
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2007; 71:837–855
Published online 5 February 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2000

A dual BIE approach for large-scale modelling of 3-D electrostatic
problems with the fast multipole boundary element method
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SUMMARY

A dual boundary integral equation (BIE) formulation is presented for the analysis of general 3-D elec-
trostatic problems, especially those involving thin structures. This dual BIE formulation uses a linear
combination of the conventional BIE and hypersingular BIE on the entire boundary of a problem domain.
Similar to crack problems in elasticity, the conventional BIE degenerates when the field outside a thin
body is investigated, such as the electrostatic field around a thin conducting plate. The dual BIE formula-
tion, however, does not degenerate in such cases. Most importantly, the dual BIE is found to have better
conditioning for the equations using the boundary element method (BEM) compared with the conventional
BIE, even for domains with regular shapes. Thus the dual BIE is well suited for implementation with
the fast multipole BEM. The fast multipole BEM for the dual BIE formulation is developed based on
an adaptive fast multiple approach for the conventional BIE. Several examples are studied with the fast
multipole BEM code, including finite and infinite domain problems, bulky and thin plate structures, and
simplified comb-drive models having more than 440 thin beams with the total number of equations above
1.45 million and solved on a PC. The numerical results clearly demonstrate that the dual BIE is very
effective in solving general 3-D electrostatic problems, as well as special cases involving thin perfect
conducting structures, and that the adaptive fast multipole BEM with the dual BIE formulation is very
efficient and promising in solving large-scale electrostatic problems. Copyright q 2007 John Wiley &
Sons, Ltd.

Received 7 June 2006; Revised 21 December 2006; Accepted 22 December 2006

KEY WORDS: boundary element method; fast multipole method; 3-D electrostatic problems

∗Correspondence to: Y. J. Liu, Department of Mechanical, Industrial and Nuclear Engineering, University of
Cincinnati, P.O. Box 210072, Cincinnati, OH 45221-0072, U.S.A.

†E-mail: Yijun.Liu@uc.edu

Contract/grant sponsor: U.S. National Science Foundation; contract/grant number: CMS-0508232

Copyright q 2007 John Wiley & Sons, Ltd.



838 Y. J. LIU AND L. SHEN

1. INTRODUCTION

The boundary element method (BEM) [1–5] is well suited for the analysis of electrostatic fields

as existing in micro-electro-mechanical systems (MEMS), because of the advantages of the BEM

in handling complicated geometries and infinite domains. Some of the early work using the BEM

for modelling electrostatic MEMS problems can be found in References [6–8]. Some recent

work can be found in [9–12] for solving various electrostatic problems, including those involving

thin conducting beams and thin plates [9, 10] which are similar to crack problems in elasticity.

Most recently, dual boundary integral equation (BIE) approaches using both the conventional BIE

and hypersingular BIE for modelling 2-D electrostatic MEMS problems have been proposed by

Liu [13]. These dual BIE approaches are found to be very efficient in analysing complicated

MEMS problems with very thin structures and also show better conditioning for the systems of

the BEM equations. In the literature, a dual BIE approach has also been applied in [12] to MEMS

problems for estimating the errors in the BEM solutions and for directly computing the tangential

electric field. In the context of Stokes flow, a dual BIE formulation has been proposed in [14–16]

for evaluating damping forces in MEMS. To the authors’ best knowledge, the suitability of the

dual BIEs for modelling 3-D electrostatic problems with thin structures and their implementations

with the fast multipole BEM have not been reported in the literature.

Analysis of MEMS problems often requires large models that can accurately predict the rapidly

changing fields surrounding complicated structures. The conventional BEM approach requires

O(N 3) operations to solve the BEM system using direct solvers (with N being the number of

equations) or O(N 2) operations using iterative solvers. Thus the conventional BEM is often found

inefficient in solving large-scale problems with the number of equations above a few thousands.

The fast multipole method (FMM) [17–19] and other fast methods can be used to accelerate the

solutions of the BEM by several folds, promising to reduce the CPU time and memory usage

in the fast multipole-accelerated BEM to O(N ). A comprehensive review of the fast multipole-

accelerated BEM can be found in Reference [20] and a recent tutorial paper can be found in [21].

Some of the applications of the fast multipole and other related fast BEM approaches for modelling

general electrostatic or MEMS problems can be found in [14, 15, 22–25] using the FMM and in

[26, 27] using the precorrected-FFT method.

