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Abstract

To establish a compact analytical framework for the preliminary stress-wave identification of material

defects, the focus of this study is an extension of the concept of topological derivative, rooted in

elastostatics and the idea of cavity nucleation, to 3D elastodynamics involving germination of solid

obstacles. The main result of the proposed generalization is an expression for topological sensitivity,

explicit in terms of the elastodynamic Green’s function, obtained by an asymptotic expansion of a

misfit-type cost functional with respect to the nucleation of a dissimilar elastic inclusion in a defect-free

‘‘reference’’ solid. The featured formula, consisting of an inertial-contrast monopole term and an

elasticity-contrast dipole term, is shown to be applicable to a variety of reference solids (semi-infinite and

infinite domains with constant or functionally graded elastic properties) for which the Green’s functions

are available. To deal with situations when the latter is not the case (e.g. finite reference bodies or those

with pre-existing defects), an adjoint field approach is employed to derive an alternative expression for

topological sensitivity that involves the contraction of two (numerically computed) elastodynamic states.

A set of numerical results is included to demonstrate the potential of generalized topological derivative

as an efficient tool for exposing not only the geometry, but also material characteristics of subsurface

material defects through a local, point-wise identification of ‘‘optimal’’ inclusion properties that

minimize the topological sensitivity at sampling location. Beyond the realm of non-invasive

characterization of engineered materials, the proposed developments may be relevant to medical

diagnosis and in particular to breast cancer detection where focused ultrasound waves show a promise

of superseding manual palpation.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Inverse scattering; Elastic waves; Topological sensitivity; Imaging; Transmission problem

ARTICLE IN PRESS

www.elsevier.com/locate/jmps

0022-5096/$ - see front matter r 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jmps.2006.07.009

�Corresponding author. Tel.: +1612 626 0789; fax: +1 612 626 7750.

E-mail address: guzina@wave.ce.umn.edu (B.B. Guzina).



1. Introduction

Elastic-wave identification of defects and heterogeneities embedded in semi-infinite or

finite bodies is a problem of considerable interest in mechanics owing to its applications in

material characterization, seismology, and medical diagnosis. The underlying inverse

solutions can be derived from a variety of computational platforms that include e.g. (far-

field) ray theory (Aki and Richards, 2002), finite-difference approximation of the wave

equation (Sheriff and Geldart, 1995; Schroeder et al., 2002), and boundary integral

formulations (Bonnet, 1995). In the context of 3D material characterization, these

approaches carry a substantial computational cost associated with solving the forward

problem. This precludes the use of global search techniques such as genetic algorithms

which involve a large number of forward simulations. To mitigate the problem, gradient-

based optimization algorithms have been proposed as a computationally tractable

alternative to solving inverse scattering problems, especially when aided by the analytical

gradient estimates (Plessix et al., 1998; Guzina and Bonnet, 2004). Unfortunately, the latter

class of solutions necessitate a reliable preliminary information about the geometry and

material characteristics of hidden defects for satisfactory performance.

Building on the results in shape optimization obtained for Laplace (Sokolowski and

Zochowski, 1999; Garreau et al., 2001) and Helmholtz (Samet et al., 2004; Pommier and

Samet, 2005) systems, Guzina and Bonnet (2004), Bonnet and Guzina (2004), and Gallego

and Rus (2004) have recently established the method of topological sensitivity as a tool for

preliminary, grid-based reconstruction of obstacles in the context of inverse elastic

scattering that requires no prior information (or assumptions in the absence thereof) about

the location and geometry of internal defects. In the approach the topological derivative,

which quantifies the sensitivity of a given cost functional with respect to the nucleation of

an infinitesimal obstacle in the reference (background) medium, is used as an effective

obstacle indicator through an assembly of sampling points where it attains pronounced

negative values. Typically, the formulas for topological sensitivity permit an explicit

representation (e.g. in terms of the Green’s function) that is responsible for the

computational efficiency of this class of reconstruction techniques. Notwithstanding their

usefulness, however, the foregoing analyses are limited in the sense that they are focused on

the nucleation of impenetrable scatterers, and in particular cavities in 3D (Guzina and

Bonnet, 2004; Bonnet and Guzina, 2004) and/or cracks in 2D (Gallego and Rus, 2004)

elastodynamics.

In this study, the concept of topological sensitivity is generalized to permit the

nucleation of dissimilar solid inclusions and thus allow for preliminary elastic-wave

identification of subsurface defects of more general nature. On employing a boundary

integral approach to derive the necessary asymptotics in terms of the vanishing defect size,

it is shown that the proposed generalization (termed ‘‘material-topological’’ sensitivity)

consists of a monopole term, related to the mass density contrast, and a dipole term

involving the elasticity contrast between the defect and the matrix. To cater for engineering

applications, explicit formulas are derived for canonical cases when the nucleating

inclusion takes spherical or ellipsoidal shape. For generality, the proposed developments

are recast within an alternative framework of the adjoint-field formulation that permits

nucleation of inclusions in an arbitrary (infinite or finite, homogeneous or heterogeneous)

reference solid. Through numerical examples it is shown that the material-topological

sensitivity can be used, in the context of inverse scattering, as an effective defect indicator
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through an assembly of sampling points where it attains marked negative values. On

varying the material characteristics of the nucleating obstacle, it is also shown that the

featured sensitivity can be used as a preparatory tool for both geometric and material

identification of internal defects.

Beyond their intrinsic potential for the study of localized damage evolution in natural

and engineered materials (e.g. Mazars et al., 1991; Xu, 2004; Bonamy et al., 2005), the

proposed developments be especially useful in breast cancer detection wherein the

knowledge of the shear modulus of a lesion, (geometrically) identified via ultrasound or

magnetic resonance imaging, may permit reliable differentiation between the malignant

and benign growths (Sarvazyan et al., 1998; Fatemi and Greenleaf, 1998). For

completeness, it is noted that the underlying idea of a nucleating inclusion, explored in

this study, is similar in spirit to the recent work in Ammari and Kang (2004) dealing with

Laplace, elastostatic and Helmholtz systems. Notwithstanding the apparent commonal-

ities, however, the asymptotic expansion methodology, formulas for the generalized

topological sensitivity, and the material-geometric identification approach proposed herein

have not been established elsewhere.

2. Preliminaries

Consider the inverse scattering problem where the semi-infinite solid, probed by elastic

waves, contains a bonded defect Dtrue with smooth boundary Gtrue ¼ qDtrue (see Fig. 1).

With the Cartesian frame fO; x1; x2; x3g set at the top surface S, the reference elastic half-

space O ¼ fðx1; x2; x3Þ j x340g with closure Ō ¼ O [ S is characterized by the shear

modulus m, Poisson’s ratio n, and mass density r. Elastic parameters of the obstacle,

Dtrue � O, are m%

true and n%

true; its mass density is denoted as r%

true. Without loss of generality,

it is assumed that the defect is illuminated by a time-harmonic body force distribution f

(carrying an implicit time factor eiot) whose support and frequency of excitation are

denoted by V f � O and o, respectively. For identification purposes, the induced motion

(uobs) is monitored over a finite measurement surface Pobs ¼ Pobs
S [Pobs

O , where Pobs
S ¼

Pobs \ S and Pobs
O ¼ Pobs \ O denote its boundary and interior segments, respectively. In

the context of medical imaging applications, introduction of the latter segment (Pobs
O ) is

motivated by the emergence of the so-called vibro-acustography techniques (Fatemi and
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Fig. 1. Illumination of a hidden defect (Dtrue) by elastic waves.
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Greenleaf, 1998) that entail accurate monitoring of subcutaneous tissue displacement using

focused ultrasound beams.

To deal with the defect identification problem depicted in Fig. 1, it is useful to introduce

a misfit-type cost functional involving experimental observations uobs ¼ uobsðnÞ and their

elastodynamic predictions u ¼ uðnÞ over Pobs so that

JðO�;m; f Þ ¼

Z

Pobs
jðu; uobsÞdPx, (1)

where j is a measure of distance in R3, assumed to be smooth function of its arguments;

O� ¼ OnD̄; m ¼ ðm%; n%;r%Þ and D̄ ¼ D [ G signify, respectively, the material properties

and closure of a trial inclusion D bounded by the closed smooth surface G, and u is the

time-harmonic displacement field which solves the forward scattering problem in the

exterior domain (so-called ‘‘matrix’’) O�. To facilitate the ensuing discussion, let Ik denote

the symmetric kth-order identity tensor (Dahlquist and Bjorck, 1974), and let C and C% be

the respective (isotropic) elasticity tensors of the matrix and the inclusion so that

C ¼ 3KE1 þ 2mE2; C% ¼ 3K%E1 þ 2m%E2, (2)

where E1 ¼
1
3
I2 � I2, E2 ¼ I4 � E1, and

K ¼
2mð1þ nÞ

3ð1� 2nÞ
; K

% ¼
2m%ð1þ n%Þ

3ð1� 2n%Þ
, (3)

are the corresponding bulk moduli. With such definitions, u can be shown to solve the field

equations

r � ðC : ruÞ þ f ¼ �ro2u; n 2 O�, (4)

subject to the boundary and continuity conditions

t ¼ 0; n 2 S,

u ¼ u
%

; t ¼ � t
%

; n 2 G. ð5Þ

Here ‘‘�’’ and ‘‘:’’ denote, respectively, the usual tensor product and double tensor

contraction following the Gibbs dyadic notation (Malvern, 1969); u
%

is the elastodynamic

displacement field inside the scatterer, i.e.

r � ðC%
: r u

%

Þ ¼ �r%o2 u
%

; n 2 D, (6)

and

t ¼ n � C : ru; n 2 G [ S,

t
%

¼ n% � C%
: r u

%

; n% ¼ �n; n 2 G ð7Þ

signify, respectively, the surface tractions acting on the matrix with outward normal n and

the obstacle whose outward normal is denoted by n%.

