
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2008; 76:2137–2156
Published online 2 July 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2399

FE/FMBE coupling to model fluid–structure interaction
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SUMMARY

In this paper, a finite element (FE)/fast multipole boundary element (FMBE)-coupling method is presented
for modeling fluid–structure interaction problems numerically. Vibrating structures are assumed to consist
of elastic or sound absorbing materials. An FE method (FEM) is used for this part of the solution. This
structural sub-domain is embedded in a homogeneous fluid. The case where the boundary of the structural
sub-domain has a very complex geometry is of special interest. In this case, the BE method (BEM)
is a more suitable numerical tool than FEM to account for the sound propagation in the homogeneous
fluid. The efficiency of the BEM is increased by using FMBEM. The BE-surface mesh required is
directly generated by the FE-mesh used to discretize the structural sub-domain and the absorbing material.
This FE/FMBE-coupling method makes it possible to predict the effects of arbitrarily shaped absorbing
materials and vibrating structures on the sound field in the surrounding fluid numerically. The coupling
method proposed is used to study the acoustic behavior of the lining of an anechoic chamber and that
of an entire anechoic chamber in the low-frequency range. The numerical results obtained are compared
with the experimental data. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper deals with the numerical treatment of the interaction between vibrating structures,

absorbing materials and an ambient fluid in the frequency domain. Special attention is paid to

the case where the fluid domain is unbounded or where it is enclosed by a boundary with a

complex shape, due to either the special shape of the absorbing material used to control its acoustic

properties or the presence of arbitrarily shaped and/or multiple radiators and scatterers.

The finite element method (FEM) is a numerical tool, which is commonly used to solve struc-

tural [1] and acoustical [2] problems in many fields of engineering. Sound absorbing materials
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2138 S. SCHNEIDER

are generally modeled using Biot’s theory [3, 4], which takes the material to have two phases,

i.e. a solid phase and a fluid phase. Numerical implementations are performed using either a

displacement formulation [5] for both phases ({u,U }-formulation) or a displacement–pressure

formulation ({u, p}-formulation) [6] along with the FEM. Boundary element (BE) approaches

have also been recently proposed in [7, 8]. Structural and fluid sub-domains are often handled

using FEM, and this coupling is often referred to as finite element FE/FE coupling [9, 10]. The
FEM requires the structural and fluid sub-domains to be meshed so that the meshes match at

the fluid/structure interface unless mortar coupling techniques are applied [11]. The meshing of

the fluid sub-domains is not always easy to manage when dealing with sound propagation in

unbounded domains and/or radiation or scattering problems with several scatterers or radiators.

Even infinite elements [12, 13] require the meshing of an intermediate three-dimensional fluid

domain. The FE/FE-coupling approach therefore has its limitations. The meshing of the ambient

fluid domain �BE can be avoided by using the BE method (BEM) [14] for the numerical treat-

ment of sound propagation in the homogeneous fluid. This approach yields the FE/BE coupling

[15–18]. An FE/BE-coupling method of studying the behavior of flat panels made of an absorbing

material was recently presented [19]. However, the BEM has rarely been applied so far to simu-

late fluid–structure interaction problems involving geometries of industrial interest, mainly due

to the numerical complexity of O(N 2) for a problem with N unknowns. During the last few

years, various strategies have been developed to overcome this drawback of BEM. One approach

consists in using a suitable wavelet basis together with a drooping strategy to sparsify the dense

matrix [20]. The most challenging part of this approach is the direct evaluation of the matrix in

the wavelet basis. A second approach consists in finding a low-rank approximation of the dense

matrix and using efficient H-matrix techniques [21, 22]. An approximation of the fundamental

solution forms the basis of methods such as the regular grid method [23], panel clustering [24] and
the fast multipole method (FMM) [25]. In this study, an FM-accelerated BEM (FMBEM) with a

complexity of O(N log2 N ) was used. The greater efficiency of the BEM makes it possible to solve

large-scale fluid–structure interaction problems involving arbitrarily shaped geometries using the

FE/FMBEM-coupling procedure presented in [11]. Here we extend this approach by also dealing

with sound absorbing materials and their interactions with vibrating structures and the ambient

fluid.

