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A new boundary element method (BEM) is developed for three-dimensional analysis of
fiber-reinforced composites based on a rigid-inclusion model. Elasticity equations are
solved in an elastic domain containing inclusions which can be assumed much stiffer than
the host elastic medium. Therefore the inclusions can be treated as rigid ones with only six
rigid-body displacements. It is shown that the boundary integral equation (BIE) in this
case can be simplified and only the integral with the weakly-singular displacement kernel
is present. The BEM accelerated with the fast multipole method is used to solve the
established BIE. The developed BEM code is validated with the analytical solution for a
rigid sphere in an infinite elastic domain and excellent agreement is achieved. Numerical
examples of fiber-reinforced composites, with the number of fibers considered reaching
above 5800 and total degrees of freedom above 10 millions, are solved successfully by the
developed BEM. Effective Young’s moduli of fiber-reinforced composites are evaluated for
uniformly and “randomly” distributed fibers with two different aspect ratios and volume
fractions. The developed fast multipole BEM is demonstrated to be very promising for
large-scale analysis of fiber-reinforced composites, when the fibers can be assumed rigid
relative to the matrix materials. [DOL: 10.1115/1.1825436]

Kyoto 6068501, Japan

1 Introduction

Modeling can play an important role in the analysis and design
of fiber-reinforced composite materials. Mechanical properties
and possible failure modes of these composites can be predicted
early during the design stage using modeling techniques. How-
ever, modeling fiber-reinforced materials presents many chal-
lenges to numerical methods. Fibers in a composite can have dif-
ferent properties, shapes and sizes. They can be straight or curved,
short or long, aligned or oriented arbitrarily, and distributed uni-
formly or randomly. All these factors make estimates of the me-
chanical properties of fiber-reinforced composites very difficult
using the numerical methods. Often a representative volume ele-
ment (RVE) containing only a few fibers may not be sufficient for
accurately determining the effective properties of a composite.
Large-scale models with hundreds or thousands of fibers may be
deemed necessary in many situations. Unfortunately, modeling fi-
bers, matrix, and possibly interphases between them as separate
material domains in large-scale models is beyond the limit of
current computing power. This has been the main reason that most
of the current models of the fiber-reinforced composites based on
the boundary integral equation and boundary element method
(BIE/BEM) are two-dimensional ones with one or a few fibers
considered in the RVEs (see, e.g., Refs. [1-8]). These models are
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adequate for the study of local properties, such as interfacial
stresses and fractures, of a composite, but are often not sufficient
for evaluating the overall mechanical properties of the composite.
Therefore, models that can capture the overall behaviors of a com-
posite without overwhelming computing resources are needed and
will be beneficial in large-scale simulations. Using the rigid-
inclusion model seems to be a feasible first step in large-scale
simulations for investigating the interactions of fibers, load trans-
fer mechanism and effective properties of a composite. The rigid-
inclusion approximation is valid when the fibers have much
higher values of stiffness compared with that of the matrix. This
approximation can significantly reduce the modeling complexity
for the analysis, as will be demonstrated in this paper.

There are two approaches regarding whether or not to further
simplify the geometries for modeling rigid inclusions. One ap-
proach treats the rigid inclusions as they are without further sim-
plifying their geometries, which consequently requires 3D models
for rigid inclusions. The other approach treats slender rigid inclu-
sions, as in the case of long-fiber-reinforced composites, as rigid-
line inclusions, where the geometry of an inclusion is reduced to a
line. This rigid-line inclusion model is valid when the aspect ratio
of an inclusion is large. It is also efficient in modeling of rigid-line
inclusions because of the simplified geometry. Only 2D models of
rigid-line inclusions in a medium have been studied so far.

In the analysis of rigid-line inclusions, also called anticracks in
a 2D elastic domain [9], many research results have been reported
in the literature. Boundary integral equation and boundary ele-
ment method have been found especially suitable for the analysis
of rigid-line inclusions, since cracks in 2D, the counter part of
rigid lines, have been studied intensively by using the BIEs. Many
of the results for crack analysis can be extended readily to the
analysis of rigid-line inclusions. In the early 1990s, the group of
Hu, Chandra and Huang made considerable contributions to the
study of rigid-line inclusions in a matrix using the boundary inte-
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gral equation method for 2D cases. Some of their analytical and
numerical results can be found in Refs. [10—14]. In these works,
the rigid lines embedded in an infinite space are represented by
distributions of tractions along the rigid lines (as compared to
distributions of dislocations for cracks) and integral equations are
established using the Green’s functions. The interactions of rigid
lines with cracks and the effects of rigid lines on the effective
elastic material properties of composites were successfully studied
using this approach for 2D models [10—-14]. Extensive review of
the earlier theoretical work on the elasticity study of rigid-line
inclusions in a solid can also be found in Refs. [10—14]. Recently,
there seems to be a renewed interest in the study of rigid-line
inclusions using the BIEs. In Ref. [15], Leite, Coda, and Venturini
reported a 2D BEM coupled with the finite elements that are used
to model the bar inclusions in a matrix. These bar inclusions,
representing fibers in a matrix, are assumed to be rigid within any
cross section of a bar, but can deform along the axial direction in
their models. The displacement and stress fields near the line in-
clusions are studied by this approach. In a recent work [16], Dong,
Lo, and Cheung developed a hypersingular BIE approach for the
analysis of interactions of rigid-line inclusions with cracks in a 2D
elastic medium. Stress intensity factors at the tips of rigid lines are
computed with this hypersingular BIE approach and compared
with analytical solutions. In all the results mentioned above, only
2D models with a small number (less than 10) of rigid-line inclu-
sions have been considered. Most recently, Nishimura and Liu
[17] used the fast multipole BEM to solve rigid-line inclusion
models in the context of 2D thermal analysis. The rigid-line con-
cept in the thermal case means line inclusions with much higher
thermal conductivities than that of the matrix material. A hyper-
singular BIE was employed and up to 10 000 line inclusions were
studied. The effective thermal conductivity of a 2D medium (thin
films) containing rigid lines were successfully evaluated using the
2D RVEs embedded in an infinite plane in Ref. [17].

