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a b s t r a c t

A coupling algorithm is presented, which allows for the flexible use of finite and boundary element meth-

ods as local discretization methods. On the subdomain level, Dirichlet-to-Neumann maps are realized by

means of each discretization method. Such maps are common for the treatment of static problems and

are here transferred to dynamic problems. This is realized based on the similarity of the structure of

the systems of equations obtained after discretization in space and time. The global set of equations is

then established by incorporating the interface conditions in a weighted sense by means of Lagrange

multipliers. Therefore, the interface continuity condition is relaxed and the interface meshes can be

non-conforming. The field of application are problems from elastostatics and elastodynamics.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The combination of finite and boundary element methods (FEM

and BEM) for the solution of problems arising in structural

mechanics is attractive because it allows for an optimal exploita-

tion of the respective advantages of the methods [14,32]. Consider,

for instance, the problem of soil-structure interaction, where a fi-

nite element method is well-suited for the treatment of the struc-

ture and the near-field with its capability of tackling nonlinear

phenomena. On the other hand, the finite element mesh has to

be truncated which spoils the quality of the numerical analysis

especially in dynamics where spurious wave reflections would oc-

cur. Boundary element methods are appropriate for the represen-

tation of infinite and semi-infinite media and it seems thus

natural to employ both methods in combination for such problems.

The idea of combining these two discretization methods goes

back to Zienkiewicz et al. [32] who pointed out the complementary

characters of the methods and the benefits of their combined use. A

mathematical survey of the coupling of FEM and BEM is given by

Stephan [29]. One branch of FEM–BEM coupling is the iterative

coupling in which the individual subdomains are treated indepen-

dently by either method based on an initial guess of the interface

unknowns. Then, the newly computed displacements or tractions

on the interface are synchronized and based on these updated val-

ues another subdomain solve yields enhanced results. In time do-

main, this approach is often carried out only once for every time

step which gives a staggering scheme. A comprehensive overview

of such methods is given by von Estorff and Hagen [5]. Although

the iterative coupling is very attractive from the point of software

design, the convergence commonly depends on relaxation param-

eters which are rather empirical [5]. For this reason, a direct cou-

pling approach is preferred in this work which is independent of

such parameters. Direct FEM–BEM coupling itself can be separated

into substructuring methods, where the interface conditions are di-

rectly fulfilled by setting equal the nodal unknowns, and into La-

grange multiplier methods which enforce the interface conditions

by auxiliary equations. The substructuring concept for FEM–BEM

coupling is given, for instance, in the books of Beer [3] and Hart-

mann [13]. The drawback of the classical substructuring is that

the assembly spoils the structure of the system matrices if, for in-

stance, a sparse symmetric positive definite finite element stiffness

matrix and fully-populated nonsymmetric boundary element sys-

tem matrix are assembled. Moreover, these methods require con-

forming interface meshes, i.e., the nodes of the interface

discretizations have to coincide and the interpolation orders have

to be equal on both sides of the interface. The Lagrange multiplier

approach circumvents both of the mentioned drawbacks because

matrix entries are never mixed from the different subdomains

and the interface conditions can be posed in a weighted sense such

that non-conforming interfaces can be handled. The mathematical

analysis of Lagrange multiplier methods can be found in the book

of Steinbach [27] and this concept has been transferred to acoustic-

structure coupling by Fischer and Gaul [10]. In this work, a
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Lagrange multiplier approach is preferred because the possibility

of combining non-conforming interface discretizations is of great

benefit especially when combining finite and boundary elements.

In [11,12], a similar method is proposed for elastostatic prob-

lems. But in that approach a three-field method is used. Between

the interfaces of two subdomains an additional reference frame

with displacement unknowns is introduced. Then, so-called local-

ized Lagrange multipliers between each interface and this frame

ensure the coupling conditions. In addition, the Lagrange multipli-

ers are assumed as pointwise constraints in order to avoid the te-

dious integration over shape functions from different surface

discretizations. But the placement of the reference frame degrees

of freedom is not straightforward and requires additional work.

In the presented method, the algebraic structure of the final sys-

tem of equations is similar to the FETI method (see the survey arti-

cle of Farhat and Roux [9]) and the treatment of floating

subdomains is according to [7]. The application of the FETI method

to three dimensional elasticity problems especially for the case of

large discontinuities in the material parameters is presented in

[17]. An extension of the FETI technique to the coupling of finite

and boundary element methods is given in [18] which is based

on the idea of method-independent Dirichlet-to-Neumann maps.

On the other hand, the treatment of non-conforming interface dis-

cretizations is well-established within the context of the mortar

methods (see the book of Wohlmuth [31]), where special shape

functions for the Lagrange multiplier fields are used such that

the corresponding unknowns can be eliminated from the final sys-

tem of equations. The combination of the FETI method with the

mortar method has also been carried out in [2] and [25] for the

solution of elliptic problems. Here, the concept of the FETI coupling

framework for non-conforming interface discretization is followed.

It is extended for the employment of boundary element methods

as an alternative discretization method and, moreover, carried over

to the treatment of dynamic problems in time domain.

The finite element method used in this work is the standard ap-

proach for linear elasticity which can be found in the book of

Hughes [16]. The employed boundary element method is a colloca-

tion approach for static and dynamic problems. See the book of

Schanz [24] for a collocation boundary element method for elasto-

dynamic problems. Here, the formulation is slightly altered in or-

der to realize Dirichlet-to-Neumann maps as in [26]. In both

cases, i.e., finite and boundary element discretizations, the method

itself is not a major point of this work but their combination. More-

over, the established coupling framework is not restricted to the

chosen finite and boundary element formulations. Each of the local

discretization schemes is easily replaced as long as a Dirichlet-to-

Neumann map can be formulated.