This paper is structured as follows. Sections 2 and 3 review the application of the FEM and

the BEM to solving the differential equations in the sub-domains. The coupling between the sub-

domains is addressed in Section 4. Some aspects of the numerical implementation are presented in

Section 5. The numerical results obtained are compared with the experimental data in Section 6.

2. FE SUB-DOMAIN

This study deals with the coupling of vibrating structures, absorbing materials and acoustic fluids.

Figure 1 shows a schematic diagram of the arrangement and the notation of the sub-domains

adopted here. The sub-domain �S denotes the domain occupied by a given mechanical structure.

The sub-domain occupied by sound absorbing materials or acoustic fluids is referred to as �B and

�F, respectively. The symbol �A denotes the boundary of the domain �A. A common boundary

between two sub-domains �A and �B is referred to as �A B. Pressure and displacement boundary

conditions are imposed on �S p0 and �S u0 , respectively. Each of the sub-domains �S, �B and �F

may itself consist of several sub-domains of the same type, but having different material properties.
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FE/FMBE COUPLING 2139

Figure 1. Definition of the sub-domains and their boundaries.

Only the sub-domain �BE is a fluid sub-domain occupied by a given homogeneous and isotropic

fluid. Therefore in what follows, the distinction will be made between the fluid sub-domains �F

and �BE. We focus on a general description of fluid–structure coupling problems and therefore no

special restrictions are made about the geometry, boundary conditions or material behavior. Under

these general conditions, the FEM is the most suitable numerical method of solving the governing

differential equations in the sub-domains �S, �B and �F. The application of the FEM to solving

these differential equations will be briefly reviewed. For further details, see [1, 6].
In this study, we focus on the behavior of elastic structures undergoing small displacements and

deformations. The displacement field us of the structure in the sub-domain �S can therefore be

expressed as the solution of

∇ ·�s+�2�̃Su
s = 0 (1)

with the elastic stress tensor �s. The term �̃S denotes a complex-valued density of the elastic

material. This generalization was introduced to model the viscous dissipation effects of the material.

Using the admissible variation �us of the structural displacement us and integrating Equation (1)

multiplied by �us by part leads to the variational formulation
∫

�S

�s :�s(�us)d�−�2�̃S

∫

�S

us ·�us d�−
∫

�S

�us ·�s� d�=0 (2)

where �s� denotes the vector of the normal stresses on the boundary �S of the structural sub-

domain �S.

The mechanical behavior and sound propagation in the domain �B occupied by sound absorbing

porous materials were modeled using Biot’s theory [3, 26]. Biot originally developed this model

for studying sound propagation in sediments. Under the assumption that the wavelength in the

material is much larger than the characteristic size of the material’s micro-structure, i.e. the pores,

a porous material can be taken to be a homogeneous material consisting of a solid and a fluid
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phase coupled by a volumetric coupling. In the context of sound absorbing materials, the solid

phase is often referred to as the frame of the material. Biot developed a set of differential equations

for the unknown displacement field ub of the solid phase of the material and the displacement

field U f of the fluid phase. In the frequency domain, an equivalent but numerically more efficient

formulation in terms of the variables {ub, pb} was developed by Atalla [6]. Using this formulation,

the displacement field ub of the frame and the sound pressure pb of the fluid phase of the porous

material are the solutions of the following set of differential equations:

∇ ·�b+�2�̃ub+�∇ pb = 0 (3)

�pb+ �2�̃22

R̃
pb− �2�̃22

h2
�∇ ·ub = 0 (4)