In this paper, a dual BIE formulation is investigated for the analysis of general 3-D electrostatic

problems that can involve thin-beam and thin-plate structures as found in MEMS. This dual BIE

formulation (to be referred to as CHBIE) uses a linear combination of the conventional BIE (CBIE)

and the hypersingular BIE (HBIE) on all surfaces of the problem domain that can be finite or

infinite. This dual BIE approach has been shown to be very effective in solving crack-like problems

[28, 29], which in the current context, can involve the electrostatic fields surrounding thin beams

or thin plates of arbitrarily small thickness. As in the 2-D case [13], this dual BIE approach for

3-D electrostatic problems is found to be very stable for extremely small thickness of thin plate

structures (with the thickness-to-length ratio less than 10−6). It also provides better conditioning

for the BEM systems of equations for other problems with bulky 3-D shapes, as compared with

the conventional BIE. Thus, this dual BIE approach is well suited for implementation with the

FMM. The recently developed adaptive fast multipole BEM for general 3-D potential problems

based on the CBIE [30] is extended to this dual BIE formulation for general electrostatic problems

to accelerate the BEM solutions. Several numerical examples are studied and the effectiveness and

accuracy of the dual BIE accelerated by the fast multipole BEM are clearly demonstrated by the

numerical results.
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This paper is organized as follows: In Section 2, the BIE formulations for 3-D electrostatic

problems are reviewed. In Section 3, the fast multipole BEM for the BIEs is summarized. In

Section 4, numerical examples are presented to demonstrate the effectiveness of the dual BIE

formulation and the efficiencies of the fast multipole BEM for large-scale problems. The paper

concludes with some discussions in Section 5.

2. THE BIE FORMULATIONS

Consider a 3-D domain V (which can be infinite, as shown in Figure 1, or finite). The electric

potential � in V satisfies the Laplace equation and can be given by the following representation

integral:

�(x)=

∫
S

[G(x, y)q(y) − F(x, y)�(y)] dS(y) + C ∀x∈ V (1)

where S is the boundary, q = ��/�n, and n the outward normal (Figure 1). G(x, y) is the 3-D

Green’s function given by

G(x, y) =
1

4�r
and F(x, y) =

�G(x, y)

�n(y)
(2)

with r = |x − y|. C is a constant representing the potential at infinity (which vanishes for finite

domain problems). In electrostatics, the charge density � is defined by

�(y) ≡ �q(y) (3)

where � is the dielectric constant.

Letting the source point x approach boundary S in Equation (1), one obtains the conventional

BIE (CBIE) for potential problems:

1

2
�(x)=

∫
S

[G(x, y)q(y) − F(x, y)�(y)] dS(y) + C ∀x∈ S (4)

r

S

x

y
n

V2

3

1

Figure 1. An infinite domain V outside surface S.
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840 Y. J. LIU AND L. SHEN

for boundary S which is smooth near the source point x, where the second integral with the singular

kernel F on the right-hand side is a Cauchy-principal value (CPV) type of integral.

Taking the derivative of Equation (1) with x∈ V and then letting x go to the boundary, one

obtains the following hypersingular BIE (HBIE):

1

2
q(x)=

∫
S

[K (x, y)q(y) − H(x, y)�(y)] dS(y) ∀x∈ S (5)

in which the two new kernels are given by

K (x, y) =
�G(x, y)

�n(x)
and H(x, y) =

�F(x, y)

�n(x)
=

�
2
G(x, y)

�n(x)�n(y)
(6)

In Equation (5), the first integral with the K kernel is a singular (CPV) integral, while the second

integral with the H kernel is a hypersingular integral in the sense of Hadamard-finite part (HFP)

(see, e.g. [31–33]).

Note that for perfect conductors, electric potential � = constant on each of the conductors, and

the second integral, with F kernel in Equation (4) or with H kernel in Equation (5), vanishes

due to the properties of the kernels (see, e.g. References [13, 34]), which leads to two reduced

BIEs from Equations (4) and (5). These reduced BIEs contain weakly-singular kernel G only for

Equation (4) and strongly-singular kernel K only for BIE (5), which can simplify significantly

the BEM implementation for models of perfect conductors, as used in Reference [13] for 2-D

electrostatic problems. In this study, however, CBIE (4) and HBIE (5) in their original forms will

be used with the BEM so that general 3-D electrostatic problems can be tackled by the developed

BEM approach, including modelling perfect conductors, semi-conductors and other general 3-D

potential problems.

