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a b s t r a c t

Wave propagation phenomena occur often in semi-infinite regions. It is well known that such problems

can be handled well with the boundary element method (BEM). However, it is also known that the BEM,

with its dense matrices, becomes prohibitive with respect to storage and computing time. Focusing on

wave propagation problems, where a formulation in time domain is preferable, the mentioned limit of

the method becomes evident. Several approaches, amongst them the adaptive cross approximation

(ACA), have been developed in order to overcome these drawbacks mainly for elliptic problems.

The present work focuses on time dependent elastic problems, which are indeed not elliptic. The

application of the presented fast boundary element formulation on such problems is enabled by

introducing the well known Convolution Quadrature Method (CQM) as time stepping scheme. Thus, the

solution of the time dependent problem ends up in the solution of a system of decoupled Laplace

domain problems. This detour is worth since the resulting problems are again elliptic and, therefore, the

ACA can be used in its standard fashion.

The main advantage of this approach of accelerating a time dependent BEM is that it can be easily

applied to other fundamental solutions as, e.g., visco- or poroelasticity.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) is suited to treat wave

propagation problems. In the present work, this method is applied

on the numerical solution of initial boundary value problems in

3-d elastodynamics. For problems of rather restricted size this is

done in numerous works. The first boundary integral formulation

for elastodynamics in Laplace, respectively Fourier domain with a

subsequent inverse transformation has been published by Cruse

and Rizzo [20] and Domı́nguez [21]. Alternatively, the first

formulation in time domain has been developed by Mansur

[37]. A detailed review on elastodynamic boundary element

formulations can be found in the articles of Beskos [12,13],

Chudinovich [17], Costabel [18]. However, in order to obtain

reasonable results both classes of approaches, Laplace domain

with subsequent inverse transformation as well as time domain,

depend strongly on a proper choice of parameters. Beside these

approaches, the Convolution Quadrature Method (CQM), a more

stable time stepping procedure, was proposed by Lubich [34,35].

The method uses the Laplace domain fundamental solution. This

is essential in the case of visco- and poroelasticity (see [46,44])

since their fundamental solutions are available in closed form

only in Laplace or Fourier domain. In the context of fast BE

formulations this method is used in the work of Hackbusch et al.

[31].

A reformulated CQM was published by Banjai and Sauter [4]

and has been extended to mixed problems by Schanz [45]. The

proposed reformulation transfers the time stepping procedure to

the solution of decoupled Laplace domain problems. This

approach is adopted for the time discretization in the present

work. An improved version can be found in [2].

For the space discretization, here, the symmetric Galerkin

BEM, as presented in the work of Kielhorn and Schanz [33], is

applied. In the work of Blázquez et al. [14] some comparative

studies of this method with respect to other formulations are

presented. Nowadays, due to improved capabilities of computer

systems, larger and larger problems can be solved. However, by

just increasing the size of problems, the effort of solving dense

matrices scales quadratically. Thus, even though better computer

hardware exists the BEM reaches its limits. Hence, in the last two

decades fast methods have become popular in the field of applied

mathematics and engineering. The history of such methods, i.e.,

asymptotically optimal approximations of dense matrices, starts

with the paper by Rokhlin [42]. For the first time an algorithm

was presented which scales like OðnlognÞ. Subsequently, the so-

called Fast Multipole Method (FMM) has been developed in
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[26,16] for some large-scale n-body problems. The method was

significantly improved in [27]. In the work of Of et al. [39] the

FMM is applied to elastostatic problems based on a Galerkin BEM

discretization. The extension to elastodynamics in Fourier domain

has been published in [15] based on a collocation approach. In

time domain, the FMM with a plane wave expansion is presented

in [49]. A black-box FMM approach for scalar-valued-problems

has been proposed by Fong and Darve [22].

Other approaches are Panel Clustering (see [32]) and the

wavelet based BEM [1]. The latter method produces sparse

matrices based on orthogonal systems of wavelet like functions.

All these methodologies allow to perform the matrix-vector-

multiplication with almost linear complexity. However, the only

approach that allows to do all matrix operations (matrix–vector-,

matrix–matrix-product, matrix–matrix-addition, matrix-inver-

sion, LU-decomposition, etc.) with almost linear complexity are

the so-calledH�matrices introduced by Hackbusch [29]. They can

be understood as algebraic structure reflecting a geometrically

motivated partitioning into sub-blocks. Each sub-block is classi-

fied to be either admissible or not. This block structure points out

the fact that H�matrix arithmetics is easy parallelizable [9].

After having concluded the setup of an H�matrix, admissible

blocks have to be approximated. All previously mentioned

methods, such as FMM, Panel Clustering, and wavelet based

methods approximate discrete integral operators in a very specific

way. They deal with the analytical decomposition of integral

kernels and, hence, the procedure becomes problem dependent.