2. Linear elastodynamics

2.1. Basic equations

Within the framework of linear elasticity, the dynamics of an

elastic solid are governed by the Lamé–Navier equations [1]

o
2uðx; tÞ

ot2
� c21rðr � uðx; tÞÞ þ c22r� ðr� uðx; tÞÞ ¼

fðx; tÞ

q
ð1Þ

in the presence of the body forces fðx; tÞ. In (1), the vector field

uðx; tÞ describes the displacement of a material point at point x

and time t. Both the three-dimensional and the plane strain cases

are governed by this equation and, therefore, one has x 2 Rd with

d ¼ 2 or d ¼ 3 in the following. Moreover, the speeds of the com-

pression and shear wave, c1 and c2, are used which are defined by

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l
q

s
and c2 ¼

ffiffiffiffi
l
q

r
ð2Þ

with the Lamé parameters k and l and the mass density q. For sim-

plicity, the following shorthand is used for (1)

q€uðx; tÞ þ ðLuÞðx; tÞ ¼ fðx; tÞ; ð3Þ

where the dot-notation is used for the temporal derivatives and L is

a partial differential operator which is in fact elliptic [28].

The function u is assumed to have a quiescent past and, there-

fore, vanishing initial conditions at t ¼ 0

uðx;0þÞ ¼ _uðx;0þÞ ¼ 0: ð4Þ

The boundary trace of the displacement field is denoted by

uC ¼ Tru and the corresponding traction field by t ¼ T u, where Tr

is the trace to the boundary C and T is the traction operator. By pre-

scribing boundary conditions on these quantities, an initial bound-

ary value problem is given

q€uðx; tÞ þ ðLuÞðx; tÞ ¼ f ðx; tÞ ðx; tÞ 2 X� ð0;1Þ

uCðy; tÞ ¼ gDðy; tÞ ðy; tÞ 2 CD � ð0;1Þ

tðy; tÞ ¼ gNðy; tÞ ðy; tÞ 2 CN � ð0;1Þ

ð5Þ

together with the initial condition (4). This problem is formulated

for the domain X with the boundary C which is subdivided into

the two parts CD and CN where Dirichlet and Neumann boundary

conditions are prescribed for the boundary trace uC and the

traction t, respectively.

2.2. Variational principle

A possible variational principle for the initial boundary value

problem (5) is to require the equation [16]

hq€u;vi þ atðu;vÞ ¼ FtðvÞ ð6Þ

to hold for suitably chosen functions v. In this expression, hu;vi is

the L2-scalar product of the displacement field and an admissible

test function v. The bilinear form atðu;vÞ is introduced which is de-

fined as

atðu;vÞ ¼

Z

X

rðuÞ : eðvÞdx; ð7Þ

where rðuÞ is the stress tensor due to the displacement field u and

eðvÞ the strain tensor due to the test function v. Moreover, FtðvÞ is

the linear form

FtðvÞ ¼

Z

X

f � vdxþ

Z

CN

gN � vCds; ð8Þ

where vC is the boundary trace of the test field v. Note that both the

bilinear and the linear form carry the subscript t which indicates

that they are time dependent.

2.3. Boundary integral equation

Alternatively, the solutionu to the initial boundaryvalueproblem

(5) can be expressed by the boundary integral representation [24]

uðx; tÞ ¼

Z t

0

Z

C

U�ðx� y; t � sÞtðy; sÞdsy ds

�

Z t

0

Z

C

ðT yU
�ðx� y; t � sÞÞ>uCðy; sÞdsy ds: ð9Þ

In this equation, U�ðx� y; t � sÞ is the fundamental solution of the

Lamé–Navier Eq. (1), see, e.g., [1]. Note that in expression (9) the

volume force term f is assumed to vanish and the material proper-

ties are constant throughout the whole domain X. Moreover, the

integration and the differentiation involved in the application of

the traction operator T to the fundamental solution are with re-

spect to the variable y which is indicated by the corresponding sub-
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scripts. The application of the trace Trx to the integral representa-

tion (9) yields the boundary integral equation in operator notation

[4]

Vt � t ¼ CuC þKt � uC; ð10Þ

where the asterisk denotes temporal convolution, i.e.,

g � h ¼
R t

0
gðt � sÞhðsÞds. The introduced operators are the single

layer operator Vt , the double layer operator Kt , and the integral free

term C which are defined as follows for x, y 2 C and 0 < t < 1

ðVt � tÞðx;tÞ¼

Z t

0

Z

C

U�ðx�y;t�sÞtðy;sÞdsyds;

ðKt �uCÞðx;tÞ¼ lim
e!0

Z t

0

Z

Ce

½ðT yU
�ðx�y;t�sÞÞTuCðy;sÞ�dsyds;

ðCuCÞðx;tÞ¼uCðx;tÞþ lim
e!0

Z

ce

ðT yU
�ðx�y;0ÞÞTuCðx;tÞdsy:

ð11Þ

In these expressions, Ce and ce are integration regions defined

by

Ce ¼ C n BeðxÞ and ce ¼ X \ oBeðxÞ; ð12Þ

where the ball of radius e with center x is denoted by BeðxÞ and its

surface by oBeðxÞ.

2.4. Static case

In the limiting case of a static model, the previously presented

equations are simplified. First of all, the boundary value problem

is now given by

ðLuÞðxÞ ¼ fðxÞ x 2 X;

uCðyÞ ¼ gDðyÞ y 2 CD;

tðyÞ ¼ gNðyÞ y 2 CN

ð13Þ

with the d-dimensional displacement field u which is now only

dependent on the position x. The variational expression (6) reduces

to requiring that

aðu;vÞ ¼ FðvÞ ð14Þ

holds for all admissible test functions v. Note that the bilinear form

aðu;vÞ and the linear form FðvÞ do not depend on time anymore and,

therefore, the subscript t has been omitted. But their definitions are

totally equivalent to (7) and (8). Finally, the static boundary integral

equation reads

Vt ¼ CuC þKuC ð15Þ

with the single and double layer operators V and K, respectively,

which are now defined as

ðVtÞðxÞ ¼

Z

C

U�ðx� yÞtðyÞdsy

ðKuCÞðxÞ ¼ lim
e!0

Z

Ce

ðT yU
�ðx� yÞÞTuCðyÞdsy:

ð16Þ

Of course, in these expressions the fundamental solution U�ðx� yÞ

of the operator L is involved which is independent of time.