In the case of modeling rigid inclusions as 2D or 3D objects
without simplifying their geometries, Ingber and Papathanasiou’s
work [18] seems to be the only reported one using the boundary
element method. The full conventional BIE for Navier’s equation
governing an incompressible medium containing rigid fibers is
solved in [18] in order to determine the effective moduli of com-
posites with different fiber volume fractions and aspect ratios.
Constant boundary elements were employed to discretize the BIE
which contains the singular as well as weakly-singular kernels.
Parallel computing was used to solve the BEM equations. Up to
200 short, aligned rigid fibers, with the total degrees of freedom
(DOFs) of about 12000, were successfully solved by the devel-
oped BEM approach. Very good agreement of the evaluated effec-
tive moduli using their BEM approach and analytical results is
reported in [18], which clearly demonstrates that the rigid-fiber
model is very promising and the BEM is very efficient for ana-
lyzing fiber-reinforced composites. In the field of fluid mechanics,
there are many research results concerning the flows of fluids
around rigid solids. Two recent references using the boundary
element method for modeling rigid bodies in fluids can be found
in Refs. [19], [20]. In particular, in Ref. [19], an indirect BIE of
the first kind using the single-layer potential is developed for solv-
ing Stokes equations and this approach is found to be very stable
and more amenable to fast iterative solvers.

The boundary element method based on the BIEs is a natural
way to model inclusion problems, due to its reduction of the di-
mension of the problem domain and high accuracy. With the de-
velopment of the fast multipole methods (FMM) (see a recent
review in Ref. [21]) for solving boundary integral equations, large
models with several million degrees of freedom can be solved
readily on a desktop computer. Rokhlin, Greengard, and co-
workers, who pioneered the FMM, have done extensive research
on the FMM for inclusion problems in the context of potential
fields as well as elastic fields in two-dimensional domains (see,
Ref. [22] and related papers in Refs. [23-25]). Rodin and co-
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Fig. 1 A 3D infinite elastic medium (R®) embedded with rigid
inclusions

workers [26] have formulated the BIE for 3D elastic inclusion
problems using the FMM. Solutions for up to 343 spherical voids
in an elastic domain were computed using their parallel FMM
BEM code (with total DOFs about 400 000) [26]. Some other
development of the fast multipole BEM can be found in Refs.
[27], [28] for general elasticity problems, and in [29-31] for crack
problems. With the advances of new composites, new modeling
approaches that can handle even larger numbers of fibers in an
RVE need to be developed. The rigid-inclusion approach seems to
be a feasible first approximation with the current computing ca-
pabilities. All these demands in materials research and progresses
in the BEM suggest that the rigid-inclusion models and the fast
multipole BEM may play a significant role in the analysis of fiber-
reinforced composites.

In this paper, a new BIE formulation is presented for the analy-
sis of rigid inclusions in a general 3D isotropic elastic medium
based on the general direct BIE formulation. The BIE contains
only the displacement kernel and the influence of the traction
kernel is implied in the coefficient of the free displacement term.
Although this integral equation is essentially (not exactly) a Fred-
holm integral equation of the first kind, it is suitable for numerical
solutions with iterative solvers because a good preconditioner is
available. The BEM accelerated by the fast multipole method is
used to solve the established BIE and the preconditioned system
of equations is found to be well conditioned. The analytical solu-
tion of a rigid sphere in an infinite elastic domain is used to
validate the developed BEM code and excellent agreement is
achieved. Examples for modeling fiber-reinforced composites,
with the number of fibers reaching above 5800 and total DOFs
above 10 millions, are successfully solved by the developed fast
multipole BEM. Effective Young’s moduli of fiber-reinforced
composites are evaluated for uniformly and “‘randomly” distrib-
uted and oriented fibers with two different aspect ratios and vol-
ume fractions. The developed fast multipole BEM is demonstrated
to be very promising for large-scale analysis of fiber-reinforced
composites, when the fibers can be assumed rigid relative to
the matrix. It can also be applied to modeling other inclusion
problems.

2 BIE Formulation for an Elastic Medium Containing
Rigid Inclusions

The boundary integral equation for the analysis of an elastic
domain containing rigid inclusions is derived in this section. This
new and simplified BIE formulation contains only one integral
with the displacement kernel and thus can facilitate more efficient
computation. Consider a 3D infinite elastic domain V embedded
with n rigid inclusions (Fig. 1). The matrix is loaded with a re-
mote stress or displacement field. The displacement at a point
inside the domain is given by the following direct representation
integral (see, e.g., [32]):
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U(X)=L[U(X,Y)t()’)*T(X,Y)U(Y)]dS(YHUW(X), VxeV,
(€Y

where u and t are the displacement and traction vectors, respec-
tively; S=U,S, with S, being the boundary of the ath rigid
inclusion (Fig. 1); and u” the undisturbed displacement field when
a remote stress or displacement field is applied and the rigid in-
clusions are not present (This term is similar to that for an incident
wave in the elastodynamic case [33]). For a finite domain model,
this term will not be present in Eq. (1). The two kernel functions
U(x,y) and T(x,y) in Eq. (1) are the displacement and traction
components in the fundamental solution (Kelvin’s solution), re-
spectively, which can be found in any BEM references (see, e.g.,
[34-37]).