It is also interesting to note that HBIE (5) cannot be applied alone to solve general potential

problems in multiple-connected domains, such as the analysis of a block with one or more voids,

when q is specified on these voids. The solutions of � on the surfaces of these voids will be

non-unique since adding a constant �0 to the solution � on a void surface SH will not change the

hypersingular BIE (5), that is,∫
SH

H(x, y)[�(y) + �0] dS(y)=

∫
SH

H(x, y)�(y) dS(y) ∀x∈ S

because ∫
SH

H(x, y) dS(y)= 0 ∀x∈ V ∪ S

due to the properties of the hypersingular kernel H [34]. This interesting issue with the HBIE has

been addressed in References [35–37].

It is well known that the CBIE (4) will degenerate for crack-like problems, such as in solving

the electric fields outside a thin beam or thin plate, similar to the crack problems in elasticity (see,

e.g. References [2, 38, 39]). To remedy this situation, the dual BIE (or composite BIE) approaches

combining the CBIE and HBIE have been proven to be very effective for crack problems [28, 29].

The advantages of using the dual BIE approaches are that they are valid for both open crack and true

crack cases, without the need to switch the BIE formulations, and the original boundary variables

can be solved directly. Because of the similarities mentioned above, the dual BIE approaches
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should be equally effective in solving electrostatic problems in domains surrounding thin beams

or thin plates.

In Reference [13], two dual BIE formulations are tested for solving 2-D electrostatic fields

surrounding thin beam perfect conductors. The first dual BIE approach uses CBIE on one surface

of a thin beam and the HBIE on the other surface. The second dual BIE approach uses a linear

combination of the CBIE and HBIE on all surfaces of the beams. Both dual BIE approaches are

found to be very effective in solving thin beam problems [13]. However, the second dual BIE

approach, using a linear combination of the CBIE and HBIE, offers better conditioning for the

system of equations in the BEM and thus is more suitable for the fast multipole implementation.

In this paper, a linear combination of CBIE (4) and HBIE (5) in the form,

(CBIE) + � · (HBIE) (7)

with � being a constant, is applied for solving general 3-D electrostatic problems, especially

problems with thin beams or thin plates. This dual BIE, also termed CHBIE, does not degenerate

for domains containing thin beams or thin plates. At the same time, this dual BIE offers better

conditioning for the BEM systems of equations, even for regular domains of bulky shapes, which

will facilitate faster convergence when using the fast multipole BEM.

The selection of the coupling constant � is crucial for the performance of the dual BIE. There

is so far no unified formula regarding the selection of the values of � in the electrostatic BIE.

The selection is case dependent. A general rule is that the constant � should be selected such that

HBIE does not dominate in the dual BIE formulation (7) (In fact, for a perfect conductor, HBIE is

a homogeneous and singular equation, and thus cannot be solved alone [13–15]). It is also noted

that � should have the unit of length, so that the two terms in Equation (7) will have a consistent

unit. In the study of 2-D MEMS problems with thin beams [13], the choice of �= h0 −h has been

found to be sufficient, with h0 being a reference, initial thickness and h the current thickness of

the beam. This means that the influence of the HBIE in Equation (7) gradually increases as the

thickness of the beams decreases. For exterior acoustic problems, Equation (7) is the Burton–Miller

formulation that is very effective in overcoming the fictitious eigenfrequency difficulties (see, e.g.

[40, 41]), where � is an imaginary number for problems with real wave numbers and a real number

for those with imaginary wave numbers.

Both the conventional BEM and fast multipole BEM codes based on the above BIE formulations

(CBIE (4), HBIE (5), and CHBIE (7)) have been developed in this study. Constant elements (flat

triangles) are used, for which all the integrals (with G, F , K , and H kernels) in BIEs (4) and

(5) can be integrated analytically, whether they are non-singular, nearly-singular, strongly singular

or hypersingular. Thus, the codes can handle very thin plates or shells with very small but finite

thickness or small gaps in models of electrostatic problems, without any difficulties regarding the

singular and hypersingular integrals.