U�ðx� yÞ is commonly referred to as the Kelvin solution and can

be found in [19]. The integral free term C in (15) is the same as in

the definition in (11).

3. Approximation methods

3.1. Finite element method

In order to obtain a finite element scheme, the unknown func-

tion u is approximated by means of the trial [16]

uhðx; tÞ ¼
XI

i¼1

uiðxÞuiðtÞ ð17Þ

with the shape functions ui and the time dependent approximation

coefficients ui. Using the test functions v from the space spanned by

the shape functions ui and inserting the approximation (17) into

the variational formulation (6) yields the system of coupled ordin-

ary differential equations

M€uðtÞ þ AuðtÞ ¼ fðtÞ: ð18Þ

The matrices used in this expression are the mass matrix M, the

stiffness matrix A and the force vector f. Moreover, u is the assembly

of the time dependent coefficients of the approximation (17) and €u

its second time derivative. In fact, one has

M½i; j� ¼ hquj;uii;

A½i; j� ¼ atðuj;uiÞ;

f½i� ¼ FtðuiÞ;

ð19Þ

with the bilinear form at of (7) and the linear form Ft of (8). The use

of a classical time integration scheme such as the Newmark method

[22] gives the series of systems of algebraic systems of equations on

the equidistant time grid 0 ¼ t0 < t1 ¼ Dt < � � � < tn ¼ nDt. In any

case, this series of equations can be abbreviated by

eAun ¼ fn þ hn ð20Þ

with the dynamic stiffness matrix eA, the coefficients of the approxi-

mation un at time point tn, the force vector at that time point, and a

history term hn depending on previously computed coefficients of

the approximation of the displacement field and possibly of its first

and second time derivatives. Note that due to the assumptions of a

linear material behavior and the equidistant time grid the left hand

sidematrix eA is not altered throughout the computation. In the static

case, the system is slightly different, since there is no history term

and the dynamic stiffness boils down to the classical stiffness matrix

as defined in (19). The resulting systemof equation has then the form

Au ¼ f ð21Þ

with the stiffness matrix A resulting from the static bilinear form a

and the force vector f due to the linear form F, both defined simi-

larly to the dynamic versions in (7) and (8).

3.2. Boundary element method

Among the numerous boundary element formulations (see, e.g.,

[15]) a special collocation method is chosen in this approach. To

begin with, the fields of the boundary unknowns uC and t are

approximated by the trials [28]

uC;hðy; tÞ ¼
XI

i¼1

uiðyÞuiðtÞ;

thðy; tÞ ¼
XJ

j¼1

wjðyÞtjðtÞ

ð22Þ

with the boundary shape functions ui and wj. Now, the ui are the

coefficients of the boundary displacement field uC, not to be con-

fused with the approximation in (17). The shape functions for the

unknown uC are piecewise linear continuous functions, whereas

the unknown t is approximated by piecewise linear discontinuous

functions. Locating K distinct collocation points x�
k on the boundary

C yields the system of convolution equations

ðV � tÞðtÞ ¼ CuðtÞ þ ðK � uÞðtÞ ð23Þ

with the time dependent matrices resulting from the single and

double layer operators defined in (11)
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V½k; j�ðt � sÞ ¼
Z

C

U�ðx�
k � y; t � sÞwjðyÞdsy;

K½k; i�ðt � sÞ ¼ lim
e!0

Z

Ce

ðT yU
�ðx�

k � y; t � sÞÞTuiðyÞdsy

ð24Þ

and the integral free term

C½k; i� ¼ lim
e!0

Z

ce

ðT yU
�ðx�

k � y;0ÞÞTuiðx
�
kÞdsy: ð25Þ

In both previous expressions, the integration regions Ce and ce are
used as defined in (12). Since U� is a d� d-matrix, the entries given

in Eqs. (24) and (25) are consequently d� d-submatrices of the cor-

responding systemmatrices. Note, that the integral free term C does

not depend on time which is accomplished by taking the third and

fourth argument of the fundamental solution U�ðx� y; t � sÞ equal
as in (25). The remaining convolutions can be discretized by either

using the time domain fundamental solution and carrying out the

integrations analytically as done, for instance, by Mansur [21] or

by using the convolution quadrature method of Lubich [20]. The lat-

ter has been transferred to time domain boundary element methods

for various materials by Schanz [24] and, in this approach, only the

Laplace domain fundamental solution is required by means of

which quadrature weights for the convolution integrals are gener-

ated. Independent of this choice, the time-discretized version of

Eq. (23) has the form

Xn

m¼1

Vmtn�m ¼ Cun þ
Xn

m¼1

Kmun�m ð26Þ

for the time step tn ¼ nDt. The Dirichlet boundary conditions

are incorporated by requiring that the approximation (22)

directly fulfills those conditions posed on uC. By means of the

abbreviation

eK0 ¼ Cþ Ko and eKm ¼ Km; 0 < m 6 n; ð27Þ

the Eq. (26) is converted to

Xn

m¼1

Vmtn�m �
Xn

m¼1

eKN;muN;n�m ¼
XN

m¼1

eKD;mgD;n�m: ð28Þ

Here, the subscripts D and N refer to columns of eK associated with

the given Dirichlet and unknown Neumann data, respectively. The

approximation of the given Dirichlet datum gDðtÞ at time point tn
is denoted by gD;n. Similarly, the given Neumann datum gNðtÞ at time

point tn is approximated by gN;n and is included in a weighted form

Btn ¼ BgN;n ð29Þ

using the mass matrix B½i; j� ¼ hwj;uii. Note that the vector gN;n is

padded with zeros for coefficients belonging to the Dirichlet bound-

ary CD where this datum is unknown. This corresponds to an exten-

sion of the Neumann datum gN with zero to the Dirichlet boundary.