To account for the dissipation effects at work in the pores of the material over a wide frequency

range, the use of a frequency-dependent viscous damping factor (see [26, 27]) and a frequency-

dependent compressibility modulus of the fluid phase (see [28]) have been proposed in the literature.
Depending on the form of the pores, which is represented by the characteristic viscous length

� and the characteristic thermal length �
′, and the viscosity of the fluid, the authors developed

frequency-dependent complex-valued functions to express this dependency. In this study

b̃=�h2
(
1+ j

4�2∞	�f

�2�2h2
�

)1/2

was used for the viscous damping factor and

R̃(�)=h
K0

�−(�−1)

[
1+ 8	

j��
′2B2�f

(
1+ j�f

�
′2B2�

16	

)1/2
]−1

was used for the compressibility modulus of the fluid phase, as proposed in [4]. K0 denotes the

adiabatic bulk modulus, 	 is the viscosity, � is the ratio between the specific heat per unit mass at

constant pressure and constant volume and B2 is the Prandtl number of the fluid. In addition, the

following abbreviations

�̃11 = (1−h)�s+h(�∞−1)�f− j
b̃

�
, �̃22=h�∞�f− j

b̃

�

�̃12 = −h(�∞−1)�f+ j
b̃

�
, �̃= �̃11− �̃212

�̃22

� = h

(
�̃12

�̃22
− 1−h

h

)

have been used, where �s stands for the density of the frame material, �f for the fluid density,

h for the porosity, �∞ for the tortuosity and � for the flow resistivity of the absorbing material.

Tilded variables indicate complex variables with the complex unit j=
√

−1. For a more detailed

description of the Biot model and the notation used, see [3, 6, 26].
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A variational formulation of the governing differential equations involving the admissible vari-

ations �ub and �pb of displacement ub and the pressure pb leads to
∫

�B

�b :�b(�ub)d�−�2�̃

∫

�B

ub ·�ub d�−�

∫

�B

�ub.∇ pb d�

−
∫

�B

�ub ·�pb d�−
∫

�B

�ub ·�·�t d�=0 (5)

h2

�2�̃22

∫

�B

∇�pb ·∇ pb d�− h2

R̃

∫

�B

�pb pb d�−�

∫

�B

∇�pb ·ub d�−
∫

�B

�pb�·ut d�=0 (6)

where � denotes the outward normal vector. In the above equations, the total stress tensor �t=
�b−hI pb and the vector of the total displacement ut=(1−h)ub+hU f were introduced to simplify

the coupling between the sub-domains.

Sound propagation in the fluid domain �F was modeled using the time harmonic Helmholtz

equation [29]

�pf+ �2�f

R
pf=0 (7)

with the bulk modulus R=K0 of the fluid. This notation was introduced to show the equivalence

between Equations (4) and (7) in the case where the frame of the absorbing material is assumed

to be motionless. In this situation, we have ub≡0 and Equation (4) reduces to

�pb+ �2�̃22

R̃
pb=0

which can be interpreted similar to the Helmholtz equation for a fluid with dissipation. This model

is often referred to as the equivalent fluid model. Again using the admissible pressure �pf, the

variational formulation of Equation (7) reads

1

�2�f

∫

�F

∇�pf ·∇ pf d�− 1

R

∫

�F

�pf pf d�− 1

j�

∫

�F

�pfv� d�=0 (8)

with the normal velocity v� of the fluid at the boundary �F of the fluid sub-domain �F.

The variational formulations presented above form the basis of FEM. The unknown variables

were discretized using hierarchic basis functions based on Legendre polynomials [30]. These basis
functions make it possible to efficiently use basis functions of different polynomial degrees on a

given FE-mesh and therefore provide a very flexible numerical tool.

