th

abscissa of the ðpþ1Þ point Gauss–Legendre integration. In

addition, ϕI
p and ηI

p are expressed as

ϕ
p
I ¼

2πI

2pþ1
; η

p
I ¼

2π

2pþ1
: ð41Þ

For 2-D case, the unit circle is divided into n panels, each

approximated by p-point Gauss-Legendre quadrature is applied to

each panel. Then the integration over the unit circle is evaluated as

follows:

Z

jnj ¼ 1
f ðnÞ dLðnÞ ¼

Z 2π

0
f ðθÞ dθ

¼
π

n
∑
n

I ¼ 1

∑
p

J ¼ 1

f ðλpIJÞw
p
J ð42Þ

where

λ
p
IJ ¼ θJ�1þ

π

n
ð1þxpJ Þ; θJ ¼

2πJ

n
: ð43Þ

In the numerical examples presented later, the parameters are set

to be p¼150 for the 3-D problem, and n¼8 and p¼16 for the 2-D

problem.

4.2. Acceleration of numerical computation for the

influence functions

Numerical computation of the influence functions as shown in

Eqs. (22) and (23) requires much computational time. However,

the computation of these functions can be accelerated using the

following three techniques.

Clearly, the influence functions defined in Eqs. (22) and (23) are

of the same form as a discrete Fourier transform (DFT). Therefore,

these influence functions can quickly be evaluated by means of

fast Fourier transform (FFT).

The second technique involves the complex conjugate of the

influence functions. The distribution of γðzÞ on the complex plane

defined in Eq. (20) is shown in Fig. 4, for the CQM parameters

R¼ 0:9, L¼64 and k¼2 in Eq. (20). As shown in this figure, the

following symmetric relation about γðzÞ is obtained as

γðzL�kÞ ¼ γ ðzkÞ ðk¼ 1;2;…; L=2�1Þ ð44Þ

where ð Þ represents the complex conjugate. Taking into account

this symmetric property about the real axis as shown in Fig. 4, the

following equation can be obtained as

Û ijðx; y; sL�kÞ ¼ Û ijðx; y; skÞ ðk¼ 1;2;…; L=2�1Þ: ð45Þ

Therefore, it is necessary to compute the boundary integrations for

the fundamental solutions Û ijðx;y; slÞ and its double layer kernel

Fig. 3. Numerical integration over the unit circle.

-2

-1

 0

 1

 2

 0  1  2  3  4

Fig. 4. Distribution of γðzÞ on the complex plane.
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Ŵ ijðx; y; slÞ, only for l¼ 0;1;…; L=2. The remaining calculations for

l¼ L=2þ1; L=2þ2;…; L�1 can be evaluated using the symmetric

property defined in Eq. (45).

The final means of increasing the processing speed is to

truncate the computation of the fundamental solutions. For

instance, negligibly small values of the fundamental solutions

are excluded from their integration process. To this end, it is

important to investigate the asymptotic behavior of the funda-

mental solutions.

For 3-D case, as shown in Eq. (26), the integral kernel of the

dynamic part of the fundamental solutions Û
D

ij ðx; y; slÞ is

smd
m
i d

m
j

ρc2m
e� smjn�rj: ð46Þ

This integral kernel includes expð�smjn � rjÞ which tends to zero

for a large argument smjn � rj. Therefore, considering jsmj-1 or

r-1, Eq. (46) can be rewritten as

smd
m
i d

m
j

ρc2m
e� smjn�rjpe�Re½sm �jn�rj: ð47Þ

Therefore, the truncation condition for 3-D case is derived from

the relation, r¼ re (see Fig. 2) as follows:

e�Re½sm �r
o10�β or r4

β ln 10

Re½sm�
ð48Þ

where β is the truncation parameter. If the truncation condition

defined in Eq. (48) is satisfied, Û
D

ij ðx; y; slÞ is neglected and the

fundamental solutions (24) are approximated as

Û ijðx; y; sÞCÛ
S

ijðx; yÞ: ð49Þ

The same procedure can be applied to the 2-D problem.

Therefore, considering the asymptotic behavior of Û ijðx;y; sÞ given

by Eq. (29) (jsmj-1 or r-1), the exponential integral is

expanded as follows [1]:

E1ðzÞ �
e� z

z
1�

1

z
þ

2

z2
�

6

z3
þ⋯

� �

: ð50Þ

Using Eq. (50), the integral kernel of Eq. (29) can be approximated

as follows:

d
m
i d

m
j

ρc2m
ϕðn; r; smÞpe�Re½sm �jn�rj: ð51Þ

Therefore, the truncation condition defined in Eq. (48) is applic-

able to Eq. (51). Indeed, if the truncation condition expressed by

(48) is satisfied, the fundamental solutions Û ijðx; y; sÞ are approxi-

mated as follows:

Û ijðx; y; sÞC0: ð52Þ

Since this truncation depends strongly on r, the approximation

given by Eq. (52) represents neglect of waves propagating from

far-field ðr-1Þ. This truncation is applied only to computation of

influence functions in which the relation between collocation

points and boundary elements can be considered to far-field. A

different approach to efficient computation has been proposed by

Hackbusch and Kress [12]. The approach is for fast evaluation of

the influence functions (i.e. integrations on the boundary ele-

ments) and based on the distance from the source point y to the

observation point x.