3. THE FAST MULTIPOLE METHOD (FMM)

The new adaptive FMM developed in [30] for 3-D potential problems with the CBIE (4) is extended

to solve the CHBIE (7). The main idea of the FMM is to translate the node-to-node (or element-

to-element) interactions to cell-to-cell interactions using various expansions and translations. The

FMM can be used in the iterative equation solvers (such as GMRES), in which matrix–vector

multiplications are calculated using fast multipole expansions. Adopting the FMM in the iterative
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solvers for the systems of the BEM equations, both the solution time and memory requirement for

solving a problem can be reduced to O(N ), with N being the total number of unknowns.

The fast multipole BEM for 3-D potential problems has been well documented (see, e.g.

References [19, 20, 30]). For completeness, the main results for CBIE (4) are summarized first and

then the treatment of the HBIE (5) is discussed.

The kernel G in Equation (2) can be written with a series expansion as

G(x, y) =
1

4�r
∼=

1

4�

p∑
n=0

n∑
m=−n

Sn,m(x, yc)Rn,m(y, yc), |x − yc|>|y − yc| (8)

where yc is the expansion centre, p is the number of expansion terms, and ( ) indicates the complex

conjugate. The functions Sn,m and Rn,m are solid harmonic functions (see, e.g. [42]).

The kernel F in Equation (2) can also be expanded as

F(x, y) =
�G(x,y)

�n(y)
∼=

1

4�

p∑
n=0

n∑
m=−n

Sn,m(x,yc)
�Rn,m(y,yc)

�n(y)
, |x − yc|>|y − yc| (9)

Applying expansions in Equations (8) and (9), one can evaluate the integrals in Equation (4) on

S0 (a subset of S) which is away from the source point x using the following multipole expansions:

∫
S0

G(x,y)q(y) dS(y) ∼=
1

4�

p∑
n=0

n∑
m=−n

Sn,m(x,yc)Mn,m(yc), |x − yc|>|y − yc| (10)

∫
S0

F(x,y)�(y) dS(y) ∼=
1

4�

p∑
n=0

n∑
m=−n

Sn,m(x,yc)M̃n,m(yc), |x − yc|>|y − yc| (11)

where Mn,m and M̃n,m are called multipole moments centred at yc and given by

Mn,m(yc) =

∫
S0

Rn,m(y,yc)q(y) dS(y) (12)

M̃n,m(yc) =

∫
S0

�Rn,m(y, yc)

�n(y)
�(y) dS(y) (13)

Note that these moments are independent of the source point x and the integrals in Equations (12)

and (13) only need to be evaluated once. Translations from moment to moment (M2M), moment to

local (M2L), and local to local (L2L) are needed to translate the moments to a local expansion that

is used to evaluate the integrals away from the source point. In the new fast multipole approach

[42, 43], which is used in [30] and this work, the M2L is replaced by M2X, X2X and X2L

translations using exponential expansions. Comparisons of the original and new fast multipole

approaches regarding the computing efficiencies for 3-D potential problems can be found in

Reference [42].
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For the kernels in the HBIE (5), one has the following two expansions due to relation (6):

K (x, y) =
�G(x, y)

�n(x)
∼=

1

4�

p∑
n=0

n∑
m=−n

�Sn,m(x,yc)

�n(x)
Rn,m(y, yc), |x − yc|>|y − yc| (14)

H(x, y) =
�F(x,y)

�n(x)
∼=

1

4�

p∑
n=0

n∑
m=−n

�Sn,m(x, yc)

�n(x)

�Rn,m(y, yc)

�n(y)
, |x − yc|>|y − yc| (15)

Thus, the multipole expansions for the HBIE (5) can be written as

∫
S0

K (x, y)q(y) dS(y) ∼=
1

4�

p∑
n=0

n∑
m=−n

�Sn,m(x, yc)

�n(x)
Mn,m(yc), |x − yc|>|y − yc| (16)

∫
S0

H(x,y)�(y) dS(y) ∼=
1

4�

p∑
n=0

n∑
m=−n

�Sn,m(x,yc)

�n(x)
M̃n,m(yc), |x − yc|>|y − yc| (17)

where the two moments Mn,m and M̃n,m are the same as given in Equations (12) and (13) for the

CBIE. It turns out that all the translations for the HBIE are also identical to those for the CBIE.

The only difference with the HBIE is in the local expansions.

The details of the adaptive fast multipole approach used in this study can be found in [30],

including the construction of an adaptive tree structure for a given domain. For near-field evaluation

of the integrals, analytical integrations are used for all the integrals, which is possible with

the constant elements used in this study [44]. Block diagonal preconditioner is employed for

the GMRES solver, in which the coefficients on elements in a leaf are used to construct the

preconditioner. The inverse of the diagonal block matrices can also be saved in memory or on disk

for use in each iteration to speed up the fast multipole computation [30].