3. BE SUB-DOMAIN

The FEM has proved to be a highly efficient means of solving sound propagation problems of

practical interest. However, this method becomes less efficient with unbounded or complex-shaped

fluid domains. CAD-software often gives geometric models that can be used in a subsequent FE-

analysis for the structural sub-domains. As the geometry of the ambient fluid is often only given

implicitly as the complement to the structural sub-domain, the resulting geometric models are not
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adapted to FE-meshing and a fine spatial discretization is necessary to model the geometry without

defeaturing. In addition, these geometries must often be meshed with tetrahedral elements that

require quadratic basis functions. The latter lead to FE-matrices with a relatively large bandwidth,

which reduces the efficiency of numerical algorithms.

To avoid having to mesh the domain �BE, the BEM provides an alternative to the FEM in this

specific situation, as the BEM requires only a geometric model for the boundary �BE, which is

implicitly given by the boundaries of the domains �S, �B and �F, see Figure 1. Contrary to what

is illustrated in this figure, the boundaries �S BE, �B BE and �F BE are assumed to have a complex

shape. �BE v0�
denotes a boundary where a normal surface velocity is prescribed.

Instead of using the variational formulation equation (8) of the time harmonic Helmholtz equation

as the starting point of the numerical treatment of the sound propagation in the surrounding fluid,

the boundary integral representation of the solution of the time harmonic Helmholtz equation (7)

was used here. The scattered or radiated sound field ps of an object can be described in terms of

its boundary data [31] as

c(y)ps(y)+
∫

�BE

�
(x, y)

��
ps(x)d�BE−

∫

�BE


(x, y)
�ps(x)

��
d�BE=0 (9)

with the fundamental solution


(x, y)= e jk|x−y|

4�|x− y| = e jkr

4�r
, r =|x− y|, x �= y (10)

of the Helmholtz equation in three dimensions and the wave number k=�/
√
R/�f. This approach

avoids the need to mesh the three-dimensional fluid domain �BE. When applied to exterior prob-

lems, i.e. sound propagation in an unbounded domain, Equation (9) has non-unique solutions

when the wave number k is equal to an eigenvalue of the corresponding interior problem. This

non-uniqueness has no physical meaning. To obtain a unique solution of the exterior problem at

all wave numbers k, Burton and Miller [32] have suggested the use of a linear combination of

Equation (9) and its normal derivative

c(y)ps(y)+
∫

�BE

�
(x, y)

��x
ps(x)d�BE−

∫

�BE


(x, y)
�ps(x)

��x
d�BE

+�

(
c(y)

�ps(y)

��y
+

∫

�BE

�
2

(x, y)

��x�y
ps(x)d�BE−

∫

�BE

�
(x, y)

��y

�ps(x)

��x
d�BE

)
=0 (11)

involving the coupling parameter �. These authors have shown that for a coupling parameter � with

ℑ(�)>0, the above equation has a unique solution for all wave numbers k. A value of �= j/k has

been recommended in the literature, see [33]. When dealing with interior problems, the parameter

� is set to zero. Another version of the Burton/Miller approach, which avoids the need to use the

hyper-singular operator, can be found in [34].
In the present context, the sub-domain �BE will be coupled to the FE sub-domains �S, �B and

�F. For this purpose, it is advantageous to replace the scattered sound field ps by the total sound

field p= ps+ pinc, which is the sum of the scattered field and a given sound field pinc. Assuming
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in addition that the normal surface velocity v�, defined as

v� = 1

a

�p

��

with a= j��f, is given at the boundary �BE v0�
, Equation (9) can be rewritten as follows:

c(y)p(y)+
∫

�BE

�
(x, y)

��x
p(x)d�BE−a

∫

�BE\�
BE v0�


(x, y)v�(x)d�BE

=c(y)pinc(y)+
∫

�BE

�
(x, y)

��x
pinc(x)d�BE−a

∫

�BE\�
BE v0�


(x, y)
�pinc

��
d�BE

+a

∫

�
BE v0�


(x, y)v0� (x)d�BE (12)