Three techniques introduced herein effectively accelerate the

numerical computation of the influence functions given by Eqs.

(22) and (23). The first and second techniques can be applied

without difficulty. However, the third one involves the empirical

truncation parameter β which can be determined subject to

numerical error constrains before numerical implementation.

5. Numerical examples

In this section, some numerical examples, which are wave

scattering problems by a spherical cavity in 3-D case and a circular

one in 2-D case, are presented. First, the accuracy of our proposed

method in solving 2-D and 3-D problems is confirmed. Next, for 3-

D case, the computational efficiency is evaluated using paralleliza-

tion techniques. Finally, numerical results for elastic wave scatter-

ing by a cavity are shown. In particular, three types of anisotropic

solids are considered in 2-D problems.

Spherical and circular cavities are divided into 512 and 32

boundary elements, respectively. A fine mesh is required for

accurate computation of the waves propagating along the surface

of spherical and circular cavities. Moreover, the CQM parameters

ϵ¼ 1:0� 10�10 in Eq. (19) and k¼2 in Eq. (20) are considered.

5.1. Accuracy of the proposed method

The 3-D scattering problem of an incident plane P-wave hitting

a spherical cavity with radius a in an infinite domain, as shown in

Fig. 5, is solved by the proposed method to verify the computa-

tional accuracy.

The formulation for 3-D general anisotropy proposed herein

involves an elastic constant Cijkl, as shown in Eq. (27). If the

isotropic elastic constants are substituted into the coefficients Cijkl
of each derived equation, we can solve the isotropic problem and

compare with the “reference solutions,” which are obtained by

inversely transforming the analytical solutions in the frequency

domain [21].

The number of total time steps N ð ¼ LÞ is 32, and the time

increment is given by cLΔt=a¼ 0:08 where cL is the phase velocity

of an incident P-wave. Poisson's ratio ν of elastic solid is 0.25. The

incident wave is a plane longitudinal wave given by

uin
i ðx; tÞ ¼ δi1

s0a

ρc2L
hLHðhLÞ; hL ¼

cLt

a
�
x1þa

a
ð53Þ

where s0 is the stress amplitude. In addition, Hð�Þ and δij represent

Heaviside function and the Kronecker delta, respectively.

Fig. 6 shows the time variations of the total displacements at

points A, B and C in Fig. 5. In Fig. 6, the circles and solid lines show

the total displacements computed by our proposed method and

the reference solutions, respectively. As seen in Fig. 6, the results

obtained by our proposed method are in good agreement with the

reference solutions. Therefore, it can be said that the validity of the

formulation is confirmed for the 3-D case.

In the same way, the 2-D elastic wave scattering problem is

solved by the proposed method. The analytical model is a circular

cavity of radius a, as shown in Fig. 7. The number of total time

steps N ð ¼ LÞ is 128. In addition, the time increment Δt is given by

cLΔt=a¼ 0:125. The incident wave is a plane longitudinal wave

expressed by Eq. (53). The time variations of the total displace-

ments at points A, B and C in Fig. 7 are shown in Fig. 8. Our

numerical results (colored circles) agree well with the 2-D refer-

ence solutions (colored solid lines). Thus, the proposed method

was validated in both 2-D and 3-D cases.

Fig. 5. Analytical model in the 3-D infinite domain.
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5.2. Influence of truncation in computation of the

fundamental solutions

In this section, the influence of truncation for computation of

the fundamental solutions, described in Section 4.2, is verified by

demonstrating numerical results obtained with different values of

the truncation parameter β in Eq. (48). The numerical model is the

2-D elastic wave scattering problem as shown in Fig. 7. It is

assumed that the medium is an isotropic elastic solid with

Poisson's ratio ν¼0.25, and the incident wave is a plane long-

itudinal wave given by

uin
i ðx; tÞ ¼ U0di

1

2
½1� cos ð2πhLÞ�HðhLÞ ð54Þ

where

hL ¼
cLt

a
�
x1þa

a
: ð55Þ

In Eq. (54), U0 and di represent the amplitude and polarization

vector of the incident wave, respectively. In addition, cL is the

phase velocity of the longitudinal wave. Total number of time step

is set to Nt¼64. The time increment is given by cTΔt=a¼ 0:029

where cT represents wave velocity of the transverse wave.