4. NUMERICAL EXAMPLES

Several numerical examples are presented to demonstrate the effectiveness and accuracy of the

CHBIE formulations for electrostatic analysis of problems with different geometries and the

efficiency of the fast multipole BEM for modelling large 3-D electrostatic problems. In all

the examples, except for the two-parallel plate model, the coupling constant in CHBIE (7) is

� =−1. (The minus sign is due to the way the HBIE is added in Equation (7).)

4.1. A cube model with linear potential

This is a simple interior problem used to test the accuracy of the developed code. The cube has

an edge length= 1 (Figure 2), and is applied with a linear electric potential �(x, y, z) = x on all

surfaces. The charge density for this problem should be 1 on the surface at x = 0.5, and −1 on the

surface at x = −0.5, assuming the dielectric constant �= 1. For the fast multipole BEM, 15 terms

are used in all the expansions and the tolerance for convergence is set to 10−6.

Table I shows the results with the conventional BEM and fast multipole BEM, and using

the CBIE, HBIE, and CHBIE, for BEM meshes with increasing numbers of elements. One can

conclude from these results that the HBIE and CHBIE are equally accurate as the CBIE, so is the
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Figure 2. A cube meshed with 768 elements and with linear potential in the x-direction.

Table I. Results for the cube with a linear potential in the x-direction.

Charge density at (0.5, 0, 0)

Model Conventional BEM Fast multipole BEM

Elem/edge DOFs CBIE HBIE CHBIE CBIE HBIE CHBIE

2 48 1.08953 1.07225 1.06800 1.08955 1.07278 1.06843
4 192 0.99124 1.00624 0.99754 0.99124 1.00624 0.99754
8 768 0.99825 1.00438 0.99894 0.99825 1.00438 0.99894

12 1728 0.99908 1.00327 0.99934 0.99908 1.00327 0.99934
16 3072 0.99942 1.00260 0.99953 0.99943 1.00260 0.99953
20 4800 0.99959 1.00216 0.99963 0.99962 1.00218 0.99965
24 6912 0.99969 1.00185 0.99970 0.99969 1.00184 0.99969
28 9408 — — — 0.99976 1.00161 0.99975
32 12 288 — — — 0.99981 1.00143 0.99979

Exact value 1.00000
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fast multipole BEM as the conventional BEM. Note that constant triangular elements are used in

this study. If linear or quadratic elements were applied, a few elements should have been efficient

for obtaining results of a similar accuracy, due to the specified linear field.

4.2. A single conducting sphere model

This is a simple exterior problem used to test the accuracy of the codes for models with curved

geometries. The conducting sphere (Figure 3) has a radius a = 1 and a constant electric potential

�0 = 1 is applied on its surface. The analytical solution of the electric field outside the sphere is

� = (a/r)�0 with r being the distance from the centre of the sphere, which gives a charge density

on the surface equal to 1 for this case, assuming the dielectric constant � = 1 and the potential at

infinity C = 0. For the fast multipole BEM, elements per leaf are set to 100, number of terms in

the expansions to 10, and the tolerance for convergence to 10−6.

Table II gives the results of the charge density at the point (1, 0, 0) on the surface of the

sphere. For this problem, the HBIE is a homogeneous equation and cannot be solved alone. The

CHBIE is slightly less accurate than the CBIE, probably due to the curved surface which cannot

be represented accurately by constant elements and may cause the evaluations of hypersingular

integrals less accurate. For constant elements, tangential derivatives existing in the evaluation of

hypersingular integrals on curved surfaces vanish. (An analytical integration approach using the

HFP definition is used here for evaluating the hypersingular integrals [44]. A similar approach

can be found in [45].) The fast multipole BEM, however, is found to be equally accurate as the

conventional BEM, even though the number of expansion terms has changed to 10.

Figure 4 shows the CPU time used in the calculations by the conventional BEM and fast mul-

tipole BEM and with the CBIE and CHBIE. All the jobs were run on a Pentium IV 2.4GHz

laptop computer with 1GB memory. Due to the use of a direct solver, the CBIE and CHBIE

can only solve models up to a few thousands of equations (DOFs) with similar CPU time.