The series of systems of equations then reads

V0 � eKN;0

B

 !
tn

un

� �
¼

fD;n

fN;n

� �
�
Xn

m¼1

Vm � eKN;m

� � tn�m

un�m

� �
ð30Þ

with the abbreviations fD;n ¼ eKD;ngD;n and fN;n ¼ BgN;n. Using as many

collocation points as trial functions for the unknown traction field t,

the matrix V0 becomes quadratic. Note that the use of piecewise

constant shape functions for the approximation of the traction field

in (22) would result in numerical instabilities in the solution of sys-

tem (30), see [28].

The static case contains the reduced system of equations

V� eKN

B

 !
t

u

� �
¼

fD

fN

� �
ð31Þ

with the d� d-submatrices of the discretized single and double

layer operators

V½k; j� ¼

Z

C

U�ðx�
k; yÞwjðyÞdsy

eK½k; i� ¼ C½k; i� þ lim
e!0

Z

Ce

ðT yU
�ðx�

k; yÞÞ
TuiðyÞdsy

ð32Þ

and the integral-free term C similar to (25). Obviously, the force vec-

tors fD and fN are defined in the samemanner as in the dynamic con-

sideration and the mass matrix B is exactly the same as before.

4. Coupled solution algorithm

4.1. Partitioned problem formulation

The considered mixed initial boundary value problem of linear

elastodynamics (5) and the corresponding static case of the mixed

boundary value problem (13) are now formulated for a spatial par-

titioning of the computational domain X. For sake of simplicity, at

first only the static case of (13) is considered and the extension to

dynamic problems is given afterwards.

The domain X is subdivided into Ns subdomains XðrÞ, i.e.,

X ¼
[Ns

r¼1

XðrÞ; ð33Þ

each of which has a boundary CðrÞ which is decomposed into a

Dirichlet, a Neumann, and an interface part

CðrÞ ¼ C
ðrÞ
D [ C

ðrÞ
N [

[

p2JðrÞ

CðrpÞ

0
@

1
A: ð34Þ

In this expression, JðrÞ is the set of indices of subdomains which

share an interface with the subdomain XðrÞ. Note that not every sub-

domain has its share of the Dirichlet and the Neumann boundaries,

CD and CN, respectively. In that case, one of the parts CðrÞ
D or CðrÞ

N or

both vanish in (34). The mixed boundary value problem for the rth

subdomain of the partitioning (33) now reads

ðLðrÞuÞðxÞ ¼ fðxÞ x 2 XðrÞ;

ðTrðrÞuÞðyÞ ¼ gDðyÞ y 2 C
ðrÞ
D ;

ðT ðrÞuÞðyÞ ¼ gNðyÞ y 2 C
ðrÞ
N :

ð35Þ

Depending on the geometric constellation of the considered subdo-

main XðrÞ, the Dirichlet or the Neumann boundary condition is not

applicable if the subdomain does not have any share of the corre-

sponding part of the boundary C of the original problem. In this

boundary value problem, the operators L, Tr, and T carry the sub-

domain superscripts in order to emphasize the fact that they can

be different for each subdomain. For instance, the material param-

eters k, l, and q could vary from subdomain to subdomain. For

notational purposes, let uðrÞ denote the restriction of the unknown

u to the subdomain XðrÞ and by Cs the skeleton of the partitioning,

which is

Cs ¼
[Ns

r¼1

CðrÞ

 !
n C: ð36Þ

Problem (35) is not yet completely stated. Therefore, suitable inter-

face conditions have to be formulated in order to embed this local

problem into the global constellation. These conditions are com-

monly the continuity of the displacement field and the equilibrium

of the interface tractions

u
ðrÞ
C ðyÞ ¼ u

ðpÞ
C ðyÞ; ð37aÞ

tðrÞðyÞ þ tðpÞðyÞ ¼ 0 ð37bÞ
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for all points y on the interface CðrpÞ and for all such interfaces.

Equipping the local mixed boundary value problem (35) with one

of the interface conditions (37) yields a well-posed problem. Note

that if a subdomain does not have enough share of the global

Dirichlet boundary CD and only the traction interface condition

(37b) is used, its local boundary value problem will not have a un-

ique solution. The displacement field can then be altered by the ri-

gid body motions which are possible due to the lack of prescribed

displacements. Such a subdomain is referred to as floating, see also

[7] for more details on floating subdomains.

The above considerations are the same for the dynamic case of

the initial boundary value problem of linear elastodynamics (5).

Therefore, the partitioning and the formulation of local problems

is not repeated for this case. Moreover, the same interface condi-

tions (37) have to hold now for all times t 2 ð0;1Þ. Nevertheless,

floating subdomains do not appear in dynamics due to the inertia

terms in (1).

4.2. Dirichlet-to-Neumann maps

Before the introduction of the coupling strategy, the notion of

Dirichlet-to-Neumann maps is presented which enables a coupling

formulation independent of the chosen discretization method.

Reconsider the boundary integral Eq. (15) which will now be

solved for the traction t

t ¼ V
�1ðC þKÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

S

uC: ð38Þ

Confer [28] for the invertibility of the single layer operator V. The

newly introduced operator S is the so-called Steklov–Poincaré oper-

ator [27] and it maps the boundary displacement uC onto the trac-

tion t. Eq. (38) is one possible representation of this operator in the

continuous setting. It remains to realize this mapping by means of a

discretization method.

Reordering the finite element stiffness matrix of (21) according

to degrees of freedom associated with the interior of the domain X

or the boundary C yields the system of equation

AII AIC

ACI ACC

� �
uI

uC

� �
¼

fI

fC

� �
: ð39Þ

The subscripts I and C refer to the interior and the boundary de-

grees of freedom, respectively. The discrete mapping of boundary

displacements to boundary nodal forces is now formally established

by

ðACC � ACIðAIIÞ
�1
AICÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sfe

uC ¼ fC � ACIðAIIÞ
�1
fI|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

gfe

ð40Þ

with the newly introduced abbreviations Sfe for the finite element

realization of the operator S and gfe for the boundary forces.