This fact holds also for the coding of this class of methodologies. A

second class are the so-called algebraic approximation methods.

The singular value decomposition (SVD) leads to the optimal

approximation, however, with Oðn3Þ complexity. Less expensive

algorithms are the Mosaic Skeleton Method developed in [24] and

the successively developed adaptive cross approximation (ACA).

The latter one is chosen in the present work. It has been applied

by Bebendorf [5], Bebendorf and Rjasanow [10] to the approx-

imation of BEM matrices for the first time. The outstanding

feature of ACA compared to SVD is that it requires only the

evaluation of some original matrix entries and the approximation

is still almost optimal. Due to this fact, it can be used in a black-

box-like manner. Its coding and adaptation to existing codes is

straightforward. The algorithm is robust and it is based on a

stopping criterion depending on a prescribed approximation

accuracy e. Here only some, focusing on elasticity problems will

be pointed out. In elasticity, Bebendorf and Grzibovski [8] used

the ACA for the solution of mixed elastostatic boundary value

problems. In that work an error estimate for approximated

Galerkin matrices is presented. Furthermore, an improved pivot-

ing strategy is given, such that the ACA algorithm will not fail in

some special cases. An engineering approach for the acceleration

of elastostatic problems is presented in the recent work by

Maerten [36]. In [11,28], the ACA in combination with

H�matrices is efficiently applied to crack problems in elastic

media solved by using a collocation boundary element formula-

tion. The first publication studies the behaviour of a single penny

shaped crack, whereas the second one solves large crack systems.

To resume, in the paper at hand, the symmetric Galerkin BEM

will be used together with the reformulated CQM in order to

accelerate the solution of elastodynamic boundary value pro-

blems in time domain. The latter mentioned time discretization is

essential as will be illustrated in the following. Finally, the present

formulation will be validated by numerical examples.

Throughout this paper, vectors and tensors are denoted by

bold symbols and matrices and vectors of the discretized system

by upper case and lower case sans serif symbols, respectively. No

summation convention is used in the entire work. The indices of a

matrix ðAÞij indicate the ij-th entry, which is a scalar in the case of

scalar-valued-problems. However, in the case of vector-valued-

problems an entry is meant to be matrix-valued.

2. Symmetric boundary element formulation

2.1. Problem formulation

In an elastic body O�R
3 with a Lipschitz boundary G¼GD [ GN

and a fixed final time TAR
þ the following mixed initial boundary

value problem has to be solved

�ðlþmÞrr � uð ~x,tÞ�mDuð ~x,tÞþr
@2u

@t2
ð ~x,tÞ ¼ 0 ð ~x,tÞAO� ð0,TÞ

uðx,tÞ ¼ gDðx,tÞ ðx,tÞAGD � ð0,TÞ

tðx,tÞ :¼ T xuðx,tÞ ¼ gNðx,tÞ ðx,tÞAGN � ð0,TÞ

uð ~x,0Þ ¼ @u

@t
ð ~x,0Þ ¼ 0 ð ~x,tÞAO� ð0Þ ð1Þ

The surface displacements u(x,t) and tractions t(x,t) are prescribed

by some given data gD(x,t) on GD and gN(x,t) on GN , respectively. The

traction operator T x reads as

ðT xuÞðx,tÞ ¼ ðr � nÞðx,tÞ ð2Þ

with the stress tensor rðx,tÞ incorporating Hooke’s law and the

outward normal vector n(x) on the boundary G. The Lamé constants

m and l are connected to the modulus of elasticity E and Poisson’s

ratio n

m¼ E

2ð1þnÞ , l¼ nE

ð1þnÞð1�2nÞ , ð3Þ

whose physical significance is more immediate.

2.2. Boundary integrals

For a given time tAð0,TÞ the displacement field uð ~x,tÞ at any

interior point ~xAO is given by the Somigliana identity (e.g. [20,21])

uð ~x,tÞ ¼
Z t

0

Z

G

Uðy� ~x,t�tÞ � tðy,tÞdsy�dt

�
Z t

0

Z

G

ðT yUÞðy� ~x,t�tÞ � uðy,tÞdsy dt, ~xAO, yAG ð4Þ

with the fundamental solution Uðy� ~x,t�tÞ. In order to obtain a

symmetric formulation the traction integral equation is needed in

addition to (4). This equation is obtained by applying the traction

operator T ~x on (4). Next, a limiting process O 3 ~x-xAG is

performed on both equations

uðx,tÞ ¼ lim
O3 ~x-xAG

uð ~x,tÞ, tðx,tÞ ¼ lim
O3 ~x-xAG

T ~xuð ~x,tÞ ð5Þ

The first boundary integral equation for u(x,t) is used on GD and the

second one for t(x,t) on GN . Then ~gDðx,tÞ, ~gNðx,tÞAG are chosen to be

arbitrary but fixed extensions to the whole boundary of gD(x,t) and

gN(x,t). Inserting the extended decompositions of the Cauchy data

uðx,tÞ ¼ ~uðx,tÞþ ~gDðx,tÞ, tðx,tÞ ¼ ~tðx,tÞþ ~gNðx,tÞ ð6Þ

into (5) leads to the symmetric boundary integral formulation

[47,19]