X Y

Z

Figure 3. A spherical perfect conductor meshed with 4800 elements.
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846 Y. J. LIU AND L. SHEN

Table II. Results for the single perfect conducting sphere.

Charge density at (1, 0, 0)

Model Conventional BEM Fast multipole BEM

DOFs CBIE CHBIE CBIE CHBIE

768 0.987493 0.950859 0.987494 0.950862
1728 0.993770 0.966092 0.993786 0.966077
3072 0.996338 0.974311 0.996369 0.974339
4800 0.997611 0.979371 0.997817 0.979413
6912 0.998322 0.982782 0.998417 0.982684
9408 — — 0.998979 0.985157

12 288 — — 0.999400 0.988828
15 552 — — 0.999697 0.990823
19 200 — — 0.999783 0.991613
30 000 — — 1.000990 0.994090

Exact value 1.000000
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Figure 4. CPU time for the single sphere with the conventional BEM and fast multipole BEM.

The two curves have slopes close to 3 on this log–log plot, indicating an O(N 3) efficiency for the

conventional BEM. The two curves for the fast multipole BEM (FMM) have slopes close to 1,

indicating an O(N ) efficiency. It is also interesting to note the significant savings with the CHBIE

with the fast multipole BEM, because CHBIE has a better conditioning for the system of equations
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and thus fewer number of iterations are needed. This advantage with the CHBIE will be further

demonstrated with larger models.

4.3. A multiple-conducting sphere model

In this example, 11 perfectly conducting spheres (Figure 5) are analysed with the fast multipole

BEM. The centre large sphere has a radius= 3, and the 10 small spheres have the same radius= 1

and are distributed evenly on a circle with radius= 5 and co-centred with the large sphere. A

constant electric potential �= +5 is applied to the large sphere and five of the small spheres and

a potential � =−5 is applied to the other five small spheres (Figure 5). The potential C at the

infinity is assumed to be 0. For the fast multipole BEM, elements per leaf are limited to 200, 10

terms are used in the expansions and the tolerance for convergence is set to 10−4.

The charge densities on the surfaces of the spheres are plotted in Figure 6 with the mesh using

10 800 elements per sphere (again, � = 1 is assumed). The plots are almost identical among the

5+=φ

5−=φ

Figure 5. An 11-spherical perfect conductor model.

Figure 6. Contour plot of the charge densities on the spheres.
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Table III. Results for the 11-sphere model using the fast multipole BEM.

Charge densities on the spheres
Numbers of iterations with

Model Minimum Maximum the fast multipole BEM

Elem/sphere DOFs CBIE CHBIE CBIE CHBIE CBIE CHBIE

768 8448 −16.4905 −15.5285 11.1837 10.3923 14 8
1200 13 200 −16.5363 −15.7922 11.2218 10.5920 15 8
1728 19 008 −16.6322 −15.9618 11.2558 10.7156 17 8
2352 25 872 −16.6436 −16.0789 11.2746 10.8041 18 8
3072 33 792 −16.6733 −16.1618 11.3792 10.9160 19 8
3888 42 768 −16.6648 −16.2195 11.3810 10.9464 20 7
4800 52 800 −16.7435 −16.2671 11.3787 10.9763 20 8
7500 82 500 −16.7068 −16.3614 11.2964 11.0283 21 8

10 800 118 800 −17.1157 −16.4279 12.6511 11.0851 22 7

different meshes and exhibit the same symmetrical pattern as it should be. Table III shows the

maximum and minimum values of the charge densities on the spheres using the different meshes.

These values are very stable and converged within the first two significant digits (except for the

last set of data with the CBIE). Further improvements can be achieved by using a tighter set of

parameters for the fast multipole BEM (e.g. more expansion terms and smaller tolerance). The last

two columns of Table III show the numbers of iterations with the GMRES solver for the CBIE

and CHBIE. The numbers of iterations for the CHBIE is less than half of those for the CBIE

because of the better conditioning of the systems of equations based on the CHBIE. Thus the fast

multipole BEM with the CHBIE formulation can potentially converge much faster than that with

the CBIE even with regularly shaped domains.

4.4. A two-parallel plate model

A two-parallel plate model (Figure 7) is considered next to verify the BIE formulations for thin

shapes in the context of 3-D electrostatic analysis. A constant positive potential � = 1 is applied

to the top plate, while a negative potential �= −1 applied to the bottom plate. For this problem,

the analytical solution for the charge density on the lower surface of the top plate (Figure 2) is

given by (see, e.g. Reference [46]):

� = �
��

�n
= �

��

�n
=

2�

g
(18)

for the region away from the edges of the plate. This value is used to verify the BEM results. The

field on the lower plate is antisymmetric with that on the top plate.

