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On a Reformulated Convolution Quadrature Based
Boundary Element Method

M. Schanz1

Abstract: Boundary Element formulations in time domain suffer from two prob-

lems. First, for hyperbolic problems not too much fundamental solutions are avail-

able and, second, the time stepping procedure is expensive in storage and has stabil-

ity problems for badly chosen time step sizes. The first problem can be overcome

by using the Convolution Quadrature Method (CQM) for time discretisation. This

as well improves the stability. However, still the storage requirements are large.

A recently published reformulation of the CQM by Banjai and Sauter [Rapid solu-

tion of the wave equation in unbounded domains, SIAM J. Numer. Anal., 47, 227–

249] reduces the time stepping procedure to the solution of decoupled problems in

Laplace domain. This new version of the CQM is applied here to elastodynam-

ics. The storage is reduced to nearly the amount necessary for one calculation in

Laplace domain. The properties of the original method concerning stability in time

are preserved. Further, the only parameter to be adjusted is still the time step size.

The drawback is that the time history of the given boundary data has to be known

in advance. These conclusions are validated by the examples of an elastodynamic

column and a poroelastodynamic half space.

Keywords: BEM, time domain, CQM

1 Introduction

The Boundary Element Method (BEM) in time domain is especially import to treat

wave propagation problems in infinite and semi-infinite domains. In this applica-

tion the main advantage of this method becomes obvious, i.e., its ability to model

the Sommerfeld radiation condition correctly. Certainly this is not the only ad-

vantage of a time domain BEM but very often the main motivation as, e.g., in

earthquake engineering.

The first boundary integral formulation for elastodynamics was published by Cruse

and Rizzo (1968). This formulation performs in Laplace domain with a subsequent
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inverse transformation to time domain to achieve results for the transient behav-

ior. The corresponding formulation in Fourier domain, i.e., frequency domain, was

presented by Domínguez (1978). The first boundary element formulation directly

in the time domain was developed by Mansur for the scalar wave equation and

for elastodynamics with zero initial conditions (Mansur, 1983). The extension of

this formulation to non-zero initial conditions was presented by Antes (1985). De-

tailed information about this procedure may be found in the book of Domínguez

(1993). A comparative study of these possibilities to treat elastodynamic problems

with BEM was given by Manolis (1983). A completely different approach to han-

dle dynamic problems utilizing static fundamental solutions is the so-called dual

reciprocity BEM. This method was introduced by Nardini and Brebbia (1982) and

details may be found in the monograph of Partridge, Brebbia, and Wrobel (1992).

A very detailed review on elastodynamic boundary element formulations and a list

of applications can be found in two articles of Beskos (1987, 1997).

The above listed methodologies to treat elastodynamic problems with the BEM

show mainly the two ways: direct in time domain or via an inverse transformation

in Laplace domain. Mostly, the latter is used, e.g., Ahmad and Manolis (1987).

Since all numerical inversion formulas depend on a proper choice of their param-

eters (Narayanan and Beskos, 1982), a direct evaluation in time domain seems to

be preferable. Also, it is more natural to work in the real time domain and observe

the phenomenon as it evolves. But, as all time-stepping procedures, such a formu-

lation requires an adequate choice of the time step size. An improper chosen time

step size leads to instabilities or numerical damping. Four procedures to improve

the stability of the classical dynamic time-stepping BE formulation can be quoted:

the first employs modified numerical time marching procedures, e.g., Antes and

Jäger (1995) for acoustics, Peirce and Siebrits (1997) for elastodynamics; the sec-

ond employs a modified fundamental solution, e.g., Rizos and Karabalis (1994)

for elastodynamics; the third employs an additional integral equation for veloci-

ties (Mansur, Carrer, and Siqueira, 1998); and the last uses weighting methods,

e.g., Yu, Mansur, Carrer, and Gong (1998) for elastodynamics and Yu, Mansur,

Carrer, and Gong (2000) for acoustics.

Beside these improved approaches there exist the possibility to solve the convo-

lution integral in the boundary integral equation with the so-called Convolution

Quadrature Method (CQM) proposed by Lubich (1988a,b). Applications to hyper-

bolic and parabolic integral equations can be found in Lubich and Schneider (1992);

Lubich (1994). The CQM utilizes the Laplace domain fundamental solution and re-

sults not only in a more stable time stepping procedure but also damping effects in

case of visco- or poroelasticity can be taken into account (see Schanz and Antes

(1997a,b); Schanz (2001a)). The motivation to use the CQM in these engineering
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applications is that only the Laplace domain fundamental solutions are required.