ðV � ~tÞðx,tÞ�ðK � ~uÞðx,tÞ ¼ �ðV � ~gNÞðx,tÞþðð12IþKÞ � ~gDÞðx,tÞ,
ðx,tÞAGD � ð0,TÞ

ðKu � ~tÞðx,tÞþðD � ~uÞðx,tÞ ¼ ðð12I�KuÞ � ~gNÞðx,tÞ�ðD � ~gDÞðx,tÞ,
ðx,tÞAGN � ð0,TÞ ð7Þ
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The introduced integral operators are the single layer V, the

double layer K, the adjoint double layer Ku, and the hypersingular

operator D, respectively. They are defined with the convolution

operator *

ðV � ~tÞGðx,tÞ ¼
Z t

0

Z

G

~tðy,tÞUðy�x,t�tÞdsy dt

ðK � ~uÞGðx,tÞ ¼
Z t

0
lim
e-0

Z

yAG:jy�xjZe

~uðy,tÞðT yUÞTðy�x,t�tÞdsy dt

ðKu � ~tÞGðx,tÞ ¼
Z t

0
lim
e-0

Z

yAG:jy�xjZ e

~tðy,tÞðT xUÞðy�x,t�tÞdsy dt

ðD � ~uÞGðx,tÞ ¼�
Z t

0
lim

O3 ~x-xAG
T ~x

Z

G

~uðy,tÞðT yUÞðy�x,t�tÞdsy dt ð8Þ

The last, the so-called hypersingular integral operator has to be

understood as a finite part integral. A detailed description of these

integral operators and their properties can be found in [33,37]. For

the sake of readability from now on the ~� symbol which denotes

the extensions of the Cauchy data to the whole boundary is

omitted.

2.3. Time discretization

For the time discretization the Convolution Quadrature

Method (CQM) is adopted. This method has initially been

developed by Lubich [34,35] and has been applied to the

boundary element method by Schanz and Antes [46]. In the

following, only those parts of its theoretical framework are

recalled which are necessary for the understanding of the present

work. The idea is to approximate the convolution integrals in time

ðk � f Þn �
Xn

j ¼ 0

oDt
n�jðk̂Þ fj with fj ¼ f ðjDtÞ: ð9Þ

This is done by splitting up the time interval (0,T) into N+1 time

steps of equal length Dt. Eq. (9) shows the approximation of the

convolution integral at a certain discrete time tn ¼ nDt. The

quadrature weights oDt
j are defined by

oDt
j ðk̂Þ :¼ R�j

Nþ1

XN

‘ ¼ 0

k̂ðs‘Þz‘j with z¼ e2pi=Nþ1 and s‘ ¼
gðRz�‘Þ
Dt

: ð10Þ

In (10), R represents the radius of a circle in the domain of

analyticity of k̂ðsÞ. This is the Laplace transform of the original

time-domain kernel function k(t) with the complex argument s. In

the following, s‘ is denoted as complex frequency, since it might

be seen so. gðzÞ is the quotient of the characteristic polynomials of

the underlying A-stable multistep method. For the comparison of

different multistep methods and a detailed derivation of the CQM

see [44].