Before we let the source point x approach the boundary S to
derive the boundary integral equation, we first consider the rigid-
body motions of each inclusion. For a rigid inclusion enclosed by
S, the displacement at any point y can be described by the rigid-
body motions as:

u(y)=d+ wXp(y), 2)

where d is the rigid-body translational displacement vector, w the
rotation vector, and p a position vector for point y measured from
a reference point (such as the center of the inclusion). Consider a
complement problem in the interior region enclosed by S, and
filled with the same material as that of domain V. Then the fol-
lowing representation integral holds:

0= f [U(x,y)Hy)—T(x,y)u(y)1dS(y), VxeV, (3)

@

where U and T are the displacement and traction_vectors, respec-
tively, for this complement problem; U=U and T=-T as in Eq.
(1) (the normal for the region enclosed by S, is in the opposite
direction of n shown in Fig. 1). Any rigid-body motion is a solu-
tion to the elasticity equations for the complement problem. Thus,
the following solution:

U(y)=u(y)=d+wXp(y), ty)=0

satisfies the representation integral (3). Substituting these results
into (3), we obtain:

J’T(x,y)[d+pr(y)]dS(y):0, VxeV,
s

a

or

J'T(x,y)u(y)dS(y)ZO, VxeV, )
s

@

for the region enclosed by S, («=1,2, ... ,n). This is exactly the
second integral with the T kernel in Eq. (1) on one inclusion.
Therefore, the integral in Eq. (1) involving the T kernel vanishes
and Eq. (1) reduces to:

u(x)=fU(x,y)t(y)dS(y)-i—um(x), VxeV, 5)
s

for all rigid inclusions (S=U ,S,). This representation integral
can be applied to evaluate the displacement field at any point
inside the domain V, once the tractions on the surfaces of the rigid
inclusions are obtained. The stress field at any point in the domain
can also be evaluated by taking derivatives of expression (5) and
applying the Hook’s law.

To obtain the traction values on surfaces of the rigid inclusions,
we let the source point x approach the boundary S to arrive at the
following boundary integral equation:

VxeS=US,, (6

3

H(X)=LU(X,y)t(y)dS(y)Jrux(X),
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in which no jump term arises since the U kernel is only weakly
singular [34-37]. This BIE for rigid-inclusion problems is ex-
tremely compact and simple, in which only the weakly-singular
kernel needs to be handled. Analytical solutions for rigid-
inclusion problems may be obtained for simple geometries by
using this BIE formulation.

Although the BIE (6) for rigid inclusions are much simpler to
handle than the BIE for elastic inclusions, it requires additional
considerations, that is, the rigid-body motions of each inclusion,
expressed by Eq. (2) that contains six unknowns (d and o vectors)
for each inclusion. Additional equations are needed to supplement
BIE (6). These equations can be obtained by considering the
equilibrium of each inclusion, that is, the following (six scalar)
equations:

f t(y)dS(y)=0; (M
S(l

f p(y) X t(y)dS(y)=0; ®)
for «=1,2,...,n. Expression (7) represents the equilibrium of

the forces, while expression (8) that of the moments, for the rigid
inclusions. BIE (6) and Egs. (2), (7), and (8) are simultaneously
solved to obtain the unknown rigid-body motions d and w, and
traction t for all the inclusions.

It should be pointed out that BIE in (6) is essentially a Fred-
holm integral equation of the first kind, although not exactly since
it contains additional finite number of unknowns d and e for each
inclusion. Integral equations of the first kind are usually consid-
ered not suitable for numerical solutions with iterative solvers.
This problem can be resolved in two ways. Namely, we either
convert the BIE into an equivalent equation of the second kind, or
use a preconditioner after the discretization. One may possibly
replace BIE (6) by a second kind integral equation of the follow-
ing form as one uses instead the traction equation corresponding
to (6):

VxeS=US,,

a

5t(x)= f TU(x,y)t(y)dS(y) + Tu”(x),
S

where T is the traction operator which is applied to x. Unfortu-
nately, the solution to this equation is not unique. We therefore
decided to use BIE (6) for the analysis since we can find a good
preconditioner for the system obtained after discretization of (6),
as we shall see later.

In 2D, BIE (6) will degenerate in the limit as the aspect ratio of
an inclusion tends to infinity, that is, equations generated by using
BIE (6) on the two opposing boundaries of a slender inclusion
will be identical and thus not enough equations will be available
for solving the BIE for separate tractions. In this case, the sum of
tractions across the inclusion can be used as a new variable in BIE
(6) to derive a new equation. Different Green’s function formula-
tions can also be employed to consider rigid lines based on the
work in Refs. [9-15], which may turn out to be equivalent with
the equation based on BIE (6). Like the crack cases, hypersingular
BIE formulations can also be applied, as has been done recently in
[16] for 2D elasticity, and in [17] for 2D thermal analysis of line
inclusions. New BIE formulations for rigid-line inclusion prob-
lems in 3D, however, still remain to be developed.

3 The Fast Multipole Method

The fast multipole method [21-31] is employed to accelerate
the BEM solution of the BIE for rigid inclusions. In recent years,
the fast multipole method has been demonstrated to be especially
good for solving problems with large numbers of cracks and in-
clusions in both 2D and 3D cases. Using the fast multipole
method for the BEM, the solution time of a problem is reduced to
order O(N), instead of O(N?) as in the traditional BEM (with N
here being the number of equations). The memory requirement is

JANUARY 2005, Vol. 72 / 117



also reduced since the iterative solver (such as GMRES) does not
require the storage of the entire matrix in the memory. Thus, large
models that had to be solved on a supercomputer in the past can
now be solved on a desktop computer.

In the following, we briefly list the main results of the fast
multipole method for the developed BIE (6) to show the essence
of this powerful approach to solving BIEs. Complete formulations
and steps in implementations of the FMM for elastostatic prob-
lems can be found in Refs. [38,39]. Other formulations using dif-
ferent FMM approaches for general elasticity problems can be
found in Refs. [26-28].