All unknown quantities are collected on the left-hand side of Equation (12) and the right-hand

side contains the loading term. For numerical implementations, either Equation (12) or a linear

combination of Equation (12) and its normal derivative must be discretized. A collocation method

with discontinuous basis functions [35–37], where the unknown quantities are interpolated at the

collocation points y j , has been used to obtain a system of linear equations

Hp−Gv� =r0BE (13)

for the vectors of the unknown pressure p and normal velocity v� at the boundary �BE. The use

of these discontinuous basis functions shows better numerical properties as it has been shown in

the above-mentioned publications. Especially when using the Burton/Miller approach having the

collocation points inside the element is very important as the condition �BE∈C1 must be met at

each collocation point y j . As sound pressure and velocity at the nodes inside the elements are used

for interpolation and collocation the correct number of BE equations is obtained, however. Owing

to the use of discontinuous basis functions, the function c(y) in Equation (12) takes the constant

value c=0.5, as we have �BE∈C1 at each collocation point y j . Collocation points were placed

at the center of the element when constant basis functions were used and at points corresponding

to the zeros of the Legendre polynomial of order 2 when linear basis functions were used. The

right-hand side r0BE of Equation (13) is given by

r0BE=Hpinc+ 1

a
G

�pinc

��
−Gv0� (14)

and this equation accounts for a given incident sound field pinc and a given surface velocity v0� at

�BE v0�
. The matrices H and G are defined as

H = 1

2
I +

∫

�BE

(
�
(x, y)

��x
+�

�
2

(x, y)

��y��x

)
�
BE d�BE (15)

G = �
1

2
aI −a

∫

�BE

(

(x, y)+�

�
(x, y)

��y

)
�
BE d�BE (16)

where �
BE denotes the matrix containing the BE-basis functions.
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2144 S. SCHNEIDER

A well-known disadvantage of BEM is the fact that the above matrices H and G are fully

populated, which causes the O(N 2) complexity of this numerical method when dealing with a

problem with N unknowns. During the last few years, several techniques [20–25] have been

proposed to reduce this complexity. The FMM seems to be the most widely adopted method.

An overview of the state of the art of the FMM can be found in [38]. The main idea of FMM

is to approximate the fundamental solution (10) for points x and y with |x− y|>�>0 in terms

of spherical Hankel functions h
(1)
l , Legendre polynomials Pl and plane waves (see [39]). The

remaining points form the near-field part of the fundamental solution where standard BEM-

techniques must be applied. For numerical implementations, clusters �i with the center zi and the

radius �i are introduced so that each point y∈�BE can be assigned to a cluster �i . Thereafter, for two

well-separated points x ∈�i and y∈� j , satisfying |||(z j − y)+(x−zi )|||<|||z j −zi|||, the fundamental

solution (10) and its normal derivative can be approximated as follows:


(x, y) ≈ jk

4�

∫

S
2
e jk (y−z j )·ŝ
M (z j −zi , ŝ)e

jk(zi−x)·ŝ do(ŝ)

∇x
(x, y) ·�x ≈ k2

4�

∫

S
2
e jk (y−z j )·ŝ
M (z j −zi , ŝ)ŝ ·�xe jk (zi−x)·ŝ do(ŝ)

where the function 
M (z j −zi , ŝ) denotes the truncated translation operator


M (z j −zi , ŝ)=
1

4�

M∑
l=0

(2l+1)jlh
(1)
l (k|||z j −zi|||)Pl(ŝ ·(ẑ j −zi )) (17)

of the FMM with the truncation index M . For further details about the FMM and the numerical

implementation, see [38, 40]. Using FMM, matrices H and G now read as

H = HN+HF≈HN+SDTH

G = GN+GF≈GN+SDTG

The sparse matrices HN and GN represent the near-field part of H and G, respectively. They

are evaluated using standard BE techniques. Matrices S,D,T H and T G arising from the series

expansion are also sparse matrices. For the definition of matrices HN,GN S,D,T H and T G , see

[41]. Applying FMM on a hierarchy of clusters reduces the complexity of BEM from O(N 2) to

O(N log2 N ) [40]. This improvement makes the BEM efficiently applicable to real-life radiation

and scattering problems [11].