This fact is also used for BE formulations in cracked anisotropic elastic (Zhang,

2000) or piezoelectric materials (García-Sánchez, Zhang, and Sáez, 2008). Another

aspect is the better stability behavior compared with the above mentioned formula-

tion. For acoustics this may be found in Abreu, Carrer, and Mansur (2003); Abreu,

Mansur, and Carrer (2006) and in elastodynamics in Schanz (2001b). In the frame-

work of fast BE formulations the CQM is used in a Panel-clustering formulation for

the Helmholtz equation by Hackbusch, Kress, and Sauter (2007). Recently, some

newer mathematical aspects of the CQM have been published by Lubich (2004).

Important for the paper at hand, an essential reformulation of the CQM in case

of integral equations has been published by Banjai and Sauter (2009). The pro-

posed formulation transfers the time stepping procedure to the solution of decou-

pled Laplace domain problems. The main parameter of the method is still the

applied time step size. In this paper, some stability proofs with respect to the time

dependent behavior can be found. Here, this technique is applied to elastodynamics

for a collocation and a symmetric Galerkin formulation. At the end some numeri-

cal studies are performed concerning the sensitivity on the mesh size, the time step

size, and on the precision of the equation solver. To show the applicability of the

reformulated CQM to inelastic BE formulations the displacement results for wave

propagation in a poroelastic half space are presented.

Throughout this paper, vectors and tensors are denoted by bold symbols and matri-

ces by sans serif and upright symbols. The Laplace transform of a function f (t) is

denoted by f̂ (s) with the complex Laplace parameter s.

2 Boundary integral equation

The hyperbolic partial differential equation to be considered in this work is the

elastodynamic system, which describes the displacement field u(x, t) of an elastic

solid under the assumptions of linear elasticity. Describing with x and t the position

in the three-dimensional Euclidean space R
3 and the time point from the interval

(0,∞) the hyperbolic initial boundary value problem is

c2
1∇(∇ ·u(x, t))− c2

2∇× (∇×u(x, t)) =
∂ 2u

∂ t2
(x, t) (x, t) ∈ Ω× (0,∞)

u(y, t) = gD(y, t) (y, t) ∈ ΓD × (0,∞)

t(y, t) = gN(y, t) (y, t) ∈ ΓN × (0,∞)

u(x,0) =
∂u

∂ t
(x,0) = 0 (x, t) ∈ Ω× (0) .

(1)
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The material properties of the solid are represented by the wave speeds

c1 =

√

E (1−ν)

ρ (1−2ν)(1+ν)
c2 =

√

E

ρ2(1+ν)
, (2)

with the material data Young’s modulus E, Poisson’s ration ν , and the mass den-

sity ρ . The first statement in (1) requires the fulfillment of the partial differential

equation in the spatial domain Ω for all times 0 < t < ∞. This spatial domain Ω

has the boundary Γ which is subdivided into two disjoint sets ΓD and ΓN at which

boundary conditions are prescribed. The Dirichlet boundary condition is the second

statement of (1) and assigns a given datum gD to the displacement u on the part ΓD

of the boundary. Similarly, the Neumann boundary condition is the third statement

in which the datum gN is assigned to the surface traction t, which is defined by

t(y, t) = (T u)(y, t) = lim
Ω∋x→y∈Γ

[σσσ(x, t) ·n(y)] . (3)

In (3), σσσ is the stress tensor depending on the displacement field u according to the

strain-displacement relationship and Hooke’s law. For later purposes the traction

operator T is defined, which maps the displacement field u to the surface traction

t. The boundary conditions have to hold for all times and may be also prescribed in

each direction by different types, e.g., roller bearings. Finally, in the last statement

of (1) the condition of a quiescent past is given which implies homogeneous initial

conditions.

The representation formula may be derived from the dynamic reciprocal iden-

tity (Wheeler and Sternberg, 1968) or also from a weighted residual statement.