We start with the following form of the fundamental solution
(index notation is employed here, where repeated indices imply
summations):

1 2
8T iy

Ntp 9 xj—y;
N+2u &x ro )

Uii(x,y)= )
where \ and u are the Lamé constants, &; ; the Kronecker symbol,
and r=r(x,y) the distance between the source point x and field
point y. The following identity holds:

—E Z S m(OXR, ,(0Y),

n=0 m=—n

10
=P v 1o
for |Oy|<|Ox], in which O represents a third point, R, ,, and
S,.m are solid harmonic functions defined in Refs. [38,39], and

() means the complex conjugate. Substituting (10) into (9), we
arrive at:

% n

Uii(x,y)= —2 > [Fijnm(O0R,.(Oy)

=0 m=-n

+Gi,n,in(&)((jg’)jR)1,m((3;’)]’ (11)
where,

(0= 2 5 s (O O%) - 5., (O3
ij.n,m( X)_m ij n,m( X) )\_,’_2 ( X)]a n,m( X)’
G, (0%)= M o S, ,(Ox
ionm( X)—mgj nm(OX).

The significance of expression (11) is that the kernel U; J(X,y) is
now a sum of functions in the form of k\"(x—0)k!*(y—0),
which will facilitate integrations independent of the source point x
and thus reduce the number of integrals to compute. To see this,
consider the integral in BIE (6) on a subdomain S, of S away from
the source point x. Applying expression (11), with point O being
close to subdomain S,, we obtain:

® n

1
f Uy )0 = g 2 2 [Fijun(OXM,(0)
G OX)M, ,(0)], (12)
in which,
M;, .(0)= L R, .(Oy)1;(y)dS(y), (13)
M, (0)= L (0Y) ;R m(OY)1,(y)dS(y), (14)

are called the multipole moments for given n and m. Note that
these four moments are independent of the location of the source
point x and thus only need to be calculated once for all locations
of the source point away from S, (S, will be a cell in FMM and
O will be the center of this cell). To evaluate the integral using Eq.
(12), only a small number of terms are required in the expansion.
For example, using ten terms for 7 in these expansions has been
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found sufficient for most problems. Further details of the FMM in
the context of general 3D elastostatic problems and used in this
work can be found in Refs. [38,39].

The fast multipole BEM code developed for the current analy-
sis of rigid inclusions in 3D elastic media is based on the FMM
BEM code that was developed at the Kyoto University for general
elasticity problems [38]. This earlier FMM code has been tested
on some large-scale stress analysis problems of regular structures.
More details on the FMM for the BEM and its implementations in
solving other types of problems can be found in Refs. [21], [39].

4 Discretization of the BIE

The boundary element method, accelerated by the fast multi-
pole method, is applied to solve BIE (6) together with Egs. (2),
(7), and (8). In this paper, constant triangular boundary elements
are used to discretize these equations over the surfaces of the
inclusions. One node is placed on each surface element and the
field variable (traction) is assumed to be constant over each ele-
ment which is a flat triangular area defined by its three corner
points. Although constant elements may not be as accurate as
linear or quadratic surface elements, they have certain advantages
over other higher-order elements. For example, all the integrals
involved in using the constant elements can be evaluated analyti-
cally in both 2D and 3D cases. (As a matter of fact, it is not
impossible to carry out analytical integrations for any planar ele-
ments with arbitrary polynomial basis functions. But the results
will be quite complicated.) This avoids the use of any numerical
integration in the BEM and hence guarantees the accuracy in the
evaluation of all integrals when the source point x is very close to
an element of integration (which happens when many inclusions
are closely packed in a model).

If the nodes are grouped together for each inclusion, numbered
on one inclusion after another, then a discretized form of the BIE
(6) can be written as:

3, 911 912 EJln 1 i
w| Uy, Up Uy, t N “c; (15)
ﬁn ~. I I T ﬁ:

Unl Un2 Unn "

where n is the total number of inclusions being considered; u,, and
t, the nodal displacement and traction vector for inclusion a,
respectively; U, the given remote displacement vector evaluated

on inclusion a; and U,z the coefficient matrix obtained from the
(analytical) integration of the displacement kernel over inclusion
B when the source point x is located on inclusion @. From Eq. (2),
the nodal displacement vector on an inclusion « can be related to
the rigid-body translation d and rotation w of that inclusion by the
following expression:

u a

~ u a

W=y (=] | Ca=Autu (16)
u a

m m

in which u; is the nodal displacement vector at node i (with m
being the number of nodes on inclusion «); a; the transformation
matrix for each node i on inclusion « given by [see Eq. (2)]:

a=[0 1 0 —py 0 p |, 17
0 0 1 )2} —DPi 0

with p, being the component of the position vector p for node i;
and finally in (16), ¢, is the rigid-body displacement vector for
inclusion «, defined by:

e,=[d; dy dy 0 w; w;]", (18)
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for «=1,2,...,n. The system of equations (15) is supplemented
with the following ones from discretizations of Egs. (7) and (8) on
each inclusion «:

B,t,=0, (19)
for «=1,2,...,n, in which B, is a 6 X3m coefficient matrix
obtained by evaluating Egs. (7) and (8) on inclusion a.

With results in (16)—(18), the discretized BIE (15) and Eq. (19)
can now be combined to provide the following form of the system
of equations:

_Ull _Ul2 Uln Al 0 0 R
_621 _622 ﬁZn 0 A2 0 ,_;]
. . . . . .2
- ivjnl - ijnZ - i.’Jnn An ’En
B, 0 0 @
0 B 0 “
Sy
Lo 0 B, 0 0 0
( EOIC\
u;
ﬁx
= . 20
0 / (20)
0
\ 0 /

There are 3N+6n equations in the above system (with N=m
Xn, being the total number of nodes on all inclusions), which are
sufficient for solving the 6n unknown rigid-body displacements
and rotations (¢,) of the n inclusions, and the 3N unknown trac-
tion components (t,,) at the N boundary nodes over all the inclu-
sions. Note that in the above system, the dimension for submatrix
A, is 3mX6 and for B, is 6 X3m. Both are not square matrices
(the number of nodes per inclusion m can be large). If all the
inclusions are of the same size and shape, and meshed in the same
way, then both the submatrices A, and B, can be computed only
once for all the inclusions.