Banjai and Sauter proposed in [4] to extend the quadrature

weights oDt
j to be valid for negative indices jo0, utilizing the fact

that they have to vanish in this case due to causality. Thus, the

sum in (9) can be extended to j¼N, and after inserting (10) into

(9) both sums are exchanged. Finally, a reformulated approxima-

tion of the convolution integral

ðk � f Þn �
R�n

Nþ1

XN

‘ ¼ 0

k̂ðs‘Þf̂‘z
‘n with f̂‘ ¼

XN

j ¼ 0

Rjfjz
�‘j

: ð11Þ

is obtained. After adopting (11) for the time discretization of (7), a

system of N+1 semi-discrete equations with ‘AðNþ1Þ

ðV̂ t̂Þðx,s‘Þ�ðK̂ûÞðx,s‘Þ ¼ f̂Dðx,s‘Þ, xAGD

ðK̂ut̂Þðx,s‘ÞþðD̂ûÞðx,s‘Þ ¼ f̂Nðx,s‘Þ, xAGN ð12Þ

and the load vectors

f̂Dðx,s‘Þ ¼ �ðV̂ ĝNÞðx,s‘Þþðð12IþK̂ÞĝDÞðx,s‘Þ

f̂Nðx,s‘Þ ¼ ðð12I�K̂uÞĝNÞðx,s‘Þ�ðD̂ĝDÞðx,s‘Þ ð13Þ

are obtained. The unknown Cauchy data u(x,tn) and t(x,tn) for

xAG are obtained by

uðx,tnÞ ¼
R�n

Nþ1

XN

‘ ¼ 0

ûðx,s‘Þzn‘ and tðx,tnÞ ¼
R�n

Nþ1

XN

‘ ¼ 0

t̂ðx,s‘Þzn‘

ð14Þ

The now semi-discrete operators V̂ , K̂, K̂u, and D̂ are the Laplace

transformed counterparts of their time-domain version contain-

ing the Laplace transformed fundamental solution Ûðy�x,sÞ (see
[33]). A more detailed description of this reformulated CQM and

its application onto mixed elastodynamic problems can be found

in [45].

2.4. Spatial discretization

For the spatial discretization a standard Galerkin approach is

employed. The unknown ûðx,sÞ and t̂ðx,sÞ of the semi-discrete

system of equations (12) are unique solutions of the variational

formulation related to (7)

/V̂ t̂,wSGD
�/K̂û,wSGD

¼/f̂D,wSGD

/K̂ut̂,vSGN
þ/D̂û,vSGN

¼/f̂N ,vSGN
ð15Þ

for all test functions w(x) and v(x). In order to discretize (15), a

triangulation of the whole boundary G into P linear triangles tP is

made

G�Gh ¼
[P

p ¼ 1

tp: ð16Þ

Appropriate finite dimensional subspaces for discontinuous and

continuous polynomials, respectively, are defined

S
g
h
ðGD,hÞ :¼ spanfcg

mg
MD

m ¼ 1, gAN

Sb
h
ðGN,hÞ :¼ spanfjb

mg
MN

m ¼ 1, bAN\0: ð17Þ

The unknown tractions and displacements t̂h,ûh and suitable test

functions wh,vh are in these subspaces

t̂h,whAS
g
h
ðGD,hÞ and ûh,vhASb

h
ðGN,hÞ: ð18Þ

The fact that t̂h and ûh are unique solutions of (15) leads to N+1

linear systems of equations of the form

V̂h �K̂h

K̂
T

h D̂h

0

@

1

A �
t̂h

ûh

 !

¼
f̂D

f̂N

 !

, ð19Þ

each depending on s‘ and the matrices and vectors are

V̂hAC
MD�MD

, K̂hAC
MD�MN

, D̂hAC
MN�MN

and

t̂h, f̂DAC
MD

, ûh, f̂NAC
MN ð20Þ
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respectively. MD denotes the number of unknowns on GD and MN

on GN , respectively. The entries of the matrices in (19) are given

by

ðV̂hÞij ¼
Z

ti

cg
i
ðxÞ
Z

tj

Ûðy�x,sÞcg
j
ðyÞdsy dsx

ðK̂hÞij ¼
Z

ti

cg
i
ðxÞ
Z

suppðjb

j
Þ
ðT yÛÞTðy�x,sÞjb

j
ðyÞdsy dsx

ðD̂hÞij ¼�
Z

suppðjb

i
Þ
jb

i
ðxÞT x

Z

suppðjb

j
Þ
ðT yÛÞTðy�x,sÞjb

j
ðyÞdsy dsx ð21Þ

All integrals are evaluated within their computational domains,

i.e., their support. The support of the discontinuous polynomials

cg
m is defined by a boundary element tp. The support of the

continuous polynomials jb
m stretches to all adjacent elements.

The integrals of K̂h and D̂h are of strong singular and hypersin-

gular type, respectively. By applying the regularization proposed

by [33] they are transformed into weak singular integrals. For

their numerical integration special coordinate transformations,

also known as Duffy transformations (see [43]), are used.

3. Matrix approximation

An approximation for a matrix AAC
t�s

A� Sk ¼UVT with UAC
t�k and VAC

s�k ð22Þ

with a small rank k compared to t and s can be found whenever

the generating kernel function k(x,y) in the computational domain

of A is asymptotically smooth. As shown in [7,30] all kernel

functions k(x,y) of elliptic operators with constant coefficients and

xay have this property. Only in the case x¼y they become

singular and are not smooth. Beside this spatial singularity the

kernel functions of the hyperbolic operators in (7) have an

additional temporal singularity for t¼ t. By means of the CQM

(see Section 2.3) the hyperbolic operators are transformed into

elliptic ones. This fact is essential for the application of the

approximation.

3.1. Hierarchical matrices

Due to the previously described kernel properties of elliptic

operators the necessity to separate the near- from the far-field

becomes evident. Low rank approximations of the type (22) can

be obtained only for well separated computational domains xay.