In order to obtain a boundary element realization of this map,

simply the first equation of the system (31) is eliminated

ðBV�1 eKNÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Sbe

uC ¼ fN � BV�1fD|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
gbe

: ð41Þ

Now, Sbe represents the mapping of the boundary displacements uC
to the boundary forces gbe. Note that in this context the subscript C

has been added to the unknown coefficients u even in the case of a

boundary element method in order to emphasize the structural

equivalence between (40) and (41).

In summary, (40) and (41) give possible realizations of the con-

sidered Dirichlet-to-Neumann map by means of a finite element or

a boundary element discretization. Whereas the former finite ele-

ment realization is symmetric, the boundary element realization is

nonsymmetric. Possible symmetric boundary element discretiza-

tions of the operator S can be found in Refs. [26,27].

Although in dynamics a statement similar to (38) is not avail-

able, the above procedure can be repeated exactly in the same

manner for the systems (20) and (30). In these cases, the finite ele-

ment realization of the Dirichlet-to-Neumann map at time point

tn ¼ nDt is

eSfeuC;n ¼ ~gfe;n ð42Þ

where the following abbreviations have been used

eSfe ¼ ~ACC � ~ACIð~AIIÞ
�1~AIC;

~gfe;n ¼ fC;n þ hC;n � eACIðeAIIÞ
�1ðfI;n þ hI;nÞ:

ð43Þ

In case of a dynamic boundary element method, these algebraic

manipulations are applied to system (30). This gives the equation

eSbeuC;n ¼ ~gbe;n ð44Þ

with the components

eSbe ¼ BV�1
0
eK0N

~gbe ¼ fN;n � BV�1ðfD;n � ‘nÞ:
ð45Þ

For simplicity, the part of the right hand side of system (30) due to

the convolution has been abbreviated by ‘n, i.e.,

‘n ¼
Xn

m¼1

ðVmtn�m � eKN;muC;n�mÞ: ð46Þ

Eqs. (42) and (44) thus allow for Dirichlet-to-Neumann maps at

each time step using either a finite or a boundary element discret-

ization, respectively.

4.3. FETI framework

By means of the previously presented Dirichlet-to-Neumann

maps, the local boundary value problem (35) can be represented

by the equivalent boundary-based formulation [27]

ðSðrÞu
ðrÞ
C ÞðyÞ ¼ g

ðrÞ
C ðyÞ y 2 CðrÞ;

u
ðrÞ
C ðyÞ ¼ gDðyÞ y 2 C

ðrÞ
D ;

tðrÞðyÞ ¼ gNðyÞ y 2 C
ðrÞ
N :

ð47Þ

This statement for all subdomains XðrÞ, 1 < r < Ns, together with the

interface conditions (37) represents the global mixed boundary va-

lue problem (13). Now, a global variational principle is formulated

by incorporating the displacement continuity condition (37a) in a

weighted form [27]
Z

CðrÞ
ðSðrÞu

ðrÞ
C Þ �v

ðrÞ
C dsþ

X

p2JðrÞ

Z

CðrpÞ
kðrpÞ � ðv

ðrÞ
C �v

ðpÞ
C Þds¼

Z

CðrÞ
g
ðrÞ
C �v

ðrÞ
C ds

X

p2JðrÞ

Z

CðrpÞ
lðrpÞ � ðu

ðrÞ
C �u

ðpÞ
C Þds¼0: ð48Þ

These two expressions have to hold for subdomains XðrÞ. For the

weighted formulation of the interface conditions a Lagrange multi-

plier field k has been introduced on the skeleton Cs of the partition-

ing, where kðrpÞ denotes its restriction to the interface CðrpÞ.

Moreover, the functions v
ðrÞ
C and lðrpÞ are the test functions which

correspond to the fields of the local boundary displacement u
ðrÞ
C

and the Lagrange multiplier kðrpÞ, respectively.

Using the framework of the FETI method of Refs. [8,9], the dis-

cretized version of the variational form (48) is

Sð1Þ Cð1ÞT

Sð2Þ Cð2ÞT

.
.

.
.
.
.

SðNsÞ CðNsÞ
T

Cð1Þ Cð2Þ � � � CðNsÞ

0
BBBBBBB@

1
CCCCCCCA

u
ð1Þ
C

u
ð2Þ
C

.

.

.

u
ðNsÞ
C

k

0
BBBBBBB@

1
CCCCCCCA

¼

g
ð1Þ
C

g
ð1Þ
C

.

.

.

g
ðNsÞ
C

0

0
BBBBBBB@

1
CCCCCCCA

: ð49Þ
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In this system, the matrices SðrÞ represent the local discretizations of

the operator S
ðrÞ and can be either a finite element or a boundary

element realization according to (40) or (41), respectively. The

boundary force vectors g
ðrÞ
C result from the same considerations.

The matrices CðrÞ are the discretizations of the terms corresponding

to the interface conditions of the variational expression (48) and

will be henceforth referred to as connectivity matrices. Finally,

the vector k gathers the coefficients of suitable approximation of

the Lagrange multiplier field k. This approximation will be dis-

cussed in more detail below. In dynamic problems, exactly the same

system of equations results at each time step. Then the left and right

hand sides have to be replaced by the finite element matrices of

(43) or the boundary element matrices of (45).

In order to solve system (49), at first it is assumed that the

matrices SðrÞ are invertible. Then, the local boundary displacements

are given by

u
ðrÞ
C ¼ SðrÞ�1

ðg
ðrÞ
C � CðrÞTkÞ: ð50Þ

Inserting this expression into the last line of the system (49), yields

the equation for the Lagrange multiplier coefficients

XNs

r¼1

CðrÞSðrÞ�1
CðrÞT

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

k ¼
XNs

r¼1

CðrÞSðrÞ�1
g
ðrÞ
C

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
d

: ð51Þ

In case of dynamic problems, the regularity of expression (50) is

guaranteed. But in the static case, the matrix SðrÞ has no unique in-

verse if the subdomain XðrÞ is floating. Then a so-called generalized

inverse and the null-space of the matrix are needed in order to give

the local boundary displacements

u
ðrÞ
C ¼ SðrÞþðg

ðrÞ
C � CðrÞTkÞ þ NðrÞaðrÞ: ð52Þ

The generalized inverse is denoted by the superscript + and NðrÞ is

the null-space of SðrÞ, i.e., SðrÞNðrÞ ¼ 0. Moreover, the vector aðrÞ col-

lects the amplitudes of the rigid body motions of the subdomain.