4. COUPLING BETWEEN THE SUB-DOMAINS

The governing equations shown above are linked up via continuity conditions across the common

boundaries of the sub-domains.

At the common boundary �S B between the structural sub-domain �S and the sub-domain

�B occupied by the absorbing material, the continuity of the displacement fields and the normal

stresses requires that

us = ub

�·�s = −�·�t
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holds true. Coupling a structural sub-domain �S with a fluid sub-domain �F imposes the continuity

of the normal stresses and the normal surface velocity

�·�s = −�pf

j��·us = −v�

at the boundary �S F. At the interface �B F between an absorbing material and a fluid domain,

we impose (see [42]) the continuity of the normal stresses and the normal surface velocities, as

well as the continuity of the pressure

�·�t = −�pf

j��·ut = −v�

pb = pf

As the basis functions differ between the FE- and BE-sub-domains, the continuity of the sound

pressure and the normal velocity cannot be ensured by simply identifying the corresponding

unknowns. In this study, we impose the continuity averaged over the surface of each element.

To shorten the notation the symbol uFE was used for all displacement degrees of freedom, the

symbol pFE was used for pressure degrees of freedom in the finite element sub-domains, the

symbol pBE was used for pressure degrees of freedom in the BE sub-domain and the symbol vBE

was used for velocity degrees of freedom in the BE sub-domain. The continuity condition for the

sound pressure on the common boundary �B BE between the sub-domains �B and �BE and on

the common boundary �F BE between the sub-domains �F and �BE therefore reads

0=
∫

�BF BE

�
BET(�BE pBE−�

FE
p pFE)d�=

∫

�BF BE

�
BET

�
BE d�

︸ ︷︷ ︸
=:Sp

pBE−
∫

�BF BE

�
BET

�
FE
p d�

︸ ︷︷ ︸
=:CBF

BE

T

pFE

where �
FE
p denotes the matrix of the FEM basis functions that approximate the sound pressure

and �BF BE=�B BE∩�F BE denotes the common boundary of �B, �F and �BE. Hence, the sound

pressure pBE at �BF BE is given by the sound pressure pFE as follows:

pBE|�BF BE
= S−1

p CBF
BE

T
pFE

Similarly, at the common boundary �S BE of the sub-domains �S and �BE we have

0=
∫

�S BE

�
BET(�BEvBE+ j��.�FE

u uFE)d�

=
∫

�S BE

�
BET

�
BE d�

︸ ︷︷ ︸
=:Sv

vBE+ j�

∫

�S BE

�
BET�·�FE

u d�

︸ ︷︷ ︸
=:CS

BE

T

uFE

and the normal velocity vBE on �S BE can be expressed as a function of the displacement uFE

vBE|�S BE
=−j�S−1

v CS
BE

T
uFE
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where �
FE
u contains the FEM basis functions approximating the displacement field. When using

the method presented here for coupling the sub-domains, the kind of sub-domain in contact with

the boundary �BE at a specific point determines whether the sound pressure or the normal surface

velocity is the unknown variable in the BEM. At �S BE, the sound pressure pBE is the unknown

variable, whereas the normal surface velocity is given by the normal displacement of the structure

via the above coupling conditions. In cases where the boundary �BE is in contact with either �B

or �F, then the normal velocity vBE will be the unknown variable and the sound pressure will be

given by the finite element discretization via the above interpolation matrix S−1
p CBF

BE

T
. Because

of the discontinuous basis functions used, matrices Sp and Sv are block-diagonal matrices with a

block size of 1 when constant basis functions are used and a block size of 4 when linear basis

functions are used.