With the Riemann convolution defined as

(g∗h)(x, t) =
∫ t

0
g(x, t − τ)h(τ)dτ , (4)

and the fundamental solution U(x−y, t − τ) of equation (1) the representation for-

mula

u(x, t) =
∫ t

0

∫

Γ
U(x−y, t − τ)t(y,τ)dsy dτ−

∫ t

0

∫

Γ
(TyU)(x−y, t − τ)u(y,τ)dsy dτ x ∈ Ω,y ∈ Γ (5)

is given. Here, the surface measure dsy carries its subscript in order to emphasize

that the integration variable is y. Similarly, Ty indicates that the derivatives involved

in the computation of the surface traction due to equation (3) are taken with respect

to the variable y. Explicit expressions for the used fundamental solutions can be
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found, for instance, in Kausel (2006). By means of equation (5), the unknown u is

given at any point x inside the domain Ω and at any time 0 < t < ∞, if the boundary

data u(y,τ) and t(y,τ) are known for all points y of the boundary Γ and times

0 < τ < t.

The first boundary integral equation is obtained by taking expression (5) to the

boundary. Using operator notation, this boundary integral equation reads

(V ∗ t)(x, t) = C(x)u(x, t)+(K∗u)(x, t) (x, t) ∈ Γ× (0,∞) . (6)

The introduced operators are the single layer operator V , the integral-free term C,

and the double layer operator K which are defined as

(V ∗ t)(x, t) =
∫ t

0

∫

Γ
U(x−y, t − τ)t(y,τ)dsy dτ (7a)

C(x) = I + lim
ε→0

∫

∂Bε (x)∩Ω
(TyU)⊤(x−y,0)dsy (7b)

(K∗u)(x, t) = lim
ε→0

∫ t

0

∫

Γ\Bε (x)
(TyU)⊤(x−y, t − τ)u(y,τ)dsy dτ . (7c)

In these expressions, Bε(x) denotes a ball of radius ε centered at x and ∂Bε(x) is its

surface. Note that the single layer operator (7a) involves a weakly singular integral

and the double layer operator (7c) has to be understood in the sense of a principal

value.

Application of the traction operator Tx to the dynamic representation formula (5)

yields the second boundary integral equation

(D∗u)(x, t) = (I −C(x)) t(x, t)− (K′ ∗ t)(x, t) x ∈ Γ . (8)

The newly introduced operators are the adjoint double layer operator K′ and the

hyper-singular operator D. They are defined as

(K′ ∗ t)(x, t) = lim
ε→0

∫ t

0

∫

Γ\Bε (x)
(TxU)(x−y, t − τ)t(y,τ)dsy dτ (9a)

(D∗u)(x, t) = − lim
ε→0

∫ t

0
Tx

∫

Γ\Bε (x)
(TyU)⊤(x−y, t − τ)u(y,τ)dsy dτ . (9b)

The hyper-singular operator has to be understood in the sense of a finite part.

For the solution of mixed initial boundary value problems of the form (1), a non-

symmetric formulation by means of the first boundary integral equation (6) in com-

bination with a collocation technique will be used. A symmetric formulation is ob-

tained using both the first and the second boundary integral equation, (6) and (8).
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Symmetric formulation First, the Dirichlet datum u and the Neumann datum t

are decomposed into

u = ũ+ g̃D and t = t̃+ g̃N , (10)

with arbitrary but fixed extensions, g̃D and g̃N , of the given Dirichlet and Neumann

data, gD and gN . They are introduced such that

g̃D(x, t) = gD(x, t) , (x, t) ∈ ΓD × (0,∞)

g̃N(x, t) = gN(x, t) , (x, t) ∈ ΓN × (0,∞)
(11)

holds. The extension g̃D of the given Dirichlet datum has to be continuous due to

regularity requirements (Steinbach, 2008).

In order to establish a symmetric formulation, the first boundary integral equation

(6) is used only on the Dirichlet boundary ΓD whereas the second one (8) is used

only on the Neumann part ΓN . Taking the prescribed boundary conditions (1) into

account and inserting the decompositions (10) into both integral equations leads to

the symmetric formulation for the unknowns ũ and t̃

V ∗ t̃−K∗ ũ = fD, (x, t) ∈ ΓD × (0,∞)

D∗ ũ+K′ ∗ t̃ = fN , (x, t) ∈ ΓN × (0,∞)
(12)

with the abbreviations

fD = Cg̃D +K∗ g̃D −V ∗ g̃N

fN = (I −C) g̃N −K′ ∗ g̃N −D∗ g̃D .
(13)

3 Boundary element formulation

A boundary element formulation is derived following the usual procedure.