Here, the procedure described in [7] is adopted which yields a ro-

bust scheme for the computation of both the generalized inverse

and the null-space of a rank-deficient matrix. Expression (52) intro-

duces another field of unknowns a and, therefore, more equations

are required. The local solvability condition reads [9]

N
ðrÞ
R

T
ðg

ðrÞ
C � CðrÞTkÞ ¼ 0; ð53Þ

with the right null-space NðrÞ
R of SðrÞ, i.e., NðrÞ

R

T
SðrÞ ¼ 0. Due to the sym-

metry of the finite element realization S
ðrÞ

fe , the right and left null-

spaces, NðrÞ
R and NðrÞ, coincide. In case of the nonsymmetric boundary

element realization S
ðrÞ

be , this symmetry is assumed here based on

the fact that both matrices represent the same physical

characteristics.

Inserting expression (52) into the last line of system (49) and

assembling the solvability conditions (53) for all subdomains final-

ly gives the system of equations

F �G

�GT

� �
k

a

� �
¼

d

�eT

� �
: ð54Þ

In addition to the quantities F and d due to expression (51), there

are the matrices

G ¼ ðCð1ÞNð1Þ; . . . ;CðNsÞNðNsÞÞ

e ¼ ðNð1ÞTg
ð1Þ
C ; . . . ;NðNsÞ

T
g
ðNsÞ
C Þ:

ð55Þ

The original FETI method due to [8] has been tailored for finite ele-

ment discretizations of static problems and is equipped with pro-

jected conjugate gradient solver for an optimally parallelized

solution procedure. Such concepts have been transferred to dy-

namic problems in [6]. Nevertheless, the development of fast itera-

tive solution procedures is here not the principal aim and left as

future research. Especially, the lack of symmetry due to the chosen

boundary element formulation and, therefore, of the matrix F

would require a lot more effort in the design of such a solver. There-

fore, direct solution routines are used for both the static and dy-

namic problems considered here.

4.4. Connectivity matrices

In the original FETI algorithm [8], the Lagrange multipliers are

used as node-wise constraints. Therefore, the connectivity matri-

ces are just such that C½j; i� 2 f0;1;�1g. This simple and efficient

approach implies conforming interface discretizations, i.e., the

nodes of adjacent subdomains have to spatially coincide at their

common interface and, moreover, the polynomial orders of the lo-

cal discretizations have to be equal. In such a case, the interface

condition (37a) is fulfilled exactly at every point of the interface.

Here, this requirement shall be relaxed and non-conforming inter-

faces are allowed. Therefore, the introduced Lagrange multiplier

field is approximated by

khðyÞ ¼
XNk

j¼1

wjðyÞkj ð56Þ

with the shape functions wj and the approximation coefficients kj.

By means of this approximation, the connectivity matrices become

CðrÞ½j; i� ¼ �

Z
SuðrÞ

i ðyÞwjðyÞds: ð57Þ

In this expression, uðrÞ refers to a boundary element function for the

approximation of uðrÞ
C or to the boundary trace of a finite element

function for the approximation of uðrÞ. The integration is carried

out over all interfaces of the considered subdomain XðrÞ as indicated

by the union in the integration limit. The sign is adjusted such that

at adjacent sides of the interface it becomes opposite. For instance,

one can assume the convention that if p < r the sign in (57) is posi-

tive and it is negative for r < p. Note that if the shape functions wj

are taken to be Dirac delta distributions, i.e., wjðyÞ ¼ dðy � xjÞ with

xj being the jth interface node, then (57) reduces to the classical

FETI connectivity matrices.

In order to establish a non-conforming coupling, let at any

interface CðrpÞ for r < p the subdomain XðrÞ be the slave and XðpÞ

be the master as in the mortar method [31]. This indicates that

the approximation of the Lagrange multiplier field (56) is defined

with respect to the interface mesh inherited from the slave side.

With this arbitrary convention, the interface matrices obtain the

contributions at the interface CðrpÞ

XðrÞ
: CðrÞ½i; j� ¼ �

Z

CðrpÞ
uðrÞ

i ðyÞw
ðrÞ

j ðyÞds

XðpÞ
: CðpÞ½k; j� ¼ þ

Z

CðrpÞ
uðpÞ

k ðyÞw
ðrÞ

j ðyÞds:

ð58Þ

The first of these contributions is again of the standard mass-matrix

type but in the second contribution CðpÞ½k; j� the difficulty occurs that

the L2-product of two shape functions is performed which are de-

fined on different meshes.

For sake of simplicity, the shape functions wjðyÞ are assumed

piecewise constant. Then, the second and crucial expression in

(58) becomes

CðpÞ½k; j� ¼ þ

Z

sðrÞ
j

uðpÞ

k ðyÞds ð59Þ

with the element sðrÞj associated with the shape function w
ðrÞ

j of the

interface discretization of subdomain XðrÞ. The interfaces CðrpÞ are

assumed to be flat such that for any discretization of the adjacent

subdomains the computational representations of the geometry

cannot overlap or form voids. The first step in the computation of
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the value of cðpÞ½k; j� is to determine the overlap of the element sðrÞj of

subdomain XðrÞ with the support of the shape function uðpÞ

k
. Hence,

one has to find the intersection

�sðrpÞkj ¼ sðrÞj \ suppðuðpÞ

k Þ: ð60Þ

This task is trivial in case of a two-dimensional analysis, where only

the intersection of one-dimensional intervals has to be computed.

Contrary to this, in a three-dimensional analysis the geometric over-

lap of two-dimensional surface elements has to be determined.