The iterative solver GMRES is used to solve the system of
equations in Eq. (20), in which the multiplication of the (coeffi-
cient) matrix and (approximate solution) vector in each iteration
are obtained by using the fast multipole method. In the FMM, the
maximum depth of the oct-tree structure is below 10 levels. Direct
integrations for near field interactions are computed during each
iteration and are not stored to save the memory space. As for the
preconditioner, we use the following (“‘diagonal’) matrix:

U, 0 - 0 A 0 - 0]
0 -U, -~ 0 0 A, - 0
0 _ﬁnn An
M=
B, 0
0 B, 0
L0 0 B, 0 0 0
21

The system in (20) is right-preconditioned with this matrix. The
inverse of M is easily obtained as:

Journal of Applied Mechanics
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P, 0 0 Q o 7
0 P, 0 0 Q
1 0 0 P, 0 Q,
M '=
R, 0 S, 0
0 R, 0o S
L 0 0 R, 0 0 S, |
where
Pi Qi _6,',' Ai !
R, S = B, 0 ,for inclusion i=1.2,...,n.

(22)

Physically speaking, inverting the matrix on the right-hand side of
(22) means to solve a rigid-inclusion problem for the whole space
just containing one inclusion (ith one). The inversion in (22) is a
small operation which can be carried out efficiently with any di-
rect solver for a matrix equation. With this preconditioning, the
upper-right and lower-left submatrices in (20) reduce to zero ma-
trices, while the lower-right submatrix and the block diagonals in
the upper-left submatrix are converted into identity matrices. This
is essentially equivalent to converting the original integral equa-
tion in (6) into another equation of the second kind whose solution
is unique. The system thus obtained is well conditioned and the
solutions are stable, as shown in the following numerical ex-
amples.

5 Numerical Examples

The developed fast BEM for the analysis of rigid inclusions is
first validated using a test case of a single rigid sphere for which
the analytical solution can be found readily. Then, the BEM code
is applied to study the fiber-reinforced composites using the rigid-
inclusion model.

5.1 A Rigid Sphere in an Infinite Elastic Medium. To
validate the developed new BIE formulation and its BEM imple-
mentation for the study of rigid-inclusion models of fiber-
reinforced composites, a rigid sphere in an infinite elastic medium
is considered first (Fig. 2). The elastic medium containing the
rigid sphere is loaded with a far-field triaxial stress . The ana-
lytical solution for this axisymmetric problem can be obtained
readily using basic elasticity theory [40] or the equivalent inclu-
sion method [41]. The radial displacement, radial and tangential
stresses in the elastic domain are found to be:
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Fig. 3 A boundary element model of the sphere (with 1944 surface elements)

_(1—2V)(T°° a’
ur(r)_T 1—r—3 r, (23)
o 2(1-2v) a® o
olr)=o +ﬁr—3, 24)
“ 1 1-2va? )
oy(r)=o"|1- Ty 3 (25)

respectively, where a is the radius of the sphere, E the Young’s
modulus, and v the Poisson’s ratio of the elastic medium. Note
that u,(a)=0, which is the result for a rigid sphere.

The convergence of the BEM is studied with several boundary
element meshes for the sphere. The finest mesh used (with 1944
elements) is shown in Fig. 3. The radial stress computed by the
BEM on the surface is compared with the analytical solution [Eq.
(24)] and the relative errors are plotted in Fig. 4 for different
meshes with increasing numbers of elements. The error with the
coarsest mesh (120 elements) is 4.93%, while that with the finest
mesh (1944 elements) is 0.19%. The convergence of the BEM
results is achieved. The field displacement and stresses within the
elastic domain are plotted in Figs. 5 and 6, respectively, for the
coarsest mesh (120 elements) to deliberately show the errors of
the BEM. Even though the results on the surface for this coarse
mesh contain a relatively larger error (4.93% for radial stress, Fig.
4), the results inside the domain (away from the surface) are quite
good. This is one of the advantages of the BEM approach, which
uses integral representation [e.g., Eq. (5)] for this calculation that
tends to reduce the errors inside the domain. Note that both the
radial and tangential stresses tend to the applied far-field stress
o™, as the distance r from the center of the sphere increases. The
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stress contour plot for o, on the surface (boundary of the me-
dium) is given in Fig. 7 for the finest mesh (shown in Fig. 3). The
boundary stress field is obtained by using the traction results and
averaged at each corner node using results on the surrounding
elements. Note the increase of the stress value on the surface (with
a stress concentration factor of 1.6154) and its location due to the
presence of the rigid sphere in the elastic medium.

The excellent agreement of the BEM results with the analytical
solution for this example suggests that the developed new BIE
formulation and its BEM implementation are correct and effec-
tive. Fiber-reinforced composite materials will be considered next
using this rigid-inclusion model and the BEM approach.

5.2 Short-Fiber-Reinforced Composites. Modeling of
fiber-reinforced composites using the rigid-inclusion model and
the developed BEM is considered in this and next examples. Short
fibers in a matrix are more likely to act like rigid rods [18] if their
stiffness is more than an order of magnitude higher than that of
the matrix. Several representative volume elements containing dif-
ferent numbers of fibers are used to study the interactions of the
fibers and to estimate the effective properties of the composites.
We limit our attention to short and moderately long fibers in a
matrix, where the aspect ratio (length/diameter) of an inclusion is
kept below 20. The main purpose of these examples is to show the
capabilities and promises of the developed fast BEM in large-
scale modeling of fiber-reinforced composites. The models stud-
ied here are simple and ideal in nature, with more realistic ones
being left for future applications.