3.1 Semi-discrete equations

Let the boundary Γ of the considered domain be represented in the computation by

an approximation Γh which is the union of geometrical elements

Γh =
Ne
⋃

e=1

τe . (14)

τe denote boundary elements, e.g., surface triangles as in this work, and their total

number is Ne. Now, the boundary functions ũ and t̃ are approximated with shape

functions ϕi or ψ j, which are defined with respect to the geometry partitioning (14),
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and time dependent coefficients ui
k and t

j

k . This yields for the k-th component of the

data

uk(y, t) =
N

∑
i=1

ui
k(t)ϕi(y) and tk(y, t) =

M

∑
j=1

t
j

k (t)ψ j(y) . (15)

Inserting these spatial shape functions in the boundary integral equations (12) and

(6), respectively, and applying on the first a Galerkin scheme and on the latter a col-

location method, results in the two semi-discrete equation systems. The Galerkin

method with (12) yields

[

V −K

KT D

]

∗
[

t

u

]

=

[

fD
fN

]

(16)

and the collocation method yields for the first integral equation (6)

V ∗ t = Cu+K∗u . (17)

In the equations (16) and (17), the time is still continuous and the convolution has

to be performed. Further, the notation of matrices/vectors with sans serif letters

denotes that in these matrices the data at all nodes and all degrees of freedom are

collected.

3.2 Convolution Quadrature Method

Next, the temporal discretization by the CQM has to be introduced. Its basic idea is

to approximate the convolution integral (4) by a quadrature formula on an equidis-

tant time grid of step size ∆t, i.e., 0 = t0 < ∆t = t1 < · · · < n∆t = tn,

(g∗h)(x, tn) ≈
n

∑
k=0

ωn−k(∆t,γ, ĝ) f (k∆t) . (18)

In this expression, the quadrature weights ωn−k depend on the step size ∆t, the

quotient of the characteristic polynomials γ of the underlying A-stable multistep

method, and the Laplace transformed function ĝ. The quadrature weights are com-

puted following

ωn−k(∆t,γ, ĝ) =
R−(n−k)

L

L−1

∑
ℓ=0

ĝ(sℓ)ζ−(n−k)ℓ ζ = e
2πi
L

with the complex ’frequency’ sℓ =
γ
(

ζ ℓR
)

∆t
.

(19)

Confer Schanz (2001b) for the technical details on the computation of these quadra-

ture weights ωn−k. The notation complex frequency expresses that these complex
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numbers at which the quadrature weights are evaluated may be interpreted as a

computation at distinct frequencies. However, these points are complex valued.

Inserting the CQM in the semi-discrete integral equation, e.g., in (17), yields an

equation system for n = 0,1, . . . ,N −1

n

∑
k=0

R−(n−k)

L

L−1

∑
ℓ=0

[

V̂ (sℓ) t(k∆t)− K̂(sℓ)u(k∆t)
]

ζ−(n−k)ℓ = Cu(n∆t) , (20)

where N denotes the total amount of time steps. Note that in these equations the

boundary data are still in time domain whereas the matrices with the fundamental

solutions are evaluated in Laplace domain. Nevertheless, it is still a time stepping

procedure.

In Schanz (2001b), it is shown that for an efficient solution the value of L should

be chosen L = N. Further, it should be remembered that the quadrature weights ωn

are set to zero for negative indices, i.e., in the framework of BEM the causality is

ensured. This can be used such that the sum over k can be extended to N −1. The

two sums in (20) are exchanged. Further, R as well as ζ have the exponent n− k

and are splitted in two expressions with the exponents k and n separately. These

operations yield

R−n

N

N−1

∑
ℓ=0

[

V̂ (sℓ)
N−1

∑
k=0

R
kt(k∆t)ζ kℓ− K̂(sℓ)

N−1

∑
k=0

R
ku(k∆t)ζ kℓ

]

ζ−nℓ = Cu(n∆t) .