In what follows, it is assumed that u meets the standard continuity requirements for

smooth bounding surfaces, i.e. u 2 C2ðO�Þ \ C1ðŌ
�
Þ where Ō

�
¼ O� [ G [ S. For this

class of elastic scattering problems, it can be shown (Bonnet, 1999) that the displacement
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field in O� satisfies the Somigliana-type integral representation

uðxÞ ¼ � ek

Z

G

uðnÞ � t̂kðn;xÞdGx þ ek

Z

G

tðnÞ � ûkðn;xÞdGx

þ ek

Z

V f

f ðnÞ � ûkðn; xÞdOx; x 2 O�. ð8Þ

Here, Einstein summation convention is assumed over the spatial coordinate index

k 2 f1; 2; 3g; u satisfies the generalized radiation condition

lim
R!1

Z

GR

fûkðn; xÞ � tðnÞ � t̂
k
ðn;xÞ � uðnÞgdGx ¼ 0; x 2 O�; k ¼ 1; 2; 3, (9)

where GR � O is a hemisphere centered at the origin (Madyarov and Guzina, 2006); and

ûkðn; xÞ and t̂kðn;xÞ constitute the elastodynamic Green’s function for a uniform semi-

infinite solid by denoting the respective displacement and traction vectors at n 2 O due to a

unit (time harmonic) point force acting at x 2 O in the kth direction.

For the ensuing treatment, the displacement field in (4) and (8) can be conveniently

decomposed as

uðnÞ ¼ uFðnÞ þ ~uðnÞ; n 2 Ō
�
, (10)

where ~u denotes the scattered field, and

uFðxÞ ¼ ek

Z

V f

f ðnÞ � ûkðn; xÞdOx (11)

is the free field defined as a response of the defect-free half-space O due to prescribed body

force distribution f . Under the implicit assumption that uF and ~u satisfy the radiation

condition (9) individually, substitution of (10) into (8) leads to an integral representation of

the scattered field

~uðxÞ ¼ �ek

Z

G

uðnÞ � t̂kðn;xÞdGx þ ek

Z

G

tðnÞ � ûkðn;xÞdGx; x 2 O� (12)

that will be instrumental for the ensuing developments. By virtue of (10) and the integral

identity in terms of uF (see Pak and Guzina, 1999), formula (12) can also be rewritten as

~uðxÞ ¼ �ek

Z

G

~uðnÞ � t̂kðn;xÞdGx þ ek

Z

G

~tðnÞ � ûkðn;xÞdGx; x 2 O�, (13)

featuring the boundary values of ~u and ~t ¼ n � C : r ~u.

On the basis of (10), a reference value of the cost functional (1) can be introduced as

JðO;m; f Þ � JðO; f Þ ¼

Z

Pobs
jðuF; uobsÞdPx; (14)

a quantity that is calculated with reference to the unperturbed (i.e. obstacle-free)

background domain O.

3. Topological sensitivity

To aid the gradient-based minimization of (1) that is often used as a tool for identifying

Dtrue on the basis of motion measurements uobs, of interest in this study is the development of
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material-topological derivative for the class of cost functionals JðO�;m; f Þ given by (1) that

would provide a reliable preliminary information about the location, geometry and material

characteristics of the hidden defect. In situations when J is a non-convex function in the

material-geometric parametric space used to describe the defect (as is often the case), the

quality of such preliminary information may be a critical factor in ensuring that the minimiza-

tion scheme converges to the global minimum of J rather than its local counterpart.

To this end, let B � R
3 be a fixed, simply-connected open set of volume Bj j containing

the origin, and let Ba ¼ xo þ aB � O denote the region of volume jBaj � a3jBj that is

occupied by a small inclusion with size a40 (see Fig. 1) and material properties

m ¼ ðm%; n%;r%Þ. Further, let Ba have a smooth boundary Sa ¼ qBa of class C1.

Generalizing upon the results in Guzina and Bonnet (2004), one is in particular interested

in the asymptotic behavior of (1) with D � Ba as a ! 0. With reference to this limiting

behavior, the topological derivative, T, of J at xo can be introduced through the

expansion

JðOnB̄a;m; f Þ ¼ JðO; f Þ þ hðaÞTðxo;m; f Þ þ oðhðaÞÞ as a ! 0; Baðx
oÞ � O,

(15)

where JðO; f Þ is given by (14) and hðaÞ, identified with the leading term, is to be

determined. In the sequel, it is assumed that

hðaÞ40; lim
a!0

hðaÞ ¼ 0; jTðxo;m; f Þjo1; xo 2 O (16)

as a prerequisite for topological sensitivity to make sense. If lima!0 hðaÞ ¼ 0 as postulated

in (16), one finds from (15) that

Tðxo;m; f Þ ¼ lim
a!0

JðOnB̄a;m; f Þ �JðO; f Þ

hðaÞ
(17)

which justifies the use of term ‘‘derivative’’ in the context of T. One may note that this

definition is not restricted to spherical obstacles for which B is the unit ball, qB ¼ S is the

unit sphere, and Bj j ¼ 4p=3. In the context of elastostatics and structural shape

optimization (Eschenauer et al., 1994; Sokolowski and Zochowski, 1999), it was shown

that the spatial distribution of Tðxo; 0; f Þjo¼0 can be used as a powerful criterion for the

removal of spare material through regions where To0. Similarly, elastodynamic results in

Guzina and Bonnet (2004) and Bonnet and Guzina (2004) highlight the potential of

Tðxo; 0; f Þ for preliminary identification of subsurface cavities through an assembly of

sampling points, xo, where the topological sensitivity attains pronounced negative values.

A primary motivation for such methodologies revolves around the notion that points

where To0, and in particular those with marked negative values of T, indicate locations

where the removal of ‘‘excess’’ material (effected via cavity nucleation) is most effective as

measured by the rate of decrease ofJðOÞ in (15). In view of their fundamental premise of a

nucleating cavity (i.e. m ¼ 0), however, the existing methodologies and in particular those

in Guzina and Bonnet (2004) and Bonnet and Guzina (2004) are not equipped to deal with

obstacles of general nature; a limitation that this study aims to transcend.

To provide a further rationale for (15) and (16) in light of the distinct topologies

characterizing O and OnB̄a, it is useful to employ the implicit hypothesis that B̄a \Pobs ¼

; and represent the perturbation (i.e. scattering) effect of Ba on J via a system of traction

discontinuities acting across Sa ¼ qBa in the unperturbed (i.e. obstacle-free) solid O.
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Accordingly, one may write

JðOnB̄a;m; f Þ ¼ JðO; f þ sadSaÞ, (18)

where sa signifies a suitable jump in tractions acrossSa; dSa denotes the surface delta function

over Sa (Vladimirov, 1979), and JðO; �Þ is given by (14). To understand the nature of sa,

consider the solution of the transmission problem given by (4)–(7) and (9) when D ¼ Ba. Next,

assume that the total displacement field u over Pobs � O� [ S, used to compute the left-hand

side of (18), permits a representation in terms of the single-layer potential

uðxÞ ¼ uFðxÞ þ ek

Z

Sa

uðnÞ � ûkðn;xÞdSx; x 2 Pobs, (19)

over Sa where ûk is the Green’s function for the unperturbed reference solid O. By virtue

of the jump relationships for the conormal derivative (in this case the traction on Sa) in

terms of a single-layer potential, see McLean (2000), one finds that in fact sa ¼ u. As an

alternative argument one may rewrite (19), using the surface delta function over Sa, as a

volume potential

uðxÞ ¼ uFðxÞ þ ek

Z

O

uðnÞ � ûkðn;xÞ dSaðnÞdOx; x 2 Pobs. (20)

On employing the definition of uF in (11) and the reciprocity of the half-space Green’s function

(Guzina et al., 2003) whereby ûkj ðn; xÞ ¼ û
j
kðx; nÞ, (20) can be expressed in the component

notation as

uðxÞ ¼ ek uFk þ

Z

O

û
j
kðx; nÞjjðnÞdSaðnÞdOx

� �

¼ ek

Z

O

û
j
kðx; nÞff j þ jjdSagðnÞdOx; x 2 Pobs, ð21Þ

from which it immediately follows that sa ¼ u, cf. (18). In this setting, the small-defect

expansion (15) can thus be re-interpreted as one with respect to the body-force excitation in

lieu of domain topology. With reference to (17) and (18), hypothesis jTjo1 will thus make

sense if, for example, sa remains bounded onBa as a ! 0. For the problem of spherical cavity

nucleation (Guzina and Bonnet, 2004), it can be shown that the latter condition holds (e.g.

Kupradze, 1965) provided that B̄a is outside of the support (V f � O) of the body force f

generating uF. In the sequel, it will likewise be assumed that V f \ B̄a ¼ ; for the nucleating

inclusion problem.

4. Asymptotic for a nucleating inclusion

To arrive at a compact expression for (17) when m is non-trivial, integral representation

(12) when G ¼ Sa and ~u ¼ ~ua can be conveniently rewritten by virtue of (10) as

~uaðxÞ ¼ � ek

Z

Sa

t̂kðn;xÞ � uFðnÞdSx � ek

Z

Sa

t̂kðn;xÞ � ~uaðnÞdSx

þ ek

Z

Sa

ûkðn;xÞ � taðnÞdSx

� I
1ðxÞ þI

2ðxÞ þI
3ðxÞ; x 2 O� ¼ OnB̄a, ð22Þ

where n denotes the unit normal on Sa ¼ qBa oriented toward the interior of Ba;

ta ¼ n � C : rðuF þ ~uaÞ, and I
1, I2, and I

3 denote, respectively, the three integrals on the
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right-hand side of (22). Note that the order of multiplicands in each scalar product has

been reversed relative to those in (12) to facilitate the ensuing derivation. By means of the

divergence theorem and Taylor expansion of the featured elastodynamic fields around

n ¼ xo, the limiting behavior of the first and the third integral in (22) as a ! 0 can be,

respectively, reduced to

I
1ðxÞ ¼ a3jBjekfr̂

kðxo;xÞ : D : rFðxoÞ � ro2ûkðxo; xÞ � uFðxoÞg þ oða3Þ,

x 2 O�; a ! 0 ð23Þ

and

I
3ðxÞ ¼ �a3jBjekfr̂

kðxo;xÞ : D : r
% aðxoÞ � r%o2ûkðxo; xÞ � u

% aðxoÞg þ oða3Þ,

x 2 O�; a ! 0, ð24Þ

where rF ¼ C : ruF is the free-field stress tensor; r
% a ¼ C%

: r u
% a is the stress field inside

the vanishing inclusion, and

D ¼
1

3k
E1 þ

1

2m
E2 (25)

is the elastic compliance tensor characterizing the semi-infinite solid O�. With reference to

(22)–(23), it is important to note that the limiting expression for I
1 is fully explicit

as it involves only the free field (known beforehand) and the elastodynamic Green’s

function. This is, however, not the case with I
2 and I

3 which entail a full solution to the

forward scattering problem. The remainder of this section focuses on resolving the two

latter fields.