The RVEs considered in this study are of finite sizes and em-
bedded in an infinite domain with the same material as that of the
matrix (cf., similar inclusion models in 2D infinite space reported
in Refs. [9-14,16,17]). In this way, the problem can be posed as
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an infinite domain problem and the structure of Eq. (20) can be
preserved. [A RVE model as a finite domain problem can be easily
implemented with some modifications of Eq. (20) to consider di-
rect loading on the surfaces of a RVE.] In the current embedded
RVE models, a far-field uniaxial tensile stress is applied in the
x-direction (Fig. 8). To estimate the effective Young’s modulus of
a composite in one direction (e.g., the fiber or x-direction), the
displacements and stresses at some surfaces of the RVE, to be
called data-collection surfaces (Fig. 8), are computed using Eq.
(5) and its gradients, after the traction t is determined for each
rigid inclusion by solving the BIE equations. The effective
Young’s modulus of the composite is estimated using the displace-

2.50

ment and stress results at these data-collection surfaces by the
following formula (which ignores the stresses on the lateral sur-
faces that have been found much smaller in value compared with
o, in the cases studied):

( 0')5) (ave)L
(A ux)(ave) ’

where E; is the estimated effective Young’s modulus of the com-
posite in the x-direction (Fig. 8), and the displacement and stress
averaged over the data-collection surfaces (Fig. 8) are obtained
by:

Eo4= (26)
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Fig. 5 Radial displacement (X o~ a/ E) obtained by the BEM model with 120 elements
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with L being the length of the RVE in the x direction Fig. 8, the
origin of the coordinate system is located at the center of the
RVE). In this way, the effective modulus is obtained as the local
elastic constant of the volume with inclusions. One may argue that
the effective modulus in (26) is an apparent property because it is
obtained using an infinite domain that acts as part of the “loading
device.” Indeed, the effectiveness of this approach with a RVE
embedded in the infinite domain needs to be verified with other
results and improved RVE models can also be developed. The
reader is referred to Sec. 6 for further discussions and an attempt
to verify the proposed approach.

A mesh with 456 boundary elements for a short, cylindrical
fiber of an aspect ratio equal to 5 (length=50 and diameter=10) is
shown in Fig. 9. This mesh is sufficient for obtaining converged
results for the estimated effective moduli. The fiber is initially
placed at the center of a box of dimensions 100X20X20 (chosen
arbitrarily) and filled with the matrix material. This box is then
repeated in the x-, y-, and z-directions to generate the multiple-
fiber RVE models. Three different distributions and orientations of
the fibers are considered. The first case is the uniform distribution
of aligned fibers, to be called the uniform case. The second case is
a “random” distribution of aligned fibers, where the fibers are still
aligned in the x-direction, but their locations are shifted randomly

€2

Fig.9 A BEM mesh used for the short fiber inclusion (with 456
elements)
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in the x-, y-, and z-directions to such an extent that each fiber
remains in its own box (territory) to avoid contact of the fibers.
This case is called the aligned random case. The third case is a
“random” distribution and “random’ orientation of the fibers.
Again the random distribution and (small angle) rotation of a fiber
is limited to the extent that it remains in its own box. This case is
named the random (or to be more precise, a controlled random)
case. In all the cases, the volume fraction of the fiber is 9.16%
based on the dimensions of the RVE and fibers. A Poisson’s ratio
of 0.3 is used for the matrix.

Figure 10 shows the contour plot of surface stress o, (in the
matrix) for the RVE containing 216 “random” short fibers. For
each fiber, high stresses occur around the two ends of the fiber,
which is consistent with the theory that in the limit as the slender
inclusion becomes a rigid line, singularity of stresses will arise at
the two tips [9]. Values of these stresses are even higher when two
fibers are closer to each other, suggesting closer interactions of the
fibers. This stress plot is typical among all the studied RVEs con-
taining g X g X ¢ fibers, with ¢=2, 3, 4, 6, 8, 10, 12, and 13 in this
example. The largest RVE with 2197 (an array of 13X13X13)
“random” fibers is shown in Fig. 11. The total degrees of freedom
for the model in Fig. 11 is 3018 678 (=2197X(6+456X3)).

The normalized Young’s moduli (E 4/E, ) of the compos-
ites, estimated with the three different fiber distributions and ori-
entations using the above mentioned RVEs, are plotted in Fig. 12.
The increase of the effective Young’s modulus of the composite
estimated by the RVEs with uniform distributions of aligned fibers
ranges from 28.1% to 40.8% (a difference of 45.2%) as the num-
ber of fibers (or size of the RVEs) increases from 8 to 2197. The
values of the modulus in this uniform case increase gradually and
tend to a constant value. These results suggest that a RVE with a
smaller number of short fibers is inefficient for obtaining the ef-
fective properties accurately with Eq. (26) even in the cases with
uniform distributions of aligned fibers (without considering the
periodic boundary conditions). The estimated increases of the
Young’s moduli in the aligned random and random cases range
from 27.7% to 46.2% and oscillate within this range until ap-
proaching another constant. Surprisingly, the estimated moduli in
the aligned random and random cases are higher for most RVEs
than those in the corresponding uniform case. This may suggest
that the load transfer may be improved by the “‘random” distribu-
tions of fibers in a short-fiber composite. However, in comparison,
the values of the effective moduli are about 30% lower than those
predicted by the theory and BEM (for incompressible materials)
reported in Ref. [ 18] for the same fiber volume fraction and aspect
ratio. This may be due to the fact that the fibers in the current
models are confined within their own boxes and no “‘relays’ occur
in the fiber direction, even in the “random” case, which leads to
“weakest-link™ regions between two arrays of fibers. While in the
models used in Ref. [18], aligned fibers are placed randomly in
the RVE and therefore better load transfer are achieved. Further
tests on the current BEM can be carried out with more realistic
distributions of the fibers.