For the model studied, the parameters used are L = 0.01, g= 0.001 + h, � = 1, C = 0 and the

thickness h changes. The coupling constant in CHBIE (7) is �= −(0.001−h) in this case. (Again,

the minus sign following the equal sign is due to the way the HBIE is added in Equation (7).)

A total of 4800 elements are used on the two plates as shown in Figure 7. The number of layers

of elements is reduced from five (as shown in Figure 7) to one when the thickness of the plate
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Figure 7. Two-parallel plate model (dimensions and BEM mesh).

Table IV. Charge density � at the centre of the lower surface of the top plate in the two-plate model
(L = 0.01, g= 0.001 + h, �= 1, C = 0, 2400 elements per plate).

Conventional BEM Fast multipole BEM
Analytical

Model CBIE CHBIE CBIE CHBIE solution

h/L � Condition no. � Condition no. � No. of iterations � No. of iterations �

1.0E − 1 1000 3.31E + 2 1000 3.31E + 2 1000 19 1000 19 1000
5.0E − 2 1333 4.60E + 2 1333 4.22E + 1 1333 18 1333 12 1333
1.0E − 2 1818 3.08E + 3 1818 4.44E + 1 1818 17 1818 12 1818
5.0E − 3 1905 6.38E + 3 1905 8.67E + 1 1905 17 1905 12 1905
1.0E − 3 1980 3.28E + 4 1980 2.96E + 2 1980 16 1980 14 1980
1.0E − 4 1998 3.75E + 5 1998 6.98E + 2 1998 16 1998 15 1998
1.0E − 5 — 8.63E + 7 2001 1.14E + 3 2000 17 2000 15 2000
1.0E − 6 — — 2000 2.20E + 2 2000 17 2000 15 2000
1.0E − 7 — — 1999 2.99E + 2 1998 19 2000 15 2000

Note: One layer of elements through the thickness (with 1760 elements per plate) are used for h/L = 1.0E− 6
and 1.0E − 7 cases to reduce the distortion of the edge elements.

is extremely small to reduce the aspect ratios for elements on the edges. For the fast multipole

BEM, 15 terms are used in the expansions and the tolerance is set to 10−6.

Table IV shows the comparisons of the charge densities at the centre of the bottom surface of

the top plate. The ratio h/L changes from 0.1 to 10−7. The CBIE (Equation (4)) works very well

until the ratio h/L reaches 10−4, after which the CBIE degenerates for thin-plate problems. The

CHBIE (Equation (7)) works extremely well until the ratio h/L reaches 10−7. The CHBIE also

shows low condition numbers with the conventional BEM and thus uses fewer iterations with the

fast multipole BEM as compared with the CBIE. For the fast multipole BEM, good conditioning

of a system is very important in ensuring the convergence of the solutions by iterative solvers.

Thus, the CHBIE formulation, that is valid for both bulky and extremely thin structures, seems to

be an ideal candidate to be used with the fast multipole BEM.
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Figure 8. Charge density distribution on the parallel plates with h/L = 0.01.

The charge densities on the entire surfaces of the two plates are plotted in Figure 8 for the

case h/L = 0.01. The fields in the middle of the plates are quite uniform and with opposite sign

between the two plates, while the fields near the edges of the plates change rapidly. In fact, the

fields near the edges and corners exhibit singularity, especially when the thickness of the plates

approaches 0, thus the results near the edges require finer meshes if they are desired [9, 10, 13].

4.5. Simplified comb-drive models

Finally, simplified 3-D models of comb drives as found in MEMS are studied to demonstrate the

efficiencies of the developed fast multipole BEM for solving large-scale models. Similar models

have been used in [10, 13] in the 2-D cases. More realistic 3-D models of comb drives can be

found in [14, 15, 24]. In the current fast multipole solutions, the numbers of expansion terms are

set to 10, the maximum number of elements in a leaf to 100, and the tolerance for convergence to

10−4. All the computations were done on a Dell XPS 400 desktop PC with a Pentium D 3.2GHz

CPU and 2GB RAM. (The Fortran code is compiled with Compaq Visual Fortran V.6.6 that does

not take the advantages of the dual core technology.)