4.1. Boundary variation of the scattered field

To elucidate the contribution of I
2 in (22) for vanishing a, it is necessary first to

determine the limiting behavior of the scattered field, ~ua, along Sa as a ! 0. In what

follows, the notation ‘‘v ¼ OðakÞ’’ where v is a vector field will be used in lieu of vi ¼ OðakÞ,

i 2 f1; 2; 3g. In general, one may expect that the scattered field will vanish with diminishing

obstacle size, whereas the free field is independent of a so that

uFðnÞ ¼ Oð1Þ; ~uaðnÞ ¼ oð1Þ as a ! 0; n 2 O� [Sa [ S. (26)

On the basis of (4)–(7) and (10), the field equations and boundary conditions for the solid

obstacle problem in terms of the scattered field can be written as

r � ðC : r ~uaÞ ¼ �ro2 ~ua; n 2 O�,

~t
a
¼ 0; n 2 S,

~ua þ uF ¼ u
% a; ~t

a
þ tF ¼ � t

%
a; n 2 Sa,

r � ðC%
: r u

% aÞ ¼ �r%o2 u
% a; n 2 Ba, ð27Þ

where ~t
a
¼ n � C : r ~ua; tF ¼ n � C : ruF; t

%
a ¼ �n � C%

: r u
% a, and ~ua satisfies the general-

ized radiation condition (9) as examined earlier. As shown in Pak and Guzina (1999), (27)

is governed by a pair of regularized (i.e. Cauchy principal value-free) boundary integral
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equations, the first of which refers to the exterior domain O� and can be written as

ek � ~u
aðxÞ þ

Z

Sa

ð~uaðnÞ � ~uaðxÞÞ � ½t̂kðn;xÞ�1 dSx þ

Z

Sa

~uaðnÞ � ½t̂kðn;xÞ�2 dSx

�

Z

Sa

~t
a
ðnÞ � ûkðn;xÞdSx ¼ 0; x 2 Sa; k 2 f1; 2; 3g, ð28Þ

where t̂ ¼ n � C : rû. Similarly the second equation, written for the inclusion, reads
Z

Sa

ðu
% aðnÞ � u

% aðxÞÞ � ½�t
k
ðn;xÞ�1 dSx þ

Z

Sa

u
% aðnÞ � ½�t

k
ðn;xÞ�2 dSx

�

Z

Sa

t
%
aðnÞ � �ukðn;xÞdSx ¼ 0; x 2 Sa; k 2 f1; 2; 3g, ð29Þ

where �uk and �t
k
¼ �n � C%

: r �uk refer to the elastodynamic fundamental solution for an

infinite solid R3 with elastic parameters m% and n%, and mass density r%. Recalling (27), the

two integral equations are linked through the interfacial conditions

~uaðnÞ þ uFðnÞ ¼ u
% aðnÞ; ~t

a
ðnÞ þ tFðnÞ ¼ � t

%
aðnÞ; n 2 Sa, (30)

which are repeated for further reference. As examined in Pak and Guzina (1999), ~ua and u
% a

are required to be Hölder-continuous on Sa with continuity index 0ogp1; a condition

that is stronger than (standard) continuity, but weaker than differentiability if go1

(Kellogg, 1954). In the context of this study, it is noted that the afore made assumption

u 2 C2ðO�Þ \ C1ðŌ
�
Þ, which implies u 2 C1ðSaÞ, ensures that u are Hölder-continuous

with g ¼ 1. With such hypothesis, (28) and (29) are regularized using a decomposition of

the respective Green’s functions (Guzina and Pak, 2001) into their singular part ½��1 and a

residual, i.e. regular part ½��2 according to

ûk ¼ ½ûk�1 þ ½ûk�2; t̂k ¼ ½t̂k�1 þ ½t̂k�2,

�uk ¼ ½�uk�1 þ ½�uk�2; �t
k
¼ ½�t

k
�1 þ ½�t

k
�2. ð31Þ

Here ½�u�1 and ½�t�1 are given by the (elastostatic) Kelvin’s solution for an infinite solid with

elastic constants m% and n%, while, for point forces located at a non-zero distance from the

free surface (i.e. x � e340), ½û�1 and ½t̂�1 coincide with the Kelvin’s solution with elastic

parameters m and n (Pak and Guzina, 1999). With reference to (28) as an example, the

regularization is performed by (i) employing the integral representation of the scattered

field (13) in terms of ~ua, (ii) adding the regularizing term ek
R

Sa
~uaðxÞ � ½t̂kðn;xÞ�1 dSx to

both sides of the equation, (iii) taking the limit as x ! G ¼ Sa, and (iv) using the fact that

limx!Sa

R

Sa
½t̂kðn; xÞ�1 dSx ¼ 0 when x 2 O� by virtue of static equilibrium. The derivation

of (29) follows along similar lines, using the regularizing term ek
R

Sa
u
% aðxÞ � ½�t

k
ðn;xÞ�1 dSx,

x 2 Ba and the fact that limx!Sa

R

Sa
½�t
k
ðn;xÞ�1 dSx ¼ �ek when x 2 Ba which results in

the cancellation of the ‘‘free’’ term, u
% aðxÞ.

Owing to the singular nature of the elastostatic fundamental solution (Bonnet, 1999)

constituting ½��1 and the intrinsic regularity of residual components ½��2, one has

½ûkðn;xÞ�1 ¼ Oðe�1Þ; ½ûkðn;xÞ�2 ¼ Oð1Þ,

½t̂kðn;xÞ�1 ¼ Oðe�2Þ; ½t̂kðn;xÞ�2 ¼ Oð1Þ,
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½�ukðn;xÞ�1 ¼ Oðe�1Þ; ½�ukðn;xÞ�2 ¼ Oð1Þ as e ¼ jn� xj ! 0,

½�t
k
ðn;xÞ�1 ¼ Oðe�2Þ; ½�t

k
ðn;xÞ�2 ¼ Oð1Þ. ð32Þ

For the ensuing discussion, it is useful to employ (31) further and expand (28) as

~uaðxÞ � ek þ

Z

Sa

½t̂kðn; xÞ�2 dSx

( )

þ

Z

Sa

ð~uaðnÞ � ~uaðxÞÞ � f½t̂kðn; xÞ�1 þ t̂kðn;xÞ�2gdSx

�

Z

Sa

~t
a
ðnÞ � f½ûkðn;xÞ�1 þ ½ûkðn; xÞ�2g dSx ¼ 0; x 2 Sa. ð33Þ

By virtue of (32) and the fact that Sa ¼ Oða2Þ, it immediately follows that the underlined

terms in (33) are of higher order than their braced companions as a ! 0. Applying a

similar procedure to (29), one finds that

u
% aðxÞ �

Z

Sa

½�t
k
ðn;xÞ�2 dSx þ

Z

Sa

ðu
% aðnÞ � u

% aðxÞÞ � f½�t
k
ðn;xÞ�1 þ �t

k
ðn;xÞ�2gdSx

�

Z

Sa

t
%
aðnÞ � f½�ukðn;xÞ�1 þ ½�ukðn;xÞ�2g dSx ¼ 0; x 2 Sa. ð34Þ

Here again the last two underlined terms are of higher order than their braced companions

as a ! 0 due to (32). To justify the smallness of the first term in (34) for vanishing a, on the

other hand, it is useful to recall (26) which implies that u
% a ¼ uF þ ~ua ¼ Oð1Þ on Sa as

a ! 0. On the basis of this result, the relationship Sa ¼ Oða2Þ and (32), the claim is

established by the fact that

u
% aðxÞ �

Z

Sa

½�t
k
ðn; xÞ�2 dSx ¼ Oða2Þ,

Z

Sa

ðu
% aðnÞ � u

% aðxÞÞ � ½�t
k
ðn;xÞ�1 dSx ¼ OðagÞ as a ! 0,

where 0ogp1 is the Hölder index characterizing the continuity of u
% a on Sa.

To fully expose the limiting behavior of (33) and (34) as a ! 0, one may introduce the

scaled coordinates

n ¼ afþ xo; x ¼ a yþ xo, (35)

and formally denote the leading asymptotic behaviors of the featured elastodynamic fields

on Sa as

Asym
a!0

~uaðnÞ � a ~!ðfÞ; Asym
a!0

~t
a
ðnÞ � ~sðfÞ,

Asym
a!0

u
% aðnÞ � uFðxoÞ þ a !

%

ðfÞ; Asym
a!0

t
%
aðnÞ � s%ðfÞ; n 2 Sa; f 2 S, ð36Þ

where S ¼ qB is the ‘‘unit’’ surface (Saja¼1) as examined in Section 3. On combining the

interfacial conditions (30) with Taylor expansion of free field at x ¼ xo, namely

uFðnÞ ¼ uFðxoÞ þ ðn� xoÞ � ruFðxoÞ þOða2Þ,

tFðnÞ ¼ nðnÞ � rFðxoÞ þOðaÞ; n 2 Sa; a ! 0, ð37Þ
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it follows that the limiting quantities in (36) are related through

~!ðfÞ þ f � ruFðxoÞ ¼ !

%

ðfÞ; ~sðfÞ þ gðfÞ � rFðxoÞ ¼ �s%ðfÞ; f 2 S, (38)

where gðfÞ ¼ nðnÞ. With reference to (35) it can also be shown, using the explicit formulas

for the Kelvin’s solution (e.g. Pak and Guzina, 1999), that

½ûkðn;xÞ�1 ¼
1

a
½ûkðf; yÞ�1; ½t̂kðn; xÞ�1 ¼

1

a2
½t̂kðf; yÞ�1,

½�ukðn;xÞ�1 ¼
1

a
½�ukðf; yÞ�1; ½�t

k
ðn; xÞ�1 ¼

1

a2
½�t
k
ðf; yÞ�1; a ! 0. ð39Þ

By virtue of (36) and (39) and the relationship

dSx ¼ a2 dSz; n 2 Sa; f 2 S,

the limiting form of (33) and (34) as a ! 0 can be synthesized, on dropping the

(underlined) higher-order terms, in terms of the pair of normalized integral equations

ek � ~!ðyÞ þ

Z

S

ð ~!ðfÞ � ~!ðyÞÞ � ½t̂kðf; yÞ�1 dSz �

Z

S

~sðfÞ � ½ûkðf; yÞ�1 dSz ¼ 0,

Z

S

ð!
%

ðfÞ � !