Thus, H�matrices [30,7] are used. Their setup is based on the

following idea: The index sets I and J of row and column degrees

of freedom are permuted in such a way that those who are far

away from each other do also obtain indices with a large offset.

First, by means of a distance based hierarchical subdivision of

I and J cluster trees TI and TJ are created. In each step of this

procedure a new level of son clusters is inserted into the cluster

trees. A son cluster is not further subdivided and is called to be a

leaf if his size reaches a prescribed minimal size bmin. Basically,

two approaches can be distinguished. First, the subdivision based

on bounding boxes splits the domain into axis-parallel boxes

which contain the son clusters. Second, the subdivision based on

principal component analysis splits the domain into well balanced

son clusters leading to a minimal cluster tree depth. Details for

both approaches can be found in [30]. In the present work, the

latter approach is adopted. The former one would lead to identical

results for the examples presented in Section 5.

Now, the H�matrix structure is defined by the block cluster

tree TI�J :¼ TI � TJ . Its setup is performed by means of the

following admissibility criterion

minðdiamðtÞ,diamðsÞÞrZdistðt,sÞ, ð23Þ

with the clusters t� TI , s� TJ and the admissibility parameter

0oZo1. The diameter of the clusters t and s and their distance is

computed as usual

diamðtÞ ¼ max
i1 ,i2 A t

jxi1�xi2 j

diamðsÞ ¼ max
j1 ,j2 A s

jyj1�yj2 j

distðt,sÞ ¼ min
iA t,jA s

jxi�yjj

Each cluster t and s is associated with its computational domain xt
and ys on G. The support of the corresponding degrees of freedom

of row i and column j are denoted by xi and yj, i.e.,

xt :¼
[

iA t

xi and ys :¼
[

jA s

yj with xi, yjAR
3: ð24Þ

If (23) is fulfilled, a block b¼t� s is admissible. If condition (23) is

not fulfilled the admissibility is recursively checked for their son

clusters, until either (23) holds or both clusters t and s become

leafs. In the latter case block b is not admissible. As can be seen in

(21) all matrices are generated by kernel functions of the type

k̂ðy�x,sÞ. Admissible blocks have well separated computational

domains xt and ys and the algorithm presented in Section 3.2 is

used to approximate them. Not admissible blocks must be

evaluated without approximation.

3.2. Adaptive cross approximation

A remark to the notation in this section: ðAÞij denotes the ij-th

entry, whereas ðAÞi and ðAÞj are the i-th row vector and j-th

column vector, respectively. The idea of the adaptive cross

approximation is to split up a matrix AAC
t�s into A¼ SkþRk

where Sk denotes the rank k approximation of A and Rk the

residuum to be minimized. Starting from

S0 :¼ 0 and R0 :¼ A, ð25Þ

a first pivot g1 ¼ ðR0Þ�1
ij has to be found, where i and j are the row

and column indices of the actual (0-th in this case) approximation

step. Hints for the right choice of the initial pivot g1 can be found

in [7]. In each ongoing step n the scaled outer product of the pivot

row and column is subtracted from Rn and added to Sn

Rnþ1 :¼ Rn�unþ1v
>
nþ1

Snþ1 :¼ Snþunþ1v
>
nþ1 ð26Þ

with the i-th row vector and j-th column vector defined as

vnþ1 ¼ gnþ1ðRnÞi and unþ1 ¼ ðRnÞj ð27Þ

The residuum Rn is minimized and the rank of the approximant Sn
is increased step by step. The pivot gnþ1 is chosen to be the largest

entry in modulus of either the row ðRnÞi or column ðRnÞj. Finally,
the approximation stops if the following criterion holds:

Junþ1JF Jvnþ1JFoeJSnþ1JF : ð28Þ

Note, the entire matrix A will never be generated. Therefore,

special care has to be taken in order to find the pivot such that the

algorithm converges to the prescribed accuracy e [41,7].

By using the definition of the absolute value jzj ¼
ffiffiffiffiffi

zz
p

, with

zAC and the complex conjugate z, the Frobenius norm of the

approximant JSnþ1JF can be reformulated as

JSnþ1J
2
F ¼

Xm

i ¼ 1

Xn

j ¼ 1

jðSnþ1Þijj2

M. Messner, M. Schanz / Engineering Analysis with Boundary Elements 34 (2010) 944–955 947



¼
Xm

i ¼ 1

Xn

j ¼ 1

jðSnÞijþðunþ1Þiðvnþ1Þjj2

¼ JSnJ
2
Fþ

Xn

‘ ¼ 1

ðu>
‘ unþ1v

>
‘ vnþ1þu>

‘ unþ1v
>
‘ vnþ1ÞþJunþ1J

2
FJvnþ1J

2
F

ð29Þ

Due to this recursive representation all algebraic evaluations in (26)

and (28) can be performed with Oðk2ðtþsÞÞ complexity. Usually the

computational costs for generating matrix entries dominates by far

the costs needed for the ACA algorithm. Hence, the complexity and

memory requirement scale like OðkðtþsÞÞ (see [41]).