Fig. 9 shows time variations of total displacements at points A, B

and C in Fig. 7. The truncation parameter β is set to 1, 2, 5, 10 and 20,

and sm in Eq. (48) is chosen as sm ¼ s=cL. Note that the truncation

parameter β¼1 means that the truncation has not been applied.

From Fig. 9, the total displacements with β¼5, 10 and 20 are good

agreement with the displacement without truncation ðβ¼1Þ at all

three points. Therefore, the truncation parameter with βZ5 is

adequate for 2-D wave scattering analyses. Other truncation para-

meters should be selected for 3-D problems. Fig. 10 shows the

relation between computational time and truncation parameter β.

The computational time using β¼5 is only 40% of the analysis

without truncation ðβ¼1Þ. Our proposed truncation is powerful

for reducing computational time. When anisotropic solids are

considered, cmax should be set to the phase velocity of quasi-P wave.

5.3. Computational efficiency of the proposed method

As mentioned before, the fundamental solutions in 3-D gene-

ral anisotropy involve integration over the unit sphere and its

Fig. 7. Analytical model in the 2-D infinite domain.

Fig. 8. Time variations of the total displacements at points A, B and C in Fig. 7

(Section 5.1). (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this paper.)

Fig. 9. Time variations of the total displacements at points A, B and C in Fig. 7

(Section 5.2).

Fig. 6. Time variations of the total displacements at points A, B and C in Fig. 5.
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computation is very time-consuming. Therefore, in this section,

the computational efficiency of the formulation for 3-D problem is

confirmed by resolving the problem outlined in Section 5.1 using a

hybrid parallelization with MPI and OpenMP.

A schematic diagram of the hybrid parallelization is shown in

Fig. 11. In this paper, eight nodes are used in the MPI process, and

the number of threads per node (i.e. OpenMP parallelization) is 1,

6, 12 and 24. Fig. 12 shows the assignment of the parallelization

corresponding to the components of the influence matrix in

Eq. (21). The matrix shown in Fig. 12 consists of the influence

functions AMN given by Eq. (22). In addition, the following MPI-

OpenMP relation makes it possible to obtain a good speed-up:

N2
e

pq
AN ð ¼ 1;2;3;…Þ: ð56Þ

In Eq. (56), p represents the number of nodes by MPI process, and

q is the number of threads by OpenMP. Numerical computation

based on the relation that does not meet Eq. (56) generates nodes

and slave threads which are only waiting for joining back into the

master thread.

Table 1 shows the relationship between the computational

time and the number of total threads used in this analysis.

TSUBAME 2.0, which is a supercomputer at Tokyo Institute of

Technology, is used for the computation. From these results, it can

be observed that the required computational time is drastically

decreased by using the hybrid parallelization. From the practical

point of view, however, the time-domain analysis for 3-D general

anisotropy remains time-consuming.

5.4. Elastic wave scattering analysis by a cavity in anisotropic solids

In this section, the results of 2-D elastic wave scattering by a

cavity in anisotropic solids are demonstrated. Three types of

anisotropic solids, namely, transversely isotropic, orthotropic and

monoclinic materials, are considered in the analysis.

In the following numerical results, the number of total time

steps Nt is set to be Nt ¼ L¼ 32. The incident wave is the plane

quasi-P wave given by Eqs. (54) and (55). Phase velocity and

polarization vector of the quasi-P wave should be substituted into

cP and di (i.e. cP≔cqP and di≔d
qP
i ) in these equations. Note that both

phase velocity cqP and polarization vector di depend on the type of

anisotropic solids. To improve the computational efficiency, the

computations are parallelized by 24 OpenMP threads.

Numerical simulations of scattering in a transversely isotropic

solid are conducted for the PZT (lead zirconate titanate). The

density of PZT is 7800 kg/m3, and the elastic tensor components

based on the Voigt notation CIJ (GPa) [11] are

CIJ ¼

107:6 63:9 63:1 0 0 0

100:4 63:9 0 0 0

107:6 0 0 0

19:6 0 0

Sym: 22:2 0

19:6

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: ð57Þ

Fig. 11. Schematic diagram of the hybrid parallelization with MPI and OpenMP.

: MPI : Open MP

Fig. 12. Parallel memory allocation for the influence matrix AðmÞ

MN;ij
.

Table 1

Relationship between the computational time and the number of total threads used

in this analysis.

MPI OpenMP The number of total threads CPU time (h)

8 1 8 22.6

8 6 48 7.5

8 12 96 1.9

8 24 192 1.6

Fig. 13. Group velocity curves (PZT, x1–x2 section).

Fig. 10. Relation between computational time and truncation parameter β.