%

ðyÞÞ � ½�t
k
ðf; yÞ�1 dSz �

Z

S

s%ðfÞ � ½�ukðf; yÞ�1 dSz ¼ 0; y 2 S, ð40Þ

where k 2 f1; 2; 3g and ½.�1 are given by the Kelvin’s solution in R3 as examined before.

Here it is useful to note that (40) are independent of the defect size, a, so that ~! ¼ Oð1Þ as

a ! 0. In view of this result and (36), it further follows that ~uaðnÞ ¼ OðaÞ as a ! 0 when

n 2 Sa.

On inspection (cf. (28)–(30)), the system of integral equations given by (38) and (40)

turns out to be associated with an elastostatic counterpart of the dynamic transmission

problem (27). In particular, one finds that

rz � ðC : rz
~!Þ ¼ 0; f 2 R3nB̄,

~! þ f � ruFðxoÞ ¼ !

%

; f 2 S,

~sþ g � rFðxoÞ ¼ �s%; f 2 S,

rz � ðC
%
: rz !

%

Þ ¼ 0; f 2 B ð41Þ

in an infinite solid, where ~s ¼ g � C : rz
~! in R

3nB̄; s% ¼ �g � C%
: rz !

%

in B, and,

precluding rigid-body rotation,

ruFðxoÞ ¼ D : rFðxoÞ, (42)

with D given by (25). To ensure the uniqueness of the solution, (41) are augmented by the

regularity condition (replacing (9)) which requires that ~!ðfÞ ¼ Oðjfj�1Þ as f ! 1. In this

way (41) describe the response, in terms of the perturbation displacement field ~! in R3nB̄,

of an elastic full-space (containing an inclusion) that is subjected to a constant state of

stress, rFðxoÞ, at infinity. To aid the ensuing developments, the solution of (41) can be

conveniently decomposed as

~!ðfÞ ¼ sFklðx
oÞ ~!

kl
ðfÞ; f 2 S; k; l 2 f1; 2; 3g, (43)
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where ~!
kl
¼ ~!

lk
¼ Oð1Þ, that are independent of both xo and a, solve (41) and (42) with

rFðxoÞ ¼ 1
2
ðek � el þ el � ekÞ. On the basis of (36)–(43), the contribution of the last term in

(22) for the vanishing obstacle size can be written as

I
2ðxÞ ¼ �a3jBj ekfr̂

kðxo;xÞ : VðmÞ : rFðxoÞg þ oða3Þ; x 2 O�; a ! 0,

VðmÞ ¼
1

jBj

Z

qB

~W
kl

i ðfÞ ZjðfÞdSz

� �

ei � ej � ek � el . ð44Þ

4.2. Elastodynamic field in the interior of a vanishing obstacle

With reference to (24), an explicit characterization of the third integral in (22) in the

limit as a ! 0 requires the knowledge of the displacement and stress fields inside the

obstacle for vanishing a. To this end, it is useful to recall (36) which yields

u
% aðnÞ ¼ uFðxoÞ þ a !

%

ðfÞ þ oðaÞ; n 2 Sa; f 2 S; a ! 0, (45)

where f ¼ ðn� xoÞ=a as examined earlier. Since both u
% aðnÞ and !

%

ðfðnÞÞ are analytic for

n 2 Ba, the above equality must also hold inside the obstacle so that

u
% aðnÞ ¼ uFðxoÞ þ oð1Þ,

r u
% aðnÞ ¼ rz !

%

ðfÞ þ oð1Þ; n 2 Ba; a ! 0. ð46Þ

By virtue of (41) and (42), it can also be seen that !
%

ðfÞ is linear in rFðxoÞ and consequently

r
% aðxoÞ ¼ C%

: r u
% aðxoÞ ¼ C%

: rz !

%

ð0Þ þ oð1Þ � QðmÞ : rFðxoÞ þ oð1Þ; a ! 0,

(47)

where Qijkl ¼ Qjikl ¼ Qijlk (i; j; k; l 2 f1; 2; 3g) in general depend on the shape and material

properties (m) of the inclusion, but are independent of xo and a. On the basis of (46) and

(47), integral (24) can now be rewritten more explicitly as

I
3ðxÞ ¼ � a3jBjekfr̂

kðxo;xÞ : ½D : QðmÞ� : rFðxoÞ

� r%o2ûkðxo; xÞ � uFðxoÞg þ oða3Þ; x 2 O�; a ! 0, ð48Þ

where D is the compliance tensor given in (25).

On summing (23), (44) and (48) according to (22), the limiting behavior of the scattered

field for a vanishing inclusion of arbitrary shape can be written as

~uaðxÞ ¼ a3jBj ekfr̂
kðxo; xÞ : ½D : ðI4 � QðmÞÞ �VðmÞ� : rFðxoÞ

� ðr� r%Þo2 ûkðxo;xÞ � uFðxoÞg þ o ða3Þ; x 2 O�; a ! 0, ð49Þ

where D, V and Q are (for a given B and m) constant fourth-order tensors defined,

respectively, in (25), (44) and (47). One may note that the values of ~uaðxÞ for x 2 O� behave

as Oða3Þ when a ! 0, whereas their boundary counterparts on Sa behave as OðaÞ as

examined earlier. Given the fact that both x 2 O� and xo 2 Ba are fixed during the limiting

process whereby ðn� xÞjSa
¼ Oðjxo � xjÞ ¼ Oð1Þ with vanishing a, this relationship can be

best understood by considering the second integral on the right-hand side of (22) as an

example and noting that ~uajSa
¼ OðaÞ, Sa ¼ Oða2Þ, and t̂kðn;xÞjSa

¼ Oð1Þ as a ! 0.
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5. Sensitivity formulas

5.1. Direct formulation

By virtue of (10) and (49), one may expand (1) with respect to the scattered field caused

by the vanishing obstacle, ~ua ¼ ua � uF, as

JðOnB̄a;m; f Þ ¼ JðO; f Þ þ

Z

Pobs
Re

qj

qu
ðuF; uobsÞ � ~ua

� �

dPx þ oðk~uakÞ as a ! 0,

(50)

where

qj

qw
�

qj

qwR

� i
qj

qwI

; wR ¼ ReðwÞ; wI ¼ ImðwÞ. (51)

Since qj=quðuF; uobsÞ is by definition independent of a, one finds from (15), (49) and (50)

that hðaÞ / a3 for the 3D nucleating inclusion problem; a behavior that conforms with the

hypothesis lima!0 hðaÞ ¼ 0 made in (16). Although the choice of multiplicative constant in

the definition of hðaÞ is by no means unique, it is assumed in this study that

hðaÞ ¼ a3jBj, (52)

so that hðaÞ40 also holds. In general, however, the expression for hðaÞ is expected to depend

on both dimensionality of the problem and boundary conditions assumed over Sa (see, e.g.,

Garreau et al., 2001 in the context of Laplace problems and impenetrable obstacles). In

contrast, hðaÞ is independent of j since qj=quðuF; uobsÞ in (50) does not vary with a.

From (15) and (50), one finds

Tðxo;m; f Þ ¼ lim
a!0

1

hðaÞ

Z

Pobs
Re

qj

qu
ðuF; uobsÞ � ~ua

� �

dPx. (53)

With (49), (52) and (53) the generalized formula for topological sensitivity, that postulates

the nucleation of an infinitesimal inclusion ðma0Þ in an otherwise intact semi-infinite solid

O, takes the explicit form

Tðxo;m; f Þ ¼

Z

Pobs
Re

qj

qu
ðuFðnÞ; uobsÞ � ek½r̂

kðxo; nÞ : AðmÞ : rFðxoÞ

�

�ðr� r%Þo2 ûkðxo; nÞ � uFðxoÞ�

�

dPx, ð54Þ

where

AðmÞ ¼ D : ðI4 � QðmÞÞ �VðmÞ, (55)

for an arbitrary (reference) shape B. Here it is noted that the last hypothesis in (16),

namely jTjo1, implicitly holds as long as xoeV̄ f where V f denotes the support of f .

With reference to (1) and (54), an extension of the foregoing developments to multiple

source distributions f q (q ¼ 1; 2; . . . ;Q), applied in sequence as a means to better ‘‘illuminate’’

subsurface defects, is straightforward and involves an external summation in the form

Jf ð�; �Þ �
X

Q

q¼1

Jð�; �; f qÞ; Tf ð�; �Þ �
X

Q

q¼1

Tð�; �; f qÞ. (56)
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5.1.1. Nucleating ellipsoidal defect

For an arbitrary reference shape B, the featured set of canonical problems given by (41)

when rFðxoÞ ¼ 1
2
ðek � el þ el � ekÞ, k; l 2 f1; 2; 3g can be solved numerically. In situations

when B is an ellipsoid, on the other hand, (41) can be solved in closed form via the

equivalent-eigenstrain method as in Mura (1987). By employing the latter approach (see

Appendix A), it is in particular shown in (A.14) that the fourth-order tensor V takes an

explicit form in terms of the Eshelby tensor, S, as

VðmÞ ¼ �S : R, (57)

where

R ¼ ððC � C%Þ : S� CÞ�1
: ðC% � CÞ : D. (58)

Likewise, (A.11) demonstrates that the fourth-order tensor Q is such that

D : QðmÞ ¼ D : C%
: ðS : RþDÞ, (59)

when B is an ellipsoid. By virtue of (55) and (57)–(59), one finds as shown in (A.15) that

A ¼ R, i.e.

AðmÞ ¼ ðC � C%Þ : S� Cð Þ�1
: ðC% � CÞ : D ðellipsoidÞ. (60)

5.1.2. Nucleating spherical defect

When B is a unit ball, formula (60) can further be specialized by invoking the known

expression for S dealing with the inclusions of spherical shape (Mura, 1987). In this way,

A can be written in terms of its spherical and deviatoric components as

AðmÞ ¼ RsphE1 þRdevE2 ðballÞ, (61)

where E1 ¼
1
3
I2 � I2 and E2 ¼ I4 � E1 as examined earlier, and

Rsph ¼ �
1

3k

3ð1� nÞðk̄% � 1Þ

ð1þ nÞðk̄% � 1Þ þ 3ð1� nÞ
; k̄% ¼

k%

k
,

Rdev ¼ �
1

2m

15ð1� nÞðm̄% � 1Þ

ð8� 10nÞðm̄% � 1Þ þ 15ð1� nÞ
; m̄% ¼

m%

m
. ð62Þ

On setting the material parameters of the inclusion to zero (i.e. m ¼ 0), formulas (61) and

(62) can be shown to be in agreement with the results obtained in Guzina and Bonnet

(2004) for the case of a nucleating spherical cavity. Moreover, when m% ¼ m, n% ¼ n and

r% ¼ r which corresponds to the case of a defect-free half-space, the right-hand side of (54)

vanishes identically by virtue of either (60) or (61) and (62).