(21)

Both inner sums can be seen as a weighted FFT of the time dependent nodal values.

These expression will be abbreviated with

u∗ℓ =
N−1

∑
k=0

R
ku(k∆t)ζ kℓ t∗ℓ =

N−1

∑
k=0

R
kt(k∆t)ζ kℓ , (22)

where the respective inverse operation is

u(n∆t) =
R−n

N

N−1

∑
k=0

u∗ℓζ−nℓ t(n∆t) =
R−n

N

N−1

∑
k=0

t∗ℓζ−nℓ . (23)

With this in mind the hyperbolic integral equation (17) is reduced to the solution of

N elliptic problems for the complex ’frequency’ sℓ, ℓ = 0,1, . . . ,N −1

V̂ (sℓ) t
∗
ℓ − K̂(sℓ)u

∗
ℓ = Cu∗ℓ . (24)
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Applying the same operations as above on the Galerkin scheme (16) the decoupled

Laplace domain problems

[

V̂ −K̂

K̂T D̂

]

(sℓ)

[

t∗ℓ
u∗ℓ

]

=

[

f∗Dℓ

f∗Nℓ

]

(25)

are obtained. The right hand side in (25) is from the same structure

f∗Dℓ =
(

C+ K̂(sℓ)
)

g∗Dℓ− V̂ (sℓ)g
∗
Nℓ

f∗Nℓ =
(

I−C− K̂′ (sℓ)
)

g∗Nℓ− D̂(sℓ)g
∗
Dℓ ,

(26)

where g∗Dℓ and g∗Nℓ denote the transformed given boundary data corresponding to

the ℓ-th complex frequency. The transformation is performed similar to (22). With

these operations the time stepping procedure is reduced to the solution of decoupled

Laplace domain problems.

Looking closely on the expression ζ in (19) makes it obvious that the equations (22)

and (23) can be computed fast with the technique known from the FFT. Further, due

to the structure of sℓ in (19) only N/2 problems have to be solved because the other

half is determined as the complex conjugate solution. Finally, the time dependent

response is achieved with (23).

Remark 1: Certainly, the above presented reformulation of the CQM based on

the paper by Banjai and Sauter (2009) can be applied to any other CQM based BE

formulation. In the following example section, a poroelastodynamic half space will

be calculated with this technique. Details of the poroelastodynamic formulation can

be found in Schanz (2009).

Remark 2: This reformulation of the CQM may be seen as a calculation in Laplace

domain with an inverse back transformation. However, compared to the known

techniques with the problem of finding adequate parameters for the inverse trans-

formation or an adequate numerical technique at all (see, e.g., Narayanan and

Beskos (1982); Gaul and Schanz (1999)) in the above formulation only the time

step size (a physical quantity) has to be determined. The following numerical tests

will show that this physical parameter can be determined as in the time stepping

procedure (20), i.e., it is selected with relation to the element size and the wave

speed.

3.3 Numerical solution

The remaining part is the numerical realisation of the above given procedure. All

regular integrals are performed with Gaussian quadrature formulas. The singular

integrals can be performed with known techniques from elliptic problems. In the
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following, for the symmetric Galerkin formulation the regularisation based on par-

tial integration as presented by Kielhorn and Schanz (2008) is applied. The result-

ing weakly singular integrals are solved with the formulas by Erichsen and Sauter

(1998). In the collocation technique the strong singular integrals are performed

with the method from Guiggiani and Gigante (1990) and the weak singular ones

with polar coordinate transformation. Finally, the equation systems for the collo-

cation method (24) are treated with a LU-decomposition. For the Galerkin scheme

(25) the Schur-Complement-System is computed by

Ŝ = K̂TV̂−1K̂+ D̂ . (27)

Due to the symmetry and the positive definiteness of V̂ and D̂ the Schur-Complement

Ŝ is also symmetric and positive definite. For the solution an iterative GMRES-

solver is used. Hence, the displacement field u∗ℓ and the tractions t∗ℓ can be found

by solving

Ŝu∗ℓ = f∗Nℓ− K̂TV̂−1f∗Dℓ (28)

and

t∗ℓ = V̂−1
(

f∗Dℓ + K̂u∗ℓ
)

(29)

for every complex frequency sℓ, ℓ = 0, . . . ,N/2.