A. Furukawa et al. / Engineering Analysis with Boundary Elements 39 (2014) 64–7470



The phase velocity of the quasi-P wave propagating parallel to the

x1-direction is 3700 m/s, and the polarization vector of the wave is

d¼ f1;0gT. The time increment is cqPΔt=a¼ 0:056. The group

velocity curves of PZT in the x1–x2 section are shown in Fig. 13.

From this figure, it can be observed that the shapes of the curves

are almost circles. Fig. 14 shows time histories of the total wave

fields, juj=U0, at several times. The results show clear wave fronts

of scattered quasi-P and quasi-S1 waves propagating with rota-

tionally symmetric wave fronts that are similar to the group

velocity curves in Fig. 13.

Numerical simulations are then conducted for an orthotropic

material, namely, spruce. The density of spruce is 430 kg/m3, and

its elastic tensor components CIJ (GPa) [11] are

CIJ ¼

0:44 0:32 0:19 0 0 0

16:27 0:45 0 0 0

0:78 0 0 0

0:61 0 0

Sym: 0:039 0

0:76

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: ð58Þ

The phase velocity of the quasi-P wave propagating parallel to

the x1-direction is cqP ¼ 1300 m/s. The polarization vector of the

wave is given as d¼ f0;1gT . Moreover, the time increment

cqPΔt=a¼ 0:098 is considered in this analysis. Fig. 15 shows the

group velocity curves of spruce in the x1–x2 cross-section. From

this figure, it can be observed that the group velocity of quasi-P

waves propagating in the x2-direction is faster than that in the x1-

direction. The time histories of the total wave fields, juj=U0, at

several times are shown in Fig. 16. This figure shows that the

incident wave is scattered and the shape of the scattered quasi-P

wave is consistent with the group velocity curves of Fig. 15.

Finally, simulations are performed for a monoclinic material,

graphite-epoxy. The density of graphite-epoxy is 1600 kg/m3, and

qP-wave

qS-wave

Fig. 14. Time histories of the total wave fields around a cavity at several times (PZT, x1–x2 section).

Fig. 15. Group velocity curves (spruce, x1–x2 section).
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the elastic tensor components CIJ (GPa) [11] are

CIJ ¼

95:5 28:9 4:03 0 0 44:7

25:9 4:65 0 0 15:6

16:3 0 0 0:54

4:4 �1:78 0

Sym: 6:45 0

32:7

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: ð59Þ

The phase velocity of the quasi-P wave propagating parallel to the

x1-direction cqP is 8600 m/s, and the polarization vector of the

wave is d¼ f0:88; �0:46gT . In addition, the time increment is

cqPΔt=a¼ 0:129. The group velocity curves of graphite-epoxy in

the x1–x2 section are shown in Fig. 17. As seen in Fig. 17, the group

velocity curve of quasi-S1 wave is somewhat erratic. The time

histories of the total wave fields, juj=U0, at several times are shown

in Fig. 18. The wave fronts of the scattered waves concord with the

group velocity curves.

6. Conclusions

In this paper, CQ-BEMs for 2-D and 3-D elastodynamic analyses

of general anisotropy were presented. Our proposed method

adopted the CQM and the collocation method for time and spatial

discretization, respectively. The Laplace-domain fundamental

solutions were required for the computation of the influence

functions, which were derived from the time-domain fundamental

solutions proposed by Wang and Achenbach [30]. For the 3-D case,

numerical integration over the unit sphere was performed for both

static and dynamic parts. On the other hand, for the 2-D case,

dynamic part only was numerically integrated, while the static

part was calculated analytically. In addition, some numerical

techniques for the efficient computation of the influence functions

were presented.

qP-wave

Fig. 16. Time histories of the total wave fields around a cavity at several times (spruce, x1–x2 section).

Fig. 17. Group velocity curves (graphite-epoxy, x1–x2 section).
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To verify the proposed method, wave scattering problems

in general anisotropic solids were demonstrated for both 2-D

and 3-D cases. The accuracy of our proposed method was con-

firmed by comparing our results with the semi-analytical solutions

in the cases of isotropic solids. To investigate the computational

efficiency in 3-D cases, CPU times were compared by using the

hybrid parallel calculations with different numbers of threads in

MPI and OpenMP. Finally, the results of wave scattering analysis

for the 2-D problems were presented for three anisotropic solids.

Both 2-D and 3-D analyses required much computational time

and memory. A future task is to improve our proposed method

further in conjunction with FMM or adaptive cross approximation

(ACA). In addition, although the superior time stability of the CQ-

BEM compared with the conventional time-domain BEM is well

known, a mesh-sensitivity study of the CQ-BEM is required. In

near future, the CQ-BEM for solving wave scattering in general

anisotropic fluid-saturated porous solids will be developed.
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