5.2. Adjoint field formulation

Formally, applicability of the foregoing developments is limited to ‘‘simple’’ reference

domains (e.g. semi-infinite and infinite bodies with constant or functionally-graded elastic

properties) for which the elastodynamic Green’s function is available. To deal with the

restriction, it is instructive to recast (54) within the framework of the adjoint field method

that is often used in shape optimization analyses (e.g. Garreau et al., 2001; Samet et al.,

2003).

As an illustration of the latter approach to topological sensitivity, attention is henceforth

focused on finite, homogeneous reference bodies of arbitrary geometry. To this end,
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consider a counterpart of the defect identification problem in Section 2 when O� is finite

and subjected to the homogeneous boundary conditions over its ‘‘external’’ boundary

S ¼ qO, O being the (defect-free) reference domain. On denoting the Dirichlet and

Neumann portions of S, respectively, by SD and SN (see Fig. 2) so that S ¼ SD [ SN, one

finds with reference to (4)–(7) that

r � ðC : ruÞ þ f ¼ �ro2u; n 2 O�,

uðnÞ ¼ 0; n 2 SD,

tðnÞ ¼ 0; n 2 SN,

u ¼ u
%

; t ¼ � t
%

; n 2 G,

r � ðC%
: r u

%

Þ ¼ �r%o2 u
%

; n 2 D. ð63Þ

As before, it is assumed that the defect is illuminated by a body-force excitation f with the

induced motion (uobs) monitored over a measurement surface Pobs ¼ Pobs
S [Pobs

O , where

Pobs
S ¼ Pobs \ SN and Pobs

O ¼ Pobs \ O denote, respectively, its boundary and interior

segments (see Fig. 2).

In this setting, it is convenient to make use of the shape-sensitivity treatments of

inverse scattering problems (Bonnet, 1995; Guzina et al., 2003) and introduce the so-called

adjoint field, u
�
, as an elastodynamic response of the defect-free body O due to virtual

excitation

gðnÞ ¼
qj

qu
ðuFðnÞ; uobsÞ; n 2 Pobs (64)

applied over the measurement surface so that its magnitude equals the misfit (in the sense

of j) between the experimental observations uobs and their free-field estimates uF where

r � ðC : ruFÞ þ f ¼ �ro2uF; n 2 O,

uF ¼ 0; n 2 SD,

tF ¼ 0; n 2 SN. ð65Þ
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Here again j is a (smooth) measure of distance between its arguments that is used to

construct the cost functional (1). From such hypotheses, it immediately follows that

adjoint field satisfies the field equations and boundary conditions

r � ðC : r u
�
Þ þ gd

Pobs
O

¼ �ro2 u
�
; n 2 O,

u
�
¼ 0; n 2 SD,

t
�
¼ 0; n 2 SNnP

obs
S ,

t
�
¼ g; n 2 Pobs

S , ð66Þ

where t
�
¼ n � C : r u

�
; dPobs

O
is the surface delta function over the interior segment of the

measurement surface, and the body-force density gdPobs
O

is to be interpreted in the sense of

a single-layer potential over Pobs
O (Vladimirov, 1979).

To obtain an adjoint-field counterpart of the shape sensitivity formula (54), it is next

necessary to establish the finite-body equals of equations (27) governing the scattered field

~ua caused by the presence of an infinitesimal flaw Ba in an otherwise defect-free body O.

Indeed, from (63) and (65) one finds by setting D ¼ Ba and G ¼ Sa that

r � ðC : r ~uaÞ ¼ �ro2 ~ua; n 2 OnB̄a,

~ua ¼ 0; n 2 SD,

~t
a
¼ 0; n 2 SN,

~ua þ uF ¼ u
% a; ~t

a
þ tF ¼ � t

%
a; n 2 Sa,

r � ðC%
: r u

% aÞ ¼ �r%o2 u
% a; n 2 Ba. ð67Þ

An application of the Graffi’s reciprocity identity (Achenbach, 2003) to elastodynamic

fields u
�
and ~ua over the ‘‘punctured’’ body OnB̄a with boundary S [Sa can be formally

written as
Z

S[Sa

f~t
a
� u
�
� t

�
�~uagdSx ¼

Z

OnB̄a

ff
�

�~ua � ~f
a
� u
�
gdOx,

where f
�

and ~f
a
are the body-force distributions associated, respectively, with u

�
and ~ua.

With reference to (66) and (67), one finds that f
�

¼ gdPobs
O
, ~f

a
¼ 0, and further

Z

Sa

f~t
a
� u
�
� t

�
�~uagdSx ¼

Z

OnB̄a

gd
Pobs
O

� ~ua dOx þ

Z

Pobs
S

g � ~ua dPx

¼

Z

Pobs

qj

qu
ðuF; uobsÞ � ~ua dPx, ð68Þ

which makes use of (64) and the fact that u
�
¼ ~ua ¼ 0 on SD, ~t

a
¼ 0 on SN and t

�
¼ g on

Pobs
S 	 SN. By virtue of (53) and (68), it immediately follows that

Tðxo;m; f Þ ¼ lim
a!0

1

hðaÞ
Re

Z

Sa

u
�
�~t
a
� ~ua � t

�
n o

dSx

� �

, (69)

where the order of multiplicands in each scalar product is reversed relative to those in (68)

for convenience of derivation. On the basis of an asymptotic analysis similar to that

highlighted in Section 4.1, it can be shown that for any fixed xo 2 O, the variation of ~ua on

Sa as a ! 0 is again given by the first equation in (36) where ~! solves the elastostatic
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transmission problem (41) in R3. By virtue of this result and decomposition (43), one finds

that

~uaðnÞ ¼ asFklðx
oÞ ~!

kl
ðfÞ þ oðaÞ as a ! 0; n 2 Sa; f 2 S, (70)

where the scaled coordinate f is defined by (35) and ~!
kl

(k; l 2 f1; 2; 3g) solve (41) when

rFðxoÞ ¼ 1
2
ðek � el þ el � ekÞ. From (70), the symmetry of r

�
, and Taylor expansion of the

adjoint-field traction at xo, namely

u
�
ðnÞ ¼ u

�
ðxoÞ þ ðn� xoÞ � r u

�
ðxoÞ þOða2Þ

¼) t
�
ðnÞ ¼ nðnÞ � r

�
ðxoÞ þOðaÞ; n 2 Sa; a ! 0, ð71Þ

it follows that
Z

Sa

~ua � t
�
dSx ¼ a3 s

�
ijðx

oÞsFklðx
oÞ

Z

S

Wkli ðfÞ ZjðfÞdSz þ oða3Þ

¼ a3jBjfr
�
ðxoÞ : VðmÞ : rFðxoÞg þ oða3Þ as a ! 0, ð72Þ

where VðmÞ is the fourth-order tensor defined in (44). On employing the divergence

theorem and following the limiting analysis as in (45)–(47), it can also be shown that
Z

Sa

u
�
�~t
a
dSx ¼

Z

Sa

u
�
�ta dSx �

Z

Sa

u
�
�tF dSx

¼ �

Z

Ba

r � ðu
�
� r

% aÞdBx þ

Z

Ba

r � ðu
�
�rFÞdBx

¼ a3jBjfr
�
ðxoÞ : ½D : ðI4 � QðmÞÞ� : rFðxoÞ � ðr� r%Þo2 uFðxoÞ � u

�
ðxoÞg

þ oða3Þ as a ! 0, ð73Þ

where QðmÞ is defined via (47). Note that (73) makes use of the symmetries of r
% a ¼ C%

:

r u
% a and rF ¼ C : ruF, where u

% a is the elastodynamic displacement inside the obstacle

featured in (67).

On the basis of (69), (72) and (73), the adjoint-field expression for generalized

topological sensitivity takes the form

Tðxo;m; f Þ ¼ Refr
�
ðxoÞ : AðmÞ : rFðxoÞ � ðr� r%Þo2 u

�
ðxoÞ � uFðxoÞg,

AðmÞ ¼ D : ðI4 � QðmÞÞ �VðmÞ, ð74Þ

in terms of the elastodynamic fields uF and u
�
, both computed for the defect-free reference

body O. As in (54), explicit expressions for AðmÞ are again given by (60) and (61) in

situations where the nucleating inclusion is ellipsoidal and spherical, respectively. One may

observe that formula (74), although obtained using the boundary integral approach, is

amenable to evaluation via any viable computational scheme, e.g. finite difference, finite

element, or boundary element method.

To examine the relationship between the adjoint-field formulation and its ‘‘direct’’

counterpart, it is useful to consider the Green’s function ûkðn;xÞ for the finite reference

body O as an elastodynamic state that satisfies (65) with f ðnÞ ¼ dðn� xÞek. Under the

aforementioned hypotheses that O is uniform and subject to homogeneous (Dirichlet and/

or Neumann) boundary conditions, it can be shown as in Achenbach (2003) that ûk is

reciprocal, i.e. that ûki ðn;xÞ ¼ ûikðx; nÞ. By virtue of the latter identity, (64) and (66), the
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Somigliana-type integral representation of the adjoint field can be written as

u
�
ðxoÞ ¼

Z

Pobs

qj

qu
ðuFðnÞ; uobsÞ � ek

� �

ûkðxo; nÞdPx: xo 2 O (75)

which demonstrates that the sensitivity formulas (54) and (74) are in fact equivalent. In this

sense the so-called direct formulation, elucidated in Section 5.1, applies equally to more

complex (e.g. finite) reference domains O as long as (i) the single-layer potential (75) is

evaluated numerically as an elastodynamic state solving (66), and (ii) decomposition (31) of

the Green’s function for the reference domain O (into a Kelvin-singular and a regular part)

applies regardless of the fact that û is not available explicitly.