Therefore, the elements of the master domain XðpÞ are transformed

to the reference space of the slave domain XðpÞ and then the tech-

niques of polygon clipping are used as described in [30]. Once the re-

gion �sðrpÞ
kj

is computed a quadrature rule is applied to the integral of

(59). Since the computed overlap is a convex polygon of rather arbi-

trary shape, it will thus be subdivided into triangles on each of which

a quadrature rule is carried out. In this context, another difficulty ap-

pears because the shape function uðpÞ

k is defined with respect to the

reference elements of subdomain XðpÞ and, therefore, its evaluation

at quadrature points expressed in the reference space of the slave

subdomain XðrÞ is not straightforward. Suitable coordinate transfor-

mations between these space are required as pointed out in [23].

Once the connectivity matrices are computed according to the

above described procedure, the FETI solution process can be car-

ried out as in the original algorithm of [8]. The only difference is

that in the original FETI algorithm only extraction procedures are

required due to the simple structure of the matrices CðrÞ, whereas

the procedure described here requires floating point arithmetic

for the matrix–matrix products in (51) and (55). On the other side,

so-called cross points, that are points at which more than two sub-

domains meet, do not pose any problem in this approach. The La-

grange multiplier field is associated with elements and not with

nodes and, therefore, the multipliers cannot be redundant. Note

that the case of conforming interface discretizations is fully in-

cluded in this approach and would yield equal expressions for

the contributions in (58).

5. Numerical examples

The approximations for the following examples are all of the

following type. For the finite element discretizations bilinear quad-

rilaterals or trilinear hexahedra elements are used in two or three

dimensions, respectively. The boundary element analysis is based

on piecewise linear shape functions which are continuous for the

boundary displacements uC and discontinuous for the tractions t.

In two dimensions simple line elements are used and in three

dimensions triangular elements. The mesh sizes h refer either to

the length of the sides of the quadrilaterals or hexahedra, the

length of the line elements or the catheti of the triangles. For the

time discretization of the dynamic finite element method the New-

mark algorithmwith parameters b ¼ 0:25 and c ¼ 0:5 is taken. This

choice corresponds to an unconditionally stable scheme with sec-

ond order accuracy and without numerical dissipation [16].

5.1. Static analysis of a cantilever beam

The first test case to consider is the numerical analysis of a can-

tilever beam by means of the presented coupling approach. There-

fore, a domain of dimensions 10 m� 1 m� 1 m is considered as a

representation of the cantilever beam. The beam is fixed at x1 ¼ 0,

which is the given Dirichlet datum, i.e., gD ¼ 0. The opposite side at

x1 ¼ 10 m is subjected to a vertical uniformly distributed load with

the non-zero component gN ¼ �1 N=m2 e3. Every other part of the

surface C is traction free. The material is assumed to be steel with-

out any lateral contraction having the material parameters k ¼ 0

and l ¼ 1:055� 1011 N=m2.

A two- and a three-dimensional analysis are carried out where

the domain X is subdivided into four subdomains XðrÞ, r ¼ 1; . . . ;4.

Each of these subdomains is of equal size and has the dimensions

5 m� 1 m� 0:5 m and the constellation is shown in Fig. 1 together

with the numbering of the subdomains.

In the numerical analysis, subdomains Xð1Þ and Xð4Þ are always

treated by the same discretization method with the same mesh

size and so are subdomains Xð2Þ and Xð3Þ. The three combinations

of coupling boundary with boundary elements (BEM–BEM),

boundary with finite elements (BEM–FEM), and finite with finite

elements (FEM–FEM) are considered. Each of these cases is treated

with a coarse, a middle, and a fine discretization. The mesh widths

are given in Table 1 and an example of these discretizations is

shown in Fig. 2 where the case BEM–FEM for the middle mesh is

displayed.

In order to judge the numerical outcome of the different analy-

ses, the results of a finite element solution with the whole cantile-

ver beam as one domain is used as a reference solution uref . This

finite element solution is obtained with h ¼ 1=40 m for the two-

dimensional and h ¼ 1=20 m for the three-dimensional analysis,

respectively. An error measure is defined by considering the value

of

eðx1Þ ¼
ju3ðx1; 0;0Þ � uref;3ðx1;0; 0Þj

juref;3ðx1;0;0Þj
; ð61Þ

where u3 denotes the vertical displacement of the numerical analy-

sis of the centerline at x2 ¼ x3 ¼ 0 and uref;3 is the vertical compo-

nent of the reference solution uref .

In Fig. 3, the outcome of the numerical analysis with the various

combinations described above is plotted in terms of the error mea-

sure defined in (61). Obviously, the results of the two-dimensional

BEM–BEM coupling are worse than the other combinations. The

BEM–FEM combination performs better and the best results are gi-

ven by the FEM–FEM coupling. On the other hand, in the three-

dimensional analysis the order of the quality of the results is re-

versed. Here, the BEM–BEM coupling yields better results than

the other combinations and the FEM–FEM coupling has the worst

performance. Concentrating on the results closer to the loaded

end of the beam, one can see that in all coupling combinations

the results improve with finer discretizations. A closer look at the

outcome of the three-dimensional analysis in Fig. 3 reveals small

discontinuities in the curves at x1 ¼ 5 m. This effect can be

explained by the weak statement of the displacement continuity

Fig. 1. Model of cantilever beam with four subdomains.

Table 1

Different discretizations of the cantilever problem

Mesh h
ð1Þ

¼ h
ð4Þ

h
ð2Þ

¼ h
ð3Þ

Coarse 1=6 m 1=4 m

Middle 1=6 m 1=8 m

Fine 1=10 m 1=8 m
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condition (37a) and, obviously, it does not deteriorate the results

away from the interface.

5.2. Unit step load on a rod

As a dynamic test case, an elastic rod which is fixed at one end

and subject to a unit step load at the other end is considered. The

problem is depicted in Fig. 4, where a rod of length ‘ is shown with

a fixed left end at x1 ¼ 0 and the longitudinal step load F0HðtÞ is ap-

plied at the right end at x1 ¼ ‘. Here, HðtÞ is the Heaviside function,

i.e., HðtÞ ¼ 0 for t 6 0 and HðtÞ ¼ 1 for t > 0. The analytical solution

of the problem is given, for instance, in [24]. Here, again the mate-

rial steel is used with the parameters k ¼ 0,

l ¼ 1:055� 1011 N=m2, and q ¼ 7850 kg=m3. The other parame-

ters are the length of the rod with the value ‘ ¼ 3 m and the mag-

nitude of the load F0 ¼ 1 N.