3.3. Vector-valued problems

Before explaining how to apply the ACA to problems of a

vector-valued type, the influence of the pivot value gn is recalled.

It is responsible for the correct scaling of the outer product which

is subtracted from the reminder Rn and added to the approximant

Sn. A necessary condition is that its value is non-zero. It turns out

that the optimal choice is to look for the largest entry in modulus

of either the previously computed row or column of Rn. Based on

this entry the next outer product is computed.

In the case of a scalar-valued problem the largest non-zero

entry can be found in a straightforward manner. However, the

problem arises when dealing with vector-valued problems, e.g.

3-d elasticity problems. In this case each entry is of matrix type

AijAC
3�3 and the pivot might be defined as

gn ¼ ðRnÞ�1
ij with JðRnÞijJp ¼max ð30Þ

For no norm J � Jp it is guaranteed that a proper pivot entry can be

found. E.g., if ðRnÞij contains one very small entry compared to the

remaining entries of ðRnÞi the pivot row un is scaled up by gn and

(28) does not hold. If ðRnÞij contains a zero entry the pivot gn is not
even defined. This becomes evident, if e.g. the single layer

operator in (21) is evaluated on some plane Gk :¼ fx,yAR
3
:

yk�xk ¼ 0g that lies perpendicular to the coordinate axis k. In this

case certain off diagonal entries vanish

Ûpqðy�x,sÞ ¼ 0, x,yAGk, p3q¼ k ð31Þ

ÛpqAC
3�3 is the matrix-valued fundamental solution for elasto-

dynamics in Laplace domain. Due to these facts a straightforward

generalization of the scalar-valued ACA to the matrix-valued

version is not possible. Hence, in this work the 3-d elasticity

problem is split up into 3�3 scalar-valued problems. Any matrix

Ah and vector bh in (19) becomes partitioned into sub-blocks

Ah ¼
A11 A12 A13

A21 A22 A23

A31 A32 A33

2

6
4

3

7
5, bh ¼

b1

b2

b3

2

6
4

3

7
5 ð32Þ

In each of these sub-blocks the ACA is applied as presented in

Section 3.2. Thus, remember, sub-matrices containing only zero

entries due to (31) do not even have to be stored.

4. Fast solution procedure

By using the reformulated CQM for the temporal discretiza-

tion, the hyperbolic problem (1) is transformed into a system of

decoupled Laplace domain problems. Based on the fact that they

become elliptic the known admissibility criterion (23) for the

setup of H�matrices and the ACA can be used. These problems

depend on specific complex frequencies s‘ . Based on their

construction they always appear as complex conjugates. Due to

this fact only half of the problems has to be solved. The other half

results in the conjugate complex solution.

Recalling, the solution procedure starts with the transforma-

tion of all prescribed boundary conditions using (11). Then, the

system of decoupled Laplace domain problems is solved and,

finally, the time domain solution is obtained by using (14).

4.1. Solution of mixed problems

As described in Section 2, N+1 positive definite and, thus,

invertible equation systems of the form

V̂h �K̂h

K̂
T

h D̂h

0

@

1

A �
t̂h

ûh

 !

¼
f̂D

f̂N

 !

have to be solved for each complex frequency s‘. For the solution

of this block skew symmetric matrix the following solution

procedure (see [48]) is applied. By inserting the first equation

t̂h ¼ V̂
�1

h ðf̂Dþ K̂hûhÞ ð33Þ

into the second, the Schur complement system

ðD̂hþ K̂
T

hV̂
�1

h K̂hÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ŝh

ûh ¼ f̂N�K̂
T

hV̂
�1

h f̂D
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ŷh

ð34Þ

is obtained. The resulting Schur complement matrix is symmetric

and positive definite. Instead of performing a direct inversion of

V̂h a nested iterative solver is applied. First, the right hand side

ŷh ¼ f̂N�K̂
T

h ĉh ð35Þ

with the solution ĉh of V̂hĉh ¼ f̂D is computed. Then, the matrix–

vector-multiplication for the Schur complement system is defined

as

Ŝhûh ¼ D̂hûhþ K̂
T

b̂h ð36Þ

with b̂h out of V̂hb̂h ¼ K̂hûh. Note, both V̂h and Ŝh are complex

symmetric but not hermitian and, therefore, no conjugate

gradient scheme (CG) can be used. An iterative solver capable of

solving the present system has to be taken. In this work a

restarted GMRES solver is used. No preconditioner is applied. It

will be the topic of further investigations.

t1 = −1.0H (t)N/m2

x1

x2

x3

1m

1m

3m

Fig. 1. System and boundary conditions.
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4.2. Solution of Neumann problems