6. Results and discussion

As shown in Guzina and Bonnet (2004) and Bonnet and Guzina (2004), the nucleating-

cavity analogues of (54) and (74) can be used as a robust tool for the preliminary 3D

reconstruction of impenetrable defects in the context of inverse scattering. Owing to their

explicit dependence on the material properties of a nucleating inclusion, on the other hand,

(54) and (74) carry an additional potential for material identification trough a parametric

variation of m geared toward minimizing the value of Tðxo;m; f Þ at a selected (i.e. fixed)

sampling point xo. To cater for applications such as material characterization medical

diagnosis, the latter possibility is investigated next through a set of numerical examples. In

what follows, the results are based on the direct-approach formula (54) and a ball-shaped

nucleating defect unless stated otherwise.

Consider the synthetic testing configuration in Fig. 3 involving a semi-infinite reference

solid with the shear modulus m, Poisson’s ratio n ¼ 0:3 and mass density r. In sequence, the

obstacle (or a system thereof) is illuminated by Q ¼ 16 time-harmonic, ‘‘vertical’’ point

sources uniformly spaced over a square surface grid of dimensions 18d 
 18d. For each

source location xq (q ¼ 1; 2; . . . ;Q), the induced surface motion is monitored over M ¼

11
 11 ¼ 121 control points xm 2 S (m ¼ 1; 2; . . . ;M), regularly distributed over a square
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Fig. 3. Synthetic testing configuration.
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grid of dimensions 20d 
 20d. For this class of problems, it is convenient to supersede J

and T by their multiple-source generalizations in (56) and to specify the distance function

j in (1) and (54) to a discrete least-squares format by taking

jðu; uobsÞ ¼ 1
2
ðu� uobsÞ �W � ðu� uobsÞ,

W ¼ WðnÞ ¼
X

M

m¼1

Wm
ij dðn� xmÞei � ej ; i; j 2 f1; 2; 3g, ð76Þ

where d stands for the three-dimensional Dirac delta function; ej is the unit vector in the xj-

direction; over-bar symbol denotes complex conjugation, and Wm
ij are suitable constants

chosen so that they form Hermitian and positive-definite weighting matrices Wm,

m ¼ 1; 2; . . . ;M.

6.1. Single defect

In the first set of examples, the center of a ‘‘true’’ spherical defect, of diameter D ¼ 0:8d,
is located at ðd; 0; 3dÞ (see also Fig. 3). The synthetic observations uobsðxmÞ, m ¼ 1; 2; . . . ;M
are generated with the aid of an elastodynamic boundary element method (Pak and

Guzina, 1999) by discretizing the surface of the defect via eight-node quadratic elements.

The half-space Green’s function, required both by the forward solution and by (54), is

calculated as in Guzina and Pak (2001). For illustration purposes the results are generated

for two excitation frequencies, namely ō ¼ 1 and ō ¼ 4, where

ō ¼
od
ffiffiffiffiffiffiffiffi

m=r
p � 2p

d

l
; l ¼

2p

o

ffiffiffi

m

r

r

, (77)

l being the shear wave length in the reference solid. Here one may note that the

wavelength-to-flaw-size ratio, l=D, is approximately 8 and 2 for ō ¼ 1 and ō ¼ 4,

respectively. In the acoustics literature (Colton and Kress, 1992) such frequencies, where

the wave lengths exceed the diameter of the scatterer, are designated as those belonging to

the so-called resonance region.

As a first illustration, Fig. 4 deals with the case when the material defect is a cavity, and

plots the distribution of topological sensitivity in the ‘‘horizontal’’ plane x3 ¼ 3d assuming

m ¼ mtrue ¼ ð0; 0; 0Þ in (54). For comparison, intersection of the cutting plane with the true

defect is indicated in red. One may observe that the regions where Tf takes pronounced

negative values point toward the true effect at both frequencies, albeit in a more localized

fashion for ō ¼ 4. As examined earlier, such behavior is consistent with an intuitive notion

that the points where Tfo0, and in particular those with marked negative values of Tf ,

indicate locations where the removal of ‘‘excess’’ material may be most effective as

measured by the rate of decrease of Jf ðOÞ according to (15) and (56).

The next result in Fig. 5 represents a generalization of the first example, this time

assuming that the spherical defect is a ‘‘stiff’’ inclusion and calculating the distribution of

Tf with m ¼ mtrue ¼ ð5m; 0:45; 1:3rÞ. Notwithstanding the apparent differences in

magnitude, the featured Tf -distributions elicit similar comments as those in Fig. 4. For

completeness, the ‘‘vertical’’ sections of topological sensitivity (inclusion case) are plotted

in Fig. 6 with reference to the plane x1 ¼ d containing the centroid of the defect. Due

primarily to a limited aperture of the testing grid, the results reflect a marked drop in the
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fidelity of subsurface ‘‘images’’, although still furnishing a reasonable information for

ō ¼ 4.

6.2. Material identification approach

As stipulated earlier, the distributions in Figs. 4–6 are computed assuming full prior

information about the nature of the defect, manifest in the exact knowledge of the vector

mtrue ¼ ðm%

true; n
%

true;r
%

trueÞ. Unfortunately, such information is often unavailable and the

question arises whether (54) can be used, through its explicit dependence on m via e.g. (61)
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and (62), for both material and geometric identification of internal defects. To investigate

such possibility, Fig. 7 plots the variation of Tf ðx
o;mÞ at the centroid of the ‘‘true’’

spherical defect (namely xo ¼ ðd; 0; 3dÞ) versus the trial shear modulus m% for both testing

configurations where the material defect is a cavity and ‘‘stiff’’ inclusion, respectively.

From the diagram in Fig. 7a, it is apparent that the band-limited ‘‘optimal’’ value of

m̄% ¼ m%=m which minimizes Tf , namely m̄%

opt ¼ 0, is consistent with the shear modulus of

the true defect, i.e. m̄%

true ¼ 0. A similar comment applies to the diagram in Fig. 7b

generated for the stiff defect case (m̄%

true ¼ 5), which indicates that the topological sensitivity

at xo ¼ ðd; 0; 3dÞ is minimized by assigning a ‘‘high’’ (band-limited) optimal value of m̄%

opt ¼

7:5 to the nucleating inclusion. In both figures, the relative variation of topological

sensitivity was found to depend only mildly on the Poisson’s ratio and mass density of the

trial obstacle. In view of their consistency, the results in Fig. 7 highlight the potential of
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generalized topological sensitivity (54) a tool for both preliminary material and geometric

identification of internal defects. In this regard, it is noted that the point-wise variation of

Tf is clearly not capable of exposing the exact value of m̄
%

true. Nonetheless, it has a potential

of indicating whether the defect is ‘‘stiff’’ (m̄%

true41) or ‘‘soft’’ (m̄%

trueo1); an information

that may be critical for creating a reliable input for more refined, iterative imaging

techniques (Bonnet, 1995; Guzina et al., 2003). More practically, such preliminary material

information may by itself be sufficient to distinguish between the malignant and benign

growth in biological tissues (Sarvazyan et al., 1998; Fatemi and Greenleaf, 1998) and thus

minimize the need for biopsy.

In the case of a nucleating spherical defect for which tensor A is given by (61) and (62),

the foregoing minimization with respect to m̄% can be performed analytically. In particular,

it can be shown that

m
qTf

qm̄%
ðxo;mÞ ¼ �

3ð1� nÞ2ð1þ n%Þð1� 2n%Þt1ðx
oÞ

ð1þ nÞ2fm̄%ð1þ n%Þ þ 2� 4n%g2
�

225ð1� nÞ2t2ðx
oÞ

2fm̄%ð8� 10nÞ þ 7� 5ng2
,

(78)

where the coefficients t1 and t2, independent of m̄
%, are given by

t1ðx
oÞ ¼

X

Q

q¼1

Z

Pobs
Re

X

3

k¼1

qj

quk
ðuFðnÞ; uobsÞtrrFðxoÞ tr r̂kðxo; nÞ

( )�

�

�

�

�

f¼f q

dPx,

t2ðx
oÞ ¼

X

Q

q¼1

Z

Pobs
Re

X

3

k¼1

qj

quk
ðuFðnÞ; uobsÞ

(


 rFðxoÞ : r̂kðxo; nÞ �
1

3
tr rFðxoÞ tr r̂kðxo; nÞ

� �

)�

�

�

�

�

f¼f q

dPx. ð79Þ

On the basis of (78), the task of finding the extremum of Tf ðx
o;mÞ can be essentially

reduced to solving a linear equation in terms of m̄% when n% and r% are fixed. Depending on

the particular values of t1 and t2 which combine the experimental data with an information

about the free field and the Green’s function at xo, however, the latter equation may or

may not have physical roots. In particular, if both t1ðx
oÞ and t2ðx

oÞ are negative, (78)

demonstrates that Tf is a monotonically increasing function of m̄% so that its (physical)

minimum value is reached at m̄%

opt ¼ 0. Conversely if both t1ðx
oÞ and t2ðx

oÞ are positive, the

band-limited minimum of Tf is reached at m̄%

opt ¼ m̄%

max, where m̄
%

maxis the prescribed upper

limit of the search range in terms m̄%. In the ‘‘intermediate’’ case when t1ðx
oÞ t2ðx

oÞo0, on

the other hand, Tf does have an extremum and qTf =qm̄
% ¼ 0 is reached for m̄% ¼ m̄%

a

where

m̄%

a ¼
a ð7� 5nÞ � 2þ 4n%

1þ n% � a ð8� 10nÞ
; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 ð1þ n%Þð1� 2n%Þ
p

15 ð1þ nÞ

t1ðx
oÞ

t2ðxoÞ

�

�

�

�

�

�

�

�

. (80)

On the basis of (80), m̄%

opt takes the value of either m̄%

a , zero, or m̄%

max chosen so that

m̄%

opt 2 ½0; m̄%

max� and Tf jm̄%¼m̄%

opt
pTf jm̄%2½0;m̄%

max�
. For clarity, the above discussion is

summarized in Table 1. It is also noted from (78) that limm̄%!1qTf =qm̄
% ¼ 0; a result

that is reflected in the band-limited variations of Tf ðx
o;mÞ in Fig. 7 where t1ðx

oÞ t2ðx
oÞ40,

i.e. there is no extremum in the sense of (80).
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In light of the foregoing results, a natural idea geared toward the preliminary (material

and geometric) reconstruction of material defects is to introduce a thresholded shear

modulus distribution

MðxoÞ ¼
m%

opt; Tf ðx
o;moptÞp cTmin

f ;

m; Tf ðx
o;moptÞ4cTmin

f :

8

<

:

(81)

Here mopt ¼ ðm%

opt; n
%;r%Þ, where n% and r% are fixed (i.e. pre-defined) trial values and

m%

opt ¼ m m̄%

opt according to Table 1. For a given sampling region G � O, Tmin
f o0 is defined

as the global minimum, i.e.