The comb-drive models are built with increasing numbers of long beams applied with alterna-

tively positive and negative electric potentials (Figure 9). The parameters used in the calculations

are L = 100, a = 4, b= 2, g= 3, d = 5, � = 1, and C = 0. A total of 3260 elements are used for

each beam. When more beams are added into the model, the number of elements will increase

accordingly so that large-scale models can be tested.

Figure 10 shows the computed charge densities with the CHBIE for a model with 55 beams. Due

to the symmetry of the fields above and below each beam (except for the two outermost beams),

the charge densities on the top and bottom surfaces (with the normal parallel to the z-axis) of

each beam are almost symmetrical. The charge densities on any two neighbouring beams are also

with the opposite sign and thus ‘antisymmetric’, as expected. It should be noted that the fields in
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Figure 9. A simplified comb-drive model (dimensions and BEM mesh).

Figure 10. Charge density distribution in the comb-drive model with 55 beams.
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Figure 11. CPU time used for solving the comb-drive models with the fast
multipole BEM (with the save option).

MEMS are much more complicated than those that the simple parallel beam models can represent,

especially near the edges of the beams.

Figure 11 shows the CPU time comparison for the fast multipole BEM using the CBIE and

CHBIE. As expected, the fast multipole BEM with the CHBIE converges faster than the one with

the CBIE for most of the models, due to the better conditioning of the CHBIE formulation. The fast

multipole BEM results converge in 17–32 iterations using the CBIE and in 13–23 iterations using

the CHBIE. However, in each iteration, the CHBIE will consume more CPU time than the CBIE

because of the complexity in the hypersingular kernel and its analytical integration formulas. The

block diagonal preconditioner is saved in memory in these calculations so that the preconditioner

and the direct evaluations of the integrals in each iteration do not need to be recalculated. With

this technique, significant reduction of the CPU time can be achieved [30]. The largest model

shown in Figure 11 (with 55 beams and the total DOFs= 179 300) was solved within 2200 s using

the CHBIE on the Dell desktop PC. Without the save option, the same model will require about

13 000 s to solve. However, the save option will consume some amount memory of the computer

and can limit the size of the problem that can be solved on the PC. Without using the save option,

a large model of 445 beams with the DOFs= 1 450 700 has been solved on the same PC in about

46 h. It is estimated that this CPU time can be reduced to within 8 h if the computer has sufficiently

large memory so that all the values of the preconditioner can be saved, such as on a moderate

supercomputer with 20GB RAM. (See [47, 48] for the performance of the fast multipole BEM on

supercomputers for modelling large-scale 3-D problems.)

This example clearly demonstrates the efficiency and potential of the developed 3-D fast

multipole BEM based on the CHBIE formulation for large-scale electrostatic analysis.
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5. DISCUSSIONS

A dual BIE (CHBIE) formulation for modelling 3-D electrostatic problems is investigated in this

study. It is found that the dual BIE yields relatively small condition numbers for regions containing

either bulky or thin structures and thus is better suited for implementation with the fast multipole

BEM. The new adaptive fast multipole BEM is implemented for the CHBIE formulations based on

the fast multipole BEM code developed in Reference [30] using the CBIE only. Several example

problems are studied using the developed fast multipole BEM code to test the accuracy and

efficiency. The results of these examples clearly demonstrate that the CHBIE is very effective in

solving problems with either bulky or thin structures and the fast multipole BEM based on the

CHBIE is very promising in solving large-scale models.

The developed code is for general potential problems using the dual BIE approach, that involves

four integrals. The efficiency of the code can be improved significantly if one is only interested in

studying perfect conductor cases, where the F integral in CBIE (4) and H integral in HBIE (5)

can be dropped due to the properties of the kernels (see, e.g. References [13, 34]), as in the 2-D

cases [13]. Higher-order elements may also be employed with the fast multipole BEM in order to

improve the accuracy of the code and possibly the efficiency as well. For flat structures, such as

the MEMS models, the binary tree approach [25] may be more efficient.

Using the developed code, more complicated and realistic MEMS models can be studied and

more interesting physics can be investigated. The electric forces on the conducting structures can

be obtained readily from the calculated charge densities. Structural deformation can then be studied

using a fast multipole BEM code for elasticity problems. Furthermore, fast multipole BEM codes

for coupled electro-mechanical, dynamic, and non-linear problems can be developed.
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