The problem statement (1) reduces to prescribed boundary

conditions for the Neumann part of the boundary only, i.e., the

complete set of boundary conditions are

tðx,tÞ ¼ gNðx,tÞ ðx,tÞAG� ð0,TÞ: ð37Þ

Hence, the displacements u are sought on the complete G� ð0,TÞ.
Due to the zero initial conditions uð�,t¼ 0Þ ¼ _uð�,t¼ 0Þ ¼ 0 rigid

body motions cause no problems regarding the solvability of the

reduced variational formulation

/D � u,vSG ¼/ðI�KuÞ � t,vSG ð38Þ

The presented temporal and spatial discretization leads to N+1

decoupled equation systems of the type

D̂hûh ¼ f̂N ð39Þ

which can be solved by taking any iterative solver capable of

solving complex symmetric but not hermitian systems. Again, a

not preconditioned restarted GMRES solver is used.

5. Numerical examples

In this section, the previously presented solution procedures

are tested. In order to show the validity of the results only
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Fig. 2. Longitudinal displacements u1 at the center of the free end.
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Fig. 3. Normal tractions t1 at the center of the fixed end.
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benchmark examples, whose analytical solution is known, are

treated. Aspects regarding the efficiency of the presented

methodology are pointed out. The most important criterion is

the compression rate of matrices depending on either the

approximation accuracy e or the complex frequency (10).

The compression rate is defined as the ratio between the size of

the compressed matrix and the size of the dense matrix. In other

words a compression rate of 50% means that only one half of the

original dense matrix is computed and stored. Due to the fact that

the cost of evaluating matrix entries outweighs the overhead of

constructing H�matrices, applying ACA and solving equation

systems, the compression rate provides information about

memory consumption and speed up.

All computations were performed by using the HyENA C++

library for the numerical solution of partial differential equations

using the boundary element method [38]. The part of the library

that deals with H�matrix arithmetics and the ACA as well as the

restarted GMRES solver stem form the AHMED C++ library [6]. For

the Fourier like transformations in (11) and (14) the FFTW

routines [23] are taken.

5.1. Longitudinal waves in a rod

A 3-d rod of size ‘1 ¼ 3:0m and ‘2 ¼ ‘3 ¼ 1:0m, as depicted in

Fig. 1, is considered. It is fixed on one end and the other end is

excited by a pressure jump t1¼�1.0H(t)N/m2. H(t) denotes the unit

step function. The material parameters of steel ðr¼ 7850:0kg=m3
,

m¼ 1:055� 1011 N=m2
, l¼ 0:0N=m2Þ are taken. Poisson ratio is

chosen to be zero, such that the results can be compared with the

analytical solution of longitudinal waves in a 1-d elastodynamic

rod (see [25]). The rod shown in Fig. 1 is discretized into 3660
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Fig. 4. Compression ratios and used complex frequencies s‘ for different b values. (a) Compression ratio of D̂11 and (b) complex frequencies.
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triangular boundary elements of uniform mesh size h¼0.08m.

The displacements and tractions are approximated by piecewise

constant and continuous linear polynomials, respectively

thAS0hðGD,hÞ and uhAS1hðGN,hÞ

In order to compare different time discretizations the dimension-

less value

b¼ c1Dt

h
ð40Þ

is introduced. It can be referred to also as the Courant–Friedrichs–

Lewy (CFL) number. This value depends on the velocity of the

compression wave c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ2mÞ=r
p

, the time step size Dt and the

average mesh size h. The overall analyzed time is T¼0.005 s.

Therefore, for b¼ 0:3 about 1000, for b¼ 0:5 about 600 and for

b¼ 0:7 about 430 time steps are necessary.

Fig. 2 shows the longitudinal displacements at the center of the

free end and Fig. 3 the normal tractions at the center of the fixed

end. As reference the analytical 1-d solution is given as well.

Obviously, for displacements better results can be achieved rather

than for tractions. As expected, larger b values lead to more

numerical damping. This becomes apparent towards the end of

the plots. For both displacements and tractions b¼ 0:3 leads to

the best results. All numerical results shown in Figs. 2 and 3 were

computed with an approximation accuracy e¼ 1:0� 10�05 of the

ACA (see (28)).

Before showing compression rates a representative part of the

partitioned matrix (32) has to be chosen. From now on this will be
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D̂11. In the present case it is of size 1680�1680 entries.

Differences, regarding the compression rates, when comparing

D̂11 to other matrices D̂12, D̂13, D̂22, and D̂33 are negligible. In

Fig. 4a, its compression ratios are plotted against the normalized

complex frequencies s‘ . In Fig. 4b, the respective complex

frequencies are plotted in the complex plane. The bad

compression ratio for frequencies with small index ‘ is the most

apparent behavior. It is caused by the fact that the imaginary part

of s‘ , which is responsible for the oscillating behavior of the kernel

function k̂, increases very fast and the real part, i.e., the damping

factor, is still very small. Thus, the more the real part increases the

better the compression becomes and, finally, a constant ratio is

obtained. Moreover, Fig. 4 shows the larger b becomes the smaller

the imaginary part of the frequencies is and, hence, better

compression ratios can be achieved.