Tmin
f ¼ min

xo2G
Tf ðx

o;moptÞ,

whereas 0oco1 is a suitable threshold value. From Figs. 4–6, it appears that the

distribution of generalized topological sensitivity tends to be more ‘‘smeared’’ at lower

frequencies, a conclusion that is consistent with earlier studies (Guzina and Bonnet, 2004;

Bonnet and Guzina, 2004). Accordingly, one may select a threshold value that is more

restrictive at lower frequencies (i.e. longer excitation wavelengths l), e.g.

c ¼ cðōÞ ¼ Cð1þ ō�1Þ; C ¼ const. (82)

With reference to the topological sensitivity formula (54), it is worth noting that the

excitation frequency plays no role in the calculation of tensor A that is obtained through a

limiting process as a ! 0 with o fixed so that a=l ! 0 as well. In contrast, the ratios

between other characteristic lengths of the problem (e.g. depth to the obstacle, true defect

size, depth of the sampling point, size of the testing grid) and the excitation wavelength l

do have an effect on T as they impact: (i) the observed data uobs, (ii) the free field (uF;rF),
and (iii) the Green’s function values (ûk; r̂k). In principle, the effect of decreasing l (or

increasing o) on T in (54) is such that it leads to more rapid fluctuations e.g. in terms of

ûkðxo; �Þ and uFðxoÞ and consequently to a more localized distribution of topological

sensitivity. In the support of this argument, a careful inspection of the results in Figs. 4

and 5 reveals the presence a barely visible ‘‘halo’’, with diameter � l, that surrounds the

true obstacle for both ō ¼ 1 and 4.

Throughout the remainder of this paper, the default values of n% ¼ n, r% ¼ 0:5r and

C ¼ 0:45 are used as an example. Here it is noted that the reasons for the particular choice

of r% are twofold: (i) taking r% ¼ r would artificially delete the monopole term in (54), and

(ii) r% ¼ 0:5r can be considered as an intermediate value between the extreme cases of a

cavity (r%

true ¼ 0) and a ‘‘heavy’’ inclusion (r%

true41), see also Fig. 7.

The performance of (81) is illustrated in Figs. 8 and 9 dealing with the cases when

the material defect is a cavity and ‘‘stiff’’ inclusion, respectively. To provide a basis
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Table 1

Spherical defect: dependence of m̄%

opt on t1 and t2 at the sampling point

m̄%

opt t1ðx
oÞo0 t1ðx

oÞ40

t2ðx
oÞo0 m̄%

opt ¼ 0 m̄%

opt 2 fm̄%

a ; 0; m̄
%

maxg

t2ðx
oÞ40 m̄%

opt 2 fm̄%

a ; 0; m̄
%

maxg m̄%

opt ¼ m̄%

max
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for comparison, intersection of the ‘‘true’’ defect with the cutting plane is again

indicated in red. The results support the notion that the generalized topological

sensitivity (54), which postulates the nucleation of a solid inclusion, may provide reliable

preliminary information about both geometry and material characteristics of an

obstacle through the distribution of MðxoÞ. With reference to Table 1, it is

worth mentioning that the case most commonly encountered in Figs. 8, 9 and thereafter

is that where t1ðx
oÞ t2ðx

oÞ40 so that m̄%

opt is either zero or m̄%

max for the majority of sampling

points.
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6.3. Multiple defects

To examine the applicability of the foregoing developments to more complex situations

involving multiple defects, consider the testing arrangement as in Fig. 3 (n ¼ 0:3) in

conjunction with a dual-obstacle configuration. Here, the first defect is a spherical cavity of

diameter 0:8d, located at ð�2d;�2d; 3dÞ inside the half-space; the second defect is a ‘‘stiff’’

ellipsoidal inclusion, centered at ð1:5d; 1:5d; 3dÞ, with axes ð1:6d; 0:4d; 1:2dÞ aligned with

the reference Cartesian frame. Material properties of the inclusion are taken as

mtrue ¼ ð5m; 0:45; 1:3rÞ.
As a first illustration, the spatial distribution of Tf ðx

o; 0Þ in the horizontal plane x3 ¼

3d for the dual-obstacle problem is shown in Fig. 10. Clearly such ‘‘conventional’’

topological sensitivity, that postulates the nucleation an infinitesimal cavity (i.e. m ¼ 0),

fails to identify the ellipsoidal inclusion through regions where Tfo0. In fact, Tf ðx
o; 0Þ

for the problem of interest takes extreme positive values the neighborhood of the ellipsoidal

inclusion. In contrast, the distribution of Tf ðx
o;moptÞ in Fig. 11 identifies both the cavity

and inclusion through marked negative values of Tf . As examined earlier, mopt ¼

ðm%

opt; n
%;r%Þ where n% and r% are fixed trial values (set respectively to n and 0:5r as an

example) and m%

opt is the band-limited optimal value of m% minimizingTf at x
o. To provide

a more definitive information about the two defects, Fig. 12 plots the distribution of the

thresholded shear modulus M according to (81) applied to the neighborhood of each local

minimum. As can be seen from the display, the M-distributions at both frequencies

correctly identify the ‘‘left’’ and ‘‘right’’ defect as a cavity and stiff inclusion, respectively.

To cater for engineering applications, it is noted with reference to (77) that the ratio

between the centroidal flaw distance L and the excitation wavelength l in Figs. 10–12

equals approximately 0.8 and 3.2 for ō ¼ 1 and ō ¼ 4, respectively. Additional

simulations have shown that the Tf -distribution is characterized by a diminished

accuracy for L=l ratios less than approximately 0.4. As an illustration, Fig. 13 shows one

such example where the ‘‘true’’ ellipsoidal inclusion is placed closer to the spherical cavity

so that L=l � 0:3.
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B.B. Guzina, I. Chikichev / J. Mech. Phys. Solids 55 (2007) 245–279 269



6.4. Functionally graded materials

From the asymptotic analysis in Section 4, it follows that sensitivity formula (54) applies

to any reference (i.e. background) solid O for which

� elastodynamic Green’s function (ûk and t̂k, k 2 f1; 2; 3}) is available, and
� ûk and t̂k permit decomposition (31) where the singular parts ½ûk�1 and ½t̂k�1 are given by

the (elastostatic) Kelvin’s solution.
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ξ1/d

ξ 2
/d

ξ 2
/d

ξ1/d

4

3

2

1

0

-1

-2

-3
-3 -2 -1 0 1 2 3

4

3

2

1

0

-1

-2

-3
-3 -2 -1 0 1 2 3

ω = 1 ω = 4 8

6

4

2

1

0

Fig. 12. Dual defects: distribution of MðxoÞ=m in the x3 ¼ 3d plane for ō ¼ 1 (left) and ō ¼ 4 (right).
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In Pak and Guzina (1995) and Guzina and Pak (1996), the displacement component ûk of

the Green’s function was developed for the class of functionally-graded, semi-infinite solids

O ¼ fðx1; x2; x3Þ j x340g with continuous variation of Lamé parameters according to

mðzÞ ¼ moð1þ b x3Þ
2; n ¼ 0:25; r ¼ const., (83)

where x3 is the direction of grading. In particular, it was shown (Guzina and Pak, 1996)

that ûkðn;xÞ satisfies (31) where ½ûk�1 is given by the Kelvin’s solution with m ¼

moð1þ bx � e3Þ
2 and n ¼ 0:25. In Guzina and Chikichev (in preparation), these findings

were recently extended in terms of their traction counterparts, t̂k, which makes the graded

materials of class (83) amenable to preliminary imaging in terms of (54). To examine the

latter possibility, consider the testing arrangement described earlier (Fig. 3) as applied to

the functionally graded material (83) with b ¼ 0:2=d and a cavity of diameter 0:8d centered

at ðd; 0; 3dÞ. For brevity, the results are shown for a single excitation frequency,

ō � o d=
ffiffiffiffiffiffiffiffiffiffi

mo=r
p

¼ 4. The left diagram in Fig. 14 plots the distribution of Tf ðx
o;moptÞ in

the ‘‘horizontal’’ plane x3 ¼ 3d containing the centroid of the defect. For completeness, the

right diagram plots the corresponding distribution of the thresholded shear modulus (81)

where m ¼ mðxo � e3Þ varies with depth according to (83). Here n% ¼ n; r% ¼ 0:5r, and

C ¼ 0:45 as prescribed earlier. Notwithstanding the apparent differences in the nature of

respective background media, the fidelity of images in Fig. 14 is indeed similar to that of

their homogeneous-matrix counterparts in Figs. 4 and 8. Consistent with the earlier

findings, the ‘‘vertical-slice’’ images of the void defect (in terms of M) in Fig. 15 are still

reasonable although of lower quality than that in Fig. 14.