Figure 13 shows the CPU time used to obtain results in this
short-fiber composite example, on a FUJITSU PRIMEPOWER
HPC2500 machine (a shared memory machine with 96 CPUs and
384GB memory) and using four CPUs. In this example, no serious
attempts have been made to parallelize the code except for the
automatic parallelization made by the compiler. Contrary to the
traditional BEM where the solution time is of O(N>) (with N here
being the total number of DOFs), the CPU time required for solv-
ing a model using the fast multipole BEM is only of O(N) as
shown in Fig. 13 (a straight line with the slope close to unity).
Furthermore, the memory required for solving a problem also in-
creases linearly with the size of the problem for fast multipole
BEM. Also, the number of iterations required to reach the conver-
gence with a tolerance of 1077 in using the GMRES is between 5
(for N=10992) and 7 (for N=3 018 678). Therefore, the fast
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and oriented short fibers

multipole BEM is much faster and more efficient as compared
with the traditional BEM (further discussions and examples can
be found in Refs. [21,39]).

These preliminary results in modeling short-fiber-reinforced
composites clearly demonstrate the effectiveness and robustness
of the developed fast multipole BEM based on the rigid-inclusion
model.

5.3 Long-Fiber-Reinforced Composites. Composites rein-
forced with relatively long fibers, with an aspect ratio of 16
(length=80 and diameter=5), are studied using the developed
BEM. Each fiber is discretized using 600 boundary elements and
placed in a box of the same dimensions (100X20X20) as in the
short-fiber example. This box is then repeated in the x-, y-, and
z-directions to generate RVEs containing ¢ X ¢ X g fibers, with ¢

Fig. 11 A RVE containing 2197 short fibers with the total DOF=3 018 678
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Fig. 12 Estimated effective Young’s moduli in the x-direction for the composite model with
up to 2197 short rigid fibers (fiber volume fraction=9.16%)

=2,3,4,6,8, 10, 12, 13, 15, and 18 in this example. The largest
model with 5832 fibers and 10532592 DOFs (5832X(6+600
X3)) is shown in Fig. 14. The fibers are arranged in the so called
“random” manner as in the short-fiber RVEs. Again, these are
“controlled random” distributions (each fiber within its own box)
and orientations (with small rotation angles) of the fibers so that
no contact among them occur in the RVEs. The volume fraction of
the fiber is 3.85% for all the long-fiber models in this example.
The Poisson’s ratio for the matrix is 0.3.

Figure 15 shows the normalized effective Young’s moduli
(E ot /E mawix) computed for the composites with the relatively long
fibers using the RVEs in the uniform and ‘“random” cases. The
increases of the computed effective moduli are about two times
higher in these long-fiber cases than those in the short-fiber cases,
even though the fiber volume fraction is lower. This is expected
since aligned long fibers are better for load transfer in a compos-
ite. The increases in the values of the modulus range from 75.9%
to 95.0% for the uniform case and from 65.4% to 87.6% for the
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Fig. 13 CPU time used for solving the BEM models for the short-fiber cases
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random case. Results for the uniform case increase gradually with
the increase of the RVE sizes and tend to a constant value
(95.0%). The values obtained for the “random” case fluctuate for
the smaller RVEs and also approach a constant for the larger
RVEs. However, the increases in the “‘random” case are about 8%
lower than those in the uniform case in this long-fiber example.
This suggests that even small misalignment and rotations of long
fibers (which are uniformly and closely packed in the fiber direc-
tion initially) will offset the enhancement in the stiffness for long-
fiber composites. The largest RVE model (with 5832 fibers and
10532592 DOFs) can be solved in 3 h and 40 min (wall-clock

time) on the PRIMEPOWER HPC2500 computer using 32 CPUs,
with a tolerance of 107> in the solution with GMRES and ten-
term expansion in the FMM. The code used for this example was
parallelized with minimum efforts using OpenMP and automatic
parallelization option of the compiler.

Rapid convergence is achieved in this case also. The number of
iterations in solving the preconditioned system using the GMRES
iterative solver is between 5 (for N=14448) and 11 (for N
=10532592) with a tolerance of 10~ >. This shows that the pre-
conditioner in (22) works very well even in problems when the
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Fig. 15 Estimated effective Young’s moduli in the x-direction for the composite model with
up to 5832 long rigid fibers (fiber volume fraction=3.85%)
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aspect ratio of the inclusions is as large as 16. The robustness of
the developed BEM for modeling fiber-reinforced composites is
demonstrated again by this example which has reached 10 million
DOFs for the boundary element method.

6 Discussions

The developed fast multipole BEM for the analysis of fiber-
reinforced composites based on the rigid-inclusion model has
been demonstrated to be very effective and efficient for large scale
models. Interactions of the fibers, load transfer mechanisms and
effective properties of a composite can be investigated readily
using the BEM code with different parameters, such as fiber as-
pect ratios, volume fractions, waviness, distributions, and orienta-
tions. However, further studies are needed regarding the effective-
ness of the model and method for evaluating the effective
properties of the composite materials, since the rigid-inclusion
model has some obvious limitations. For example, the effect of
the ratio of the Young’s modulus of the fiber to that of the matrix
for a composite can not be accounted for in the rigid-inclusion
model (this ratio is equal to infinity in the rigid model for any
matrix material). Although there are a large amount of experimen-
tal data and numerous analytical results based on different theories
for estimating the effective properties of fiber-reinforced compos-
ites, direct comparison of the BEM results with these data was not
attempted in this study (except with that in Ref. [18]), because of
the wide variations in those data. More realistic models of the
fiber-reinforced composites using the rigid or elastic inclusion ap-
proaches need to be studied using the developed BEM in future
applications.