The domain of dimensions 3 m� 1 m� 1 m is subdivided into

three unit cubes. The first and the third of which are discretized

by the boundary element method with a mesh width of

h
ð1Þ

¼ h
ð3Þ

¼ 0:25 m. The middle cube is discretized by finite ele-

ments with h
ð2Þ

¼ 0:5 m for a coarse and h
ð2Þ

¼ 0:2 m for a fine dis-

cretization. The constellation with the fine discretization is shown

in Fig. 5.

The choice of the time step size has been determined according

to stability conditions of the convolution quadrature method of the

dynamic boundary element method. Such considerations can be

found in detail in [24] and lead to the observation that the size

of the time step is bounded from below. As in other time discreti-

zation methods, the ratio b ¼ ðc1DtÞ=h is fundamental for stability

analyses. According to [24] this value is here fixed to approxi-

mately b ¼ 0:2 which corresponds to a time step size of

Dt ¼ 10�6 s.

In the numerical analysis, the longitudinal displacements u1

along the middle axis are considered at the loaded face and the

interfaces. Moreover, the traction component t1 at the fixed end

is regarded. Therefore, the points A, B, and C refer to the coordi-

nates x1 ¼ 3 m, x1 ¼ 2 m, and x1 ¼ 1 m, respectively along this

middle axis, i.e., at x2 ¼ x3 ¼ 0:5 m. These coordinates correspond

to the coordinate system in Fig. 4 if placed along the centerline

of the cuboid domain. The outcome is plotted in Fig. 6 together

with the analytical solution. The numerical solution for the dis-

placements reproduces well the zigzag curve of the analytical solu-

tion. Especially, the finer discretization yields results which are

hardly distinguishable from the analytical solution. The traction

solution of the coarse discretization deviates significantly from

the analytical solution. Nevertheless considering the fact that a

discontinuous function is approximated, the results for the fine

discretization are reasonably good despite the overshoots at each

jump.

Fig. 2. Discretization of the three-dimensional model of the cantilever beam with finite and boundary elements.
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Fig. 3. Results of the coupled analysis of the cantilever beam — error measure

according to (61) along the coordinate x1 for the various considered combinations in

two and three dimensions.

Fig. 4. Rod with a unit step force. Displacement results are considered for the points A, B, and C.

456 T. Rüberg, M. Schanz / Comput. Methods Appl. Mech. Engrg. 198 (2008) 449–458



5.3. Foundation on an elastic halfspace

Finally, the static and dynamic analyses of an individual footing

on an elastic halfspace is considered. The foundation is assumed to

be of cuboid shape and made of concrete with parameters

k ¼ 9:72� 109 N=m2, l ¼ 1:46� 1010 N=m2, and q ¼ 2400 kg=m3.

It is represented by the subdomain Xð1Þ which is a cube of dimen-

sions 1 m� 1 m� 1 m and will be discretized by 216 trilinear fi-

nite elements of size h
ð1Þ

¼ 1=6 m. The top surface of the

foundation is subject to a uniform vertical load of magnitude

1:0 N=m2 which varies as a unit step in time.

The halfspace fx 2 R3
: x3 > 0g is numerically represented by

the surface patch Cð2Þ of dimensions 5 m� 2 mwhich is discretized

by 320 boundary elements of size h
ð2Þ

¼ 1=4 m. The material of this

halfspace is soil with k ¼ l ¼ 1:36� 108 N=m2 and q ¼

1884 kg=m3.

The constellation of the discretizations of the foundation and

the halfspace is shown in Fig. 7. In the dynamic analysis, 400 steps

of size Dt ¼ 1:5� 10�4 s are computed. In Fig. 8, the vertical dis-

placements at three different positions are plotted, at the mid-

points of the top and bottom surfaces of the foundation and at

another point on the surface of the soil. With respect to the coor-

dinate system in Fig. 7, these points have the coordinates

ð1 m;1 m;� 1 mÞ, ð1 m;1 m;0Þ, and ð4:5 m;1 m;0Þ, respectively.

For these three positions the corresponding static result is given

by the horizontal lines. Clearly, the static solution is reached after

approximately half the computed time which indicates that the

waves have been absorbed due to the infinite geometry of the elas-

tic halfspace. Considering the point on the surface of the soil, one

can see that the pressure wave is arriving after approximately

0:01 s, followed by the shear wave and the Rayleigh surface waves

(cf. [1] for these wave types). No reflections of these waves occur

due to the truncated surface mesh.

6. Conclusion

A framework for the coupling of finite and boundary element

discretizations of dynamic and static problems has been estab-

lished which allows for non-conforming interface discretizations.

Basically, the concepts of hybrid domain decomposition methods

[27] have been transferred to the treatment of dynamic problems,

where the key point is the realization of Dirichlet-to-Neumann

maps by the chosen discretization methods in time domain. In fact,

the presented algorithm falls in the category of FETI/BETI methods

(see [18]) but with the extension to dynamic problems and non-

conforming interface discretizations. The performance in terms of

the quality of the results is good both for the analysis of static

and dynamic problems. Nevertheless, a further improvement can

be expected if a symmetric Galerkin boundary element formula-

tion is used in order to obtain symmetric positive system matrices

throughout each step and, therefore, the use of preconditioned pro-

jected conjugate gradient solvers becomes feasible.

Fig. 5. Boundary element and finite element discretization of the dynamic loaded

rod.
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Fig. 6. Coupled boundary and finite element solution for the three-dimensional rod

– displacements at points A, B, and C and traction at the fixed end against time.

Fig. 7. Discretization of a foundation on an elastic halfspace.
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Fig. 8. Vertical displacements of the foundation and the soil against time.
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