6.5. Multi-tonal illumination

In the preceding examples, a preliminary information about the size of the defect

stemming from (54) can be seen to clearly depend on the assumed threshold value,
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c ¼ cðōÞ, via (81). To transcend such impediment, one may consider the higher-order terms

in expansion (15) that would inherently carry an additional information about the (size of

the) defect. Another possibility, examined in this study, is to employ multiple
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‘‘illuminating’’ frequencies as a source of such additional information. To this end consider

the testing configuration in Fig. 4, this time with reference to a homogeneous full-space

with shear modulus m, Poisson’s ratio n and mass density r. The infinite solid contains an

ellipsoidal void, centered at ð1d; 0d; 3dÞ, whose axes ð1:6d; 0:8d; 1:2dÞ are aligned with the

reference Cartesian frame. Apart from its direct relevance to medical imaging owing to (i)

high attenuation rate for shear waves in biological tissues (which allows the boundary

reflections to be neglected) and (ii) the ability of confocal ultrasound beams to apply

internal ‘‘point’’ loads (Fatemi and Greenleaf, 1998), the infinite background was chosen

for its closed-form Green’s function which permits efficient calculations at ‘‘high’’

frequencies (in this example ō ¼ 8). As an example, the first three graphs (top row and left

column) in Fig. 16 plot the distribution of Tf ðx
o;mtrueÞ in the x3 ¼ 3d plane for

illuminating frequencies ō ¼ 2; 4 and 8. Illustrating the featured idea of multi-tonal

imaging, the bottom right diagram in Fig. 16 plots the combined multi-tonal information

P3
k¼1 minf0;Tf ðx

o;mtrueÞj
ō¼2k

g obtained using the negative values of Tf at ō ¼ 2; 4; 8. As

can be seen from the display, the hybrid image reasonably traces the outline of the defect

using only the trivial threshold value of zero at all frequencies.
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6.6. Effect of shape of the nucleating defect

In Sections 4 and 5, the generalized topological sensitivity in (54) and (74) is shown to

depend on the shape and elastic parameters of the nucleating defect via the fourth-order

tensorAðmÞ. As stipulated earlier, the results in Figs. 4–16 are all generated on the basis of

an assumption that the nucleating obstacle is spherical for which A permits closed-form

representation in terms of (61) and (62). Prompted by the availability of explicit expression

(60) that characterizes A when the reference region B is ellipsoidal, Fig. 17 illustrates the

effect of the shape ofB on theTf -distribution for the cavity-in-a-homogeneous-half-space

problem examined earlier in Fig. 4. In the display, the B-shapes compared are: (i) the

sphere, generated as an ellipsoid with axes ðd; d; dÞ; (ii) a ‘‘generic’’ ellipsoid with axes

ð3d; 2d; dÞ, and (iii) a penny-shaped defect, constructed as a degenerate ellipsoid with axes

ð3d; 3d; 0:003dÞ. In all cases, the principal axes of B are aligned with the reference
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Cartesian system. As can be seen from the graphs, the shape of B does have an effect on

the overall distribution and magnitude of Tf , although it does not appear to be essential

for the fidelity of geometric (obstacle) identification. It is expected, however, that the shape

of B will be more critical for the higher-order terms in expansion (15); an item that is

beyond the scope of this study.

7. Conclusions

In this study the concept of topological derivative, that has its origins in elastostatics and

structural shape optimization, is extended to permit preliminary, yet robust 3D elastic-wave

identification of material defects. In a departure from earlier studies that revolve around the

idea of cavity nucleation, the proposed approach postulates the creation of an

(infinitesimal) elastic inclusion. On taking the limit of a boundary integral representation

of the scattered field caused by an elastic defect with diminishing size, a generalized formula

for topological derivative, which embodies the material parameters of both the matrix and

the defect, is formulated explicitly in terms of the elastodynamic Green’s function for the

reference (defect-free) solid. In the context of arbitrarily shaped inclusions, the formula was

shown to consist of a dipole and a monopole term, related respectively to the elasticity and

mass density contrasts between the nucleating obstacle and a background medium. To deal

with situations (e.g. finite reference bodies) where the prerequisite Green’s function is

unavailable, an alternative expression for topological sensitivity is obtained via the adjoint

field approach that involves a contraction of two (numerically-computed) elastodynamic

states. Through a set of numerical examples involving frequencies in the so-called resonance

region (wavelengths longer than the size of a defect), the generalized topological sensitivity

is shown to be an effective tool for preliminary material identification of subsurface defects

through a point-wise identification of ‘‘optimal’’ inclusion properties that minimize the

topological sensitivity at a sampling location. The results for homogeneous and

functionally-graded reference materials indicate that the complementary 3D information

about the defect geometry could be obtained with the aid of either (i) a suitable threshold

value, or (ii) using multi-tonal illumination, especially that involving ‘‘high’’ frequencies (i.e.

those exceeding the resonance region). Beyond the realm of non-destructive material

testing, the proposed developments may be relevant to medical diagnosis and in particular

to breast cancer detection where focused ultrasound waves show a promise of superseding

manual palpation.
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Appendix A

A.1. Tensors V and Q for the reference ellipsoidal inclusion

Consider an infinite elastic solid, housing an ellipsoidal inclusion B, that is subject to a

constant state of stress (r1) at infinity. The elastic ‘‘matrix’’ is characterized by the shear
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modulus m and Poisson’s ratio n; the respective material properties of the defect, centered

at the origin of the reference Cartesian frame fO; x1; x2; x3g, are denoted by m% and n%. With

the assumption of a bonded contact between the defect and the matrix, the displacement

field within the inclusion, !
%

, and its ‘‘exterior’’ counterpart ! are governed by the field

equations and boundary conditions

r � ðC : r!Þ ¼ 0; f 2 R3nB̄,

r � ðC%
: r !

%

Þ ¼ 0; f 2 B,

! ¼ !

%

; g � ðC : r! � C%
: r !

%

Þ ¼ 0; f 2 S,

lim
jfj!1

ðC : r! � r1Þ ¼ 0, ðA:1Þ

where C and C% are given by (2), and g is the unit normal on S ¼ qB oriented toward the

interior of B. For the ensuing developments, it is useful to introduce the an auxiliary

quantity ~!, termed the perturbation displacement field, through the decomposition

~!ðfÞ ¼
!ðfÞ �D : r1 � f; f 2 R3nB̄;

!

%

ðfÞ �D : r1 � f; f 2 B̄;

8

<

:

(A.2)

applied both outside and inside the obstacle. Here it is noted that precluding rigid-body

rotation, the linear term D : r1 � f signifies the displacement in a defect-free matrix due to

constant stress at infinity. By virtue of (A.2), system (A.1) is identified with the elastostatic

transmission problem (41) provided that

r1 ¼ rFðxoÞ.

To solve (A.1) via the equivalent-eigenstrain method (Mura, 1987), let e1 ¼ D : r1 denote

the constant strain at infinity corresponding to r1, and let ~e and ~r denote the respective

perturbations of e1 and r1 in R
3 due to a presence of the defect. With such

decomposition, the total stress and strain fields in R3 can be respectively written as r1 þ

~r and e1 þ ~e so that

r1 þ ~r ¼
C : ðe1 þ ~eÞ; f 2 R3nB;

C%
: ðe1 þ ~eÞ; f 2 B:

(

(A.3)

Following Eshelby (1957), mechanical effects of the ellipsoidal inclusion in (A.1) can be

simulated by an introduction of an equivalent eigenstrain e over B in the unperturbed, i.e.

defect-free solid R3. In other words, one seeks e such that the total stress, r1 þ ~r, inside B

can be computed as

C%
: r !

%

¼ C%
: ðe1 þ ~eÞ ¼ C : ðe1 þ ~e� eÞ; z 2 B. (A.4)

For a uniform stress r1, the eigenstrain e is also uniform (Eshelby, 1957) and can be

related to the perturbation stain through

~e ¼ S : e; z 2 B, (A.5)

where S is the (constant fourth-order) Eshelby tensor whose explicit formulas

are available e.g. in Mura (1987). From (A.4), (A.5) and the relationship e1 ¼ D : r1,
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one finds

e ¼ R : r1; R � ½ðC � C%Þ : S� C ��1 : ðC% � CÞ : D, (A.6)

where, for a fourth-order tensor T with minor symmetries (Tijkl ¼ Tjikl ¼ Tijlk),

T : T�1 ¼ T
�1 : T ¼ I4, (A.7)

see Dahlquist and Bjorck (1974). Here I4 ¼
1
2
ðdikdjl þ dildjkÞei � ej � ek � el denotes the

symmetric fourth-order identity tensor introduced earlier. On denoting

T ¼ ðC � C%Þ : S� C , (A.8)

it can be shown that T ¼ Tijkl ei � ej � ek � el has same structure as tensor S, i.e. that it

has 21 non-zero components with Tijkl ¼ 03Sijkl ¼ 0 (i; j; k; l ¼ 1; 2; 3) when both C and

C% are isotropic as postulated in (2). By solving the linear system stemming from (A.7) and

(A.8), one can further demonstrate that the components of T�1 � T�1
ijkl ei � ej � ek � el

are given by

T�1
ijkl ¼ T�1

jikl ¼ T�1
ijlk; T�1

1212 ¼
1

4T1212

; T�1
1111 ¼

1

D
ðT2222T3333 �T2233T3322Þ,

T�1
1122 ¼

1

D
ðT1133T3322 �T1122T3333Þ; T�1

1133 ¼
1

D
ðT1122T2233 �T1133T2222Þ,

ðA:9Þ

D ¼ T2211T1133T3322 þT2222T1111T3333 þT1122T2233T3311

�T1133T2222T3311 �T2233T1111T3322 �T2211T1122T3333,

with all other non-zero components following by the cyclic permutation of ð1; 2; 3Þ.
Precluding rigid-body rotation, formulas for the stress and displacement fields inside the

defect can be found from (A.4)–(A.6) as

C%
: r !

%

¼ C%
: ðS : RþDÞ : r1; !

%

¼ ½ðS : RþDÞ : r1� � f; f 2 B.

(A.10)

With reference to (47), the first formula in (A.10) yields an explicit expression for the

fourth-oder tensor Q in (54) for the case of an ellipsoidal inclusion as

QðmÞ ¼ C%
: ðS : RþDÞ, (A.11)

where S is again the Eshelby tensor and R is given by (A.6).

For the purpose of calculating the fourth-order tensor VðmÞ in (44), it is useful to note

that

V : r1 ¼ Vijkl s
1
kl ei � ej ¼

1

jBj

Z

qB

~WiðfÞ ZjðfÞdSz ¼
1

jBj

Z

qB

~! � gdSz. (A.12)

Here g is the unit normal on qB oriented toward the interior of the defect, and ~! is the

perturbation displacement field following (A.2) whose variation inside B can be calculated

from (A.10) as

~!ðfÞ ¼ !

%

�D : r1 � f ¼ ðS : R : r1Þ � f; f 2 B. (A.13)

To evaluate the last integral in (A.12), it is useful to introduce the (non-symmetrized)

fourth-order identity tensor I4 ¼ dikdjlei � ej � ek � el . With such definition, one finds
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using the divergence theorem and (A.13) that
Z

qB

~! � gdSz ¼

Z

qB

ð ~! �I4Þ � gdSz ¼ �

Z

B

r
(
�ð ~! �I4ÞdBz ¼ �jBjS : R : r1,

so that

V : r1 ¼ �S : R : r1 ¼) VðmÞ ¼ �S : R; (A.14)

a result that follows from (A.12), the fact that r1 is an arbitrary (symmetric) second-order

tensor, and the minor symmetries of R. Finally, by recalling the formula

AðmÞ ¼ D : ½I4 � QðmÞ� �VðmÞ,

and employing (A.6), (A.11) and (A.14), it can be shown that

AðmÞ ¼ D : ½I4 � C%
: ðS : RþDÞ� þS : R � R. (A.15)
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