Next, results for two different approximation accuracies of the

ACA e¼ 1:0� 10�03 and 1:0� 10�05 are compared in Fig. 5. Only

traction results are presented since they are much more sensitive,

i.e., the displacement results are equal for both precisions.

Even when looking at the traction results plotted in Fig. 5a no

evident difference is apparent. However, Fig. 5b shows that for

e¼ 1:0� 10�03 and high frequencies the compression increases as

expected, whereas it converges to the same ratio in both cases for

large real parts of s‘.

In Fig. 6, the CPU-time with and without ACA for the entire

frequency range is compared. As expected, the results for the
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matrix assembly (see Fig. 6a) reflect the compression ratios

plotted in Fig. 5b, i.e., in the second half the compression is

roughly 50% and, hence, the computing time is roughly halved.

Fig. 6b shows the results for the iterative solution of the linear

systems. Here, the correlation to the compression ratio is not such

pronounced. However, it becomes apparent that condition

numbers depend closely on the frequencies. The step-like

structure in Fig. 6b reflects the parallelized frequency intervals.

In this case 32 CPUs were used.

5.2. Waves in the half-space

In this section, numerical results for half-space problems are

compared with their analytical counterparts derived by Pekeris

[40]. A plane half-space of the dimensions 80m�80m is excited

at the center by a vertical pressure jump t3 ¼�1:0HðtÞN=m2, i.e.,

the two elements at the center are excited. The material para-

meters of soil (r¼ 1884:0kg=m3, m¼ l¼ 1:3627� 108 N=m2) are

taken. The present half-space is discretized into 14646 triangular

boundary elements of uniform mesh size h ¼ 1.0m. Again,

displacements and tractions are approximated by continuous

linear and piecewise constant polynomials, respectively.

In Fig. 7, numerically obtained results are compared to the

analytical solution. The plot shows the vertical displacement at

the observations point H, which is located at a distance of 10.97m

from the excitation. The results for three different time

discretizations are presented. For the entire observation period

of T ¼ 0.08 s and for b¼ 0:3 about 140, for b¼ 0:5 about 90 and

for b¼ 0:7 about 60 time steps are necessary. All three b values

lead to results which reflect the Rayleigh wave quite well.

However, only b¼ 0:3 allows to identify the arrival time

ðt� 0:0235 sÞ of the compressional wave.

Results in Fig. 7 are computed with an approximation accuracy

of e¼ 1:0� 10�05. The representative matrix D̂11 for this example

is of size 7484 �7484 entries. Fig. 8a shows the compression ratio

for all three b values depending on the complex frequencies s‘ . It

has the same behavior as in Fig. 4a. Furthermore, the present half-

space problem is solved also for e¼ 1:0� 10�03. The obtained

displacements match perfectly with those presented in Fig. 7. The

respective compression ratios are compared in Fig. 8b.

6. Conclusion

An accelerated time-domain boundary element formulation

for elastodynamics is presented. The Galerkin discretization is

adopted in space and a reformulated Convolution Quadrature

Method in time. Due to this latter mentioned methodology it is

possible to rewrite the hyperbolic problem into decoupled elliptic

problems. This allows the usage of known fast techniques. By

means of the H�matrix format the far-field is separated from the

near-field. Next, the adaptive cross approximation is used to

approximate far-field regions. The near-field is treated in the

standard manner. Different to other applications of the ACA, here,

vector-valued problems are dealt with. It is pointed out that a

straightforward generalization of the algorithm to vector-valued

problems is not possible. Hence, a repartitioning of the arising

system matrices has been introduced. With this approach a kernel

independent technique has been presented. E.g. the extension to

visco- or poroelasticity is straightforward due to its black-box-like

property.

The presented numerical examples approve that this approach

leads to results which match well with the analytical solutions.

For both examples, the elastic rod and the half-space, b¼ 0:3 leads

to the best results even tough the compression rates gets worse

due to high frequencies. However, when talking about the quality

of the results with respect to computational effort, b¼ 0:5 is

recommended. Moreover, for both presented examples even the

worse approximation accuracy e¼ 1:0� 10�3 leads to acceptable

results.

An aspect which needs further investigations is the decreasing

compression of matrices depending on frequencies having a large

imaginary and a rather small real part. Investigations thereon are

done in the work of [3]. They improve the compression by

splitting up the matrix into a sum of an H and H
2�matrix.

However, this fact unplugs from the kernel independent approach

followed in the present work.
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