4 Numerical examples

In this section, the numerical behavior of this reformulated CQM in the applica-

tion on an elastodynamic column is studied. Further, results for wave propagation

phenomena in a poroelastic half space are presented. For all computations a Back-

ward Difference Formula of second order (BDF2) as multistep method is used.

The parameter R can be adjusted as in the original formulation to RN =
√

ε with

10−10 < ε < 10−3 which may vary between different physical problem types and

between 2-d and 3-d. However, it is independent of the geometry and boundary

conditions.

4.1 Elastic column

A one dimensional (1-d) column of length 3m as sketched in Fig. 1(a) is considered.

It is assumed that the side walls and the bottom are rigid and frictionless. Hence, the

displacements normal to the surface are blocked and the column is otherwise free to

slide only parallel to the wall. At the top, the stress vector ty =−1 N/m2H(t) is given.

Due to these restrictions, the 3-d continuum is reduced to a 1-d column with the
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ℓ = 3m

x

y

ty = −1 N/m2H(t)

(a) Geometry and load (b) Mesh of the 3m×1m×1m column

Figure 1: Geometry, loading, and the mesh of the column

Table 1: Material data for the elastic column and the poroelastic half space

E ν ρ φ R ρ f α κ
N/m2 - kg/m3 - N/m2 kg/m3 - m4/Ns

elastic column

steel 2.11 ·1011 0 7850

poroelastic half space

soil 2.544 ·108 0.298 1884 0.48 1.2 ·109 1000 0.981 3.55 ·10−9

only degree of freedom in y-direction. This 1-d column has been solved analytically

in Graff (1975) and its result is compared to the boundary element solution for a 3-d

rod (3m×1m×1m). The used BE formulation is the symmetric Galerkin scheme

sketched before, where the traction field is approximated on linear triangles with

constant shape functions and the displacement field with linear ones. Material data

used are those of steel modified with Poisson’s ratio set to zero (see Tab. 1).

The meshes used in the following are four different ones which are basically a

refinement or coarsening of that shown in Fig. 1(b). They will be denoted

• mesh 1: uniform with 112 elements on 58 nodes

• mesh 2: uniform with 448 elements on 226 nodes

• mesh 3: uniform with 700 elements on 352 nodes as displayed in Fig. 1(b)

• mesh 4: uniform with 2800 elements on 1402 nodes.
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In Fig. 2, the displacement results versus time at the free end are plotted for the

meshes 1,2, and 3. The time step size for all three calculations are adjusted to

β = 0.3. This dimensionless value used for the comparison is β = c1∆t/re, with the

characteristic length of the elements re. Here, the cathethus of the triangles is used.

The differences for the displacements in Fig. 2 are not too large. In the second

half of the figure, the tractions at the bottom of the column show differences. The

coarsest mesh 1 yields not satisfactory results for larger times. The overshooting

following the jumps in the solution are unavoidable but a refined mesh reduces

the duration of this disturbance. It is exactly the same behavior as in the ’old’

CQM based BEM as presented, e.g., in Kielhorn and Schanz (2008). That is why

no comparison between the old formulation and the reformulated version is given.

They can not be distinguished in a plot.

In Fig. 3, the displacement at the top and the traction at the bottom are plotted

versus time for different time step sizes. These are expressed with β to have a

better comparison. The results are computed with mesh 2. The instability for

the smallest value β = 0.1 is clearly observed in the traction solution. The other

extreme value, β = 0.7, shows some numerical damping and not the best results for

the traction. All other results are acceptable, where as in the original formulation

a value β = 0.2 yields the best results. Hence, also the sensitivity on the choice of

the time step size is the same as in the original formulation. A time step size in the

range 0.1 < β < 0.5 may be recommended.

It must be remarked that here the main advantage of the presented formulation

compared to usual computations in Laplace or Fourier domain can be observed.

The parameter responsible for the quality of the results is the time step size and

not any sophisticated parameter of the various numerical inverse transformation

algorithms. This value is oriented on the physics of the problem, i.e., it must be

adjusted to the wave speed in relation to the mesh size.