The boundary integral equation developed for this study, Eq.
(6), is essentially an integral equation of the first kind, which, used
in its original form, may raise the question of stability and con-
vergence of its solutions when using iterative solvers as in the
FMM. Our experience has shown that even for integral equations
of the first kind, the FMM BEM, which uses iterative solvers such
as GMRES, can still deliver fast converging and stable results
with good preconditioners. Our selection of using the right pre-
conditioner in Eq. (22) turns out to be very effective.

The RVE used in this study is of finite size as shown in Fig. 8,
that is embedded in an infinite space filled with the matrix mate-
rial and loaded remotely (cf., again, 2D models in infinite space
used in Refs. [9-14,16,17]). This is chosen so that an infinite
domain problem can be solved, which is easier to handle concern-
ing the boundary conditions and, in general, converges faster than
an interior problem using the FMM. In this infinite domain prob-
lem, the displacement and stress fields on the surfaces of the RVE
(data-collection surfaces) need to be calculated after the boundary
solutions on all the inclusions are obtained with the fast multipole
BEM. This calculation of the fields inside the domain takes extra
CPU time, which can be substantial for large models, although it
can be computed by using the FMM also [30]. An interior prob-
lem defined on the finite sized RVE directly can certainly be
implemented with some modifications of Eq. (20) and may pro-
vide some improvements to the current RVE model. For example,
the boundary solutions (displacements and tractions) on the RVE
surfaces, which are available after the solution of an interior prob-
lem, can be used directly to evaluate the effective properties. A
more reliable, and perhaps more elegant, approach for computing
the effective modulus is to use FMM for periodic boundary con-
ditions [25]. Our preliminary analysis with the two dimensional
Laplace problems [17] shows that the periodic FMM BEM can be
implemented easily, and the increase of the CPU time over the
ordinary FMM is less than 20%. The effective property obtained
with an equivalent formula of (26) and with the periodic FMM did
not differ very much. The elastic counterpart of the periodic FMM
is now underway.

The rigid-inclusion model for fiber-reinforced composites may
have the potential in some very urgent applications, such as mod-
eling of the emerging carbon nanotube (CNT)-based composites
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(see, e.g., Refs. [42—45]). The Young’s moduli of carbon nano-
tubes are in general greater than 1 TPa along the tube direction,
about two orders higher than those of many matrix materials
[43,44]. To model the CNT-based composites, continuum mechan-
ics approaches using the FEM or BEM [46—-49] may still be ap-
plied if the overall behaviors and properties of the CNT-based
composites are to be investigated. However, CNTs are usually
produced in different shapes and sizes (for example, being curved,
twisted, or bundled), and are difficult to align in a composite.
Thus the computational models for such composites may need to
contain a much larger number of fibers in a RVE, as compared to
those for traditional composites for which the fibers can be
aligned easily and distributed uniformly, mainly because of their
larger scales. The BEM can model multimaterial problems easily
since it uses elements only on boundaries and interfaces of the
problem domain. With the fast multipole BEM, the solution time
has also been reduced dramatically for large-scale problems. The
rigid-inclusion model further simplifies the BEM approach and
increases its efficiency in the analysis of some special composite
materials, as demonstrated by the examples in the previous sec-
tion. All these features and new development make the BEM very
appealing in large scale analysis of CNT-based composites for
estimating their overall mechanical properties. Studies are under-
way along this line in modeling CNT-based composites by using
the developed fast multipole BEM with new interface conditions
based on molecular dynamics simulations of CNT-fiber pullout
tests.

The work reported in this paper, on using the rigid-inclusion
models for analyzing fiber-reinforced composites, is only the first
step in the development of a more general FMM BEM for study-
ing such materials and many others. The developed BIE formula-
tion and the FMM BEM can be extended readily for other prob-
lems. A FMM BEM solver for general inclusion problems can be
developed, where the inclusions can be elastic or rigid, or simply
a void. Other RVE models, for example, with periodic boundary
conditions, can be implemented as stated above. Interfacing the
developed BEM with other methods (such as molecular dynamics)
for multiscale analyses of CNT-based composites can also be con-
sidered and may present unique advantages over other domain-
based methods. Higher-order boundary elements can be applied to
further increase the efficiency and accuracy of the BEM. A prac-
tical and important development for the BEM code is to develop
an improved preprocessor that can generate the boundary element
mesh for a RVE containing a large number of truly randomly
distributed and oriented fibers, including curved ones, so that
more realistic models of composites can be analyzed based on real
experimental or fabrication parameters. Finally, full parallelization
of the BEM code can be implemented to further increase the ro-
bustness of the developed fast multipole BEM for even larger
models based, eventually, directly on scanned 3D models of com-
posite material samples.

7 Conclusion

A new boundary integral equation formulation for the analysis
of an elastic medium containing rigid inclusions is derived in this
paper. This new BIE contains only the weakly-singular displace-
ment kernel from the fundamental solution and thus is much more
efficient to solve than the traditional singular BIE. The fast mul-
tipole boundary element method is employed to solve this new
BIE. The developed BIE formulation and FMM BEM code are
found to be very stable and the results converge in about 10 itera-
tions for a tolerance of 107> with the preconditioned GMRES.
The numerical results for a spherical rigid inclusion in an elastic
domain match very closely with the analytical solution. Short- and
moderately long-fiber-reinforced composites are investigated us-
ing the developed BEM and their effective Young’s moduli are
estimated using the BEM displacement and stress results for the
representative volume elements. The largest model studied con-
tains more than 5800 fibers and has the total degrees of freedom
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over 10 millions. These preliminary results clearly demonstrate
the effectiveness, efficiency and promises of the developed fast
multipole BEM for studying fiber-reinforced composites, when
the fibers are much stiffer than the matrix material.
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