The next parametric study concerns the solution of the equation system. For larger

problems iterative solvers may be used. Hence, the question arise what is the in-

fluence of the solver precision on the time dependent results. Here, a GMRES

is used. In Fig. 4, the traction solutions for mesh 4 are plotted calculated with

different precisions of the GMRES. The displacement solutions are not displayed

because no differences would be visible. In the traction solution, only for the coarse

value of ε = 10−2 negative effects for large times may be observed. It may be con-

cluded that the solver precision is not so important. But, it must be remarked that

the solver works in Laplace domain and, hence, eigenfrequencies even if they are

damped may cause problems. Further, it is recommended to think on proper pre-

conditioners. Last, it should be mentioned that this ε has nothing to do with the ε

to determine R as discussed at the begining of this section.
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Figure 2: Displacement and traction versus time for different meshes compared

with the analytical solution
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Figure 3: Displacement and traction versus time for different time step sizes, i.e.,

β values, compared with the analytical solution
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4.2 Poroelastic half space

The second example is a poroelastic half space modelled with Biot’s theory. The

collocation BE formulation proposed in Schanz (2001b) with the new formulation

of the CQM is applied. To be able to solve the equation system dimensionless

variables are introduced as suggested in Schanz and Kielhorn (2005). Details of

the poroelastic BE formulation based on the reformulation of the CQM and nu-

merical studies on the sensitivity with respect to the time step size can be found

in Schanz (2009). These tests confirm the observation in the paragraph above, the

new formulation behaves like the old one.

The following results are obtained with linear shape functions for all unknowns,

i.e., the solid displacements, the pore pressure, the tractions, and the flux. The ge-

ometry is approximated by linear triangles as sketched in Fig. 5. The half space is

loaded in area A by a total stress vector tz = −1000 N/m2H(t) kept constant from

t = 0s on. The material data are those of a water saturated soil taken from liter-

ature (Kim and Kingsbury, 1979) and listed in Tab. 1. There, φ ,R,ρ f ,α , and κ

denote the porosity, Biot’s constant, density of the fluid, Biot’s stress coefficient,

and the permeability, respectively.
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Figure 5: Poroelastic half space: Mesh and the time dependence of the load

In Fig. 6, the vertical solid displacement uz is plotted versus time for the point P in

15m distance to the load. The poroelastic result is compared to two elastodynamic

solutions denoted by ’drained’ and ’undrained’. This means the shear modulus is

the same as in the poroelastic case but in the drained case the same Poisson’s ratio

is used whereas in the undrained case the undrained Poisson’s ratio is inserted.

Additionally, a calculation with the ’old’ CQM based BE formulation is presented,

lying over the ’new’ CQM based formulation.

The arrival time of the compression wave t ≈ 0.014s and the Rayleigh pole are

clearly observed. Further, as expected, the poroelastic solution is between the two

extreme elastodynamic cases, whereas in the early time it follows the undrained

behavior and later (in the second half of the picture) it approaches the drained

solution. The solution denoted ’long time’ is obtained with a very large time step

size to reach such long observation times. That is the reason why this solution in

the short time range does not resolve the arrival of the waves correctly.

5 Conclusion

A reformulated version of the Convolution Quadrature Method (CQM) has been ap-

plied to the elastodynamic boundary integral equation in time domain. Both, a sym-

metric Galerkin method and a collocation method has been presented. Clearly, this

reformulation of the CQM can be applied to any other application in time domain

BE formulations. Here, additionally to the elastodynamic example a poroelastody-
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namic example has been shown. Overall, the presented methodology reduces the

storage requirement to the size of one complex valued system matrix and shows the

same sensitivity on the time step size as the older formulation presented by Schanz

(2001b). The price to be payed for this reduction in storage is that in each step the

system of equations has to be solved. But, for future work, this reformulated CQM

allows the application of fast BE techniques which are mostly known for elliptic

problems and not for hyperbolic ones.

In some sense this reformulation is similar to classical formulations in Laplace or

Fourier domain with numerical inverse transformations. It shares the disadvan-

tage that the time history of the given boundary data has to be known in advance.

However, contrary to the usual inverse transformation algorithms, here, the only

parameter to be adjusted is the time step size. This parameter is determined with

respect to the wave speed and the spatial mesh size. Hence, it depends only on

physical values and not on some sophisticated parameters as in usual numerical

inverse transformation formulas.
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