5. NUMERICAL IMPLEMENTATION

We will now briefly outline some of the general aspects involved in the numerical implementation

of the proposed FE/FMBEM-coupling method. For further details about the evaluation of the

FE-matrices and their assembly, see [1].
For the structural sub-domain �S, in addition to the stiffness and mass matrices C̃S and MS,

the matrices CS
F and CS

BE resulting from the coupling conditions must also be evaluated to obtain

the matrix equation

[C̃S−�2�̃SMS]uFES +CS
F p

FE
F +CS

BE p
BE= f n−CS

S p0
p0=r0FE

for the unknown displacement uFES and pressures pFEF and pBE. A complex-valued, possibly

frequency-dependent stiffness matrix C̃S that accounts for the dissipation effects occurring in the

vibrating structure has been used. Vectors f n and p0 account for the given nodal forces and surface

loads acting on the vibrating structure. As we assumed that there are no such loads in �B and �F,

we have the following expressions:

[C̃BS−�2�̃BMBS]uFEB −�CBS
BF p

FE
B −MS

B p
FE
B = 0

−�CBS
BF

T
uFEB −MS

B

T
uFEB +

[
h2

�2�̃22
CBF− h2

R̃
MBF

]
pFEB + 1

j�
CBF
BEvBE = 0

for the unknown displacement uFEB and the pressure pFEB in �B. In addition to the stiffness and mass

matrices C̃BS, CBF, MBS and MBF, the matrix CBS
BF must be evaluated. This matrix corresponds

to the discretization of the volumetric coupling condition, the third term on the left-hand side of

Equations (5) and (6), between the two phases of the porous material. Matrices MS
B and CBF

BE result

from the coupling conditions when �B is in contact either with �S or �BE, respectively. For the

fluid sub-domain �F, it follows that

CS
F

T
uFES +

[
1

�2�̃F
CF− 1

R
MF

]
pFEF + 1

j�
CF
BEvBE=0

with the unknown surface velocity vBE at �B BE and �B F. The matrix CF
BE denotes the coupling

condition on the common boundary between the fluid sub-domain �F and the sub-domain �BE.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:2137–2156

DOI: 10.1002/nme



FE/FMBE COUPLING 2147

Finally, at �BE we have

H(pBE+Sp
−1CBF

BE

T
pFE)−G(vBE− j�S−1

v CS
BE

T
uFES )=r0BE

with the same coupling matrices as above.

After grouping the unknowns and collecting all the matrices belonging to displacement degrees

of freedom into the matrix Auu , all matrices belonging to pressure degrees of freedom into the

matrix App and all FE-coupling matrices into Cup, the system of linear equations for the unknown

variables reads as follows:

⎡
⎢⎢⎢⎢⎣

Auu Cup CS
BE 0

CupT App 0
1

j�
CBF
BE

j�GS−1
v CS

BE

T
HS−1

p CBF
BE

T
H −G

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

uFE

pFE

pBE

vBE

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

r0FE

0

r0BE

⎤
⎥⎥⎦ (18)

It is worth noting that the matrix on the left-hand side of Equation (18) is a square matrix although

it is shown as a rectangular matrix. This is due to the fact that the BE-unknowns have been

partitioned into pressure and normal velocity unknowns.

Instead of solving the entire non-symmetric system of linear equations (18) using an iterative

solver, we propose the following approach, which can be regarded as a generalization of the

approach using an impedance matrix Z proposed in [15].
The unknowns uFE and pFE can be eliminated from Equation (18) via

[
uFE

pFE

]
=−A−1

FEC
FE
BE

[
pBE

vBE

]
+A−1

FEr
0
FE

As the matrix AFE is implicitly frequency-dependent because of the dissipation effects occurring

in the absorbing material, the standard modal reduction technique cannot be applied to eliminate

the FE-unknowns. An alternative method of evaluating the complex eigenvectors and eigenvalues

and an adapted modal reduction method that can be used instead of a direct solution can be

found in [43]. However, here we are using a sparse direct solver to solve the symmetric and

frequency-dependent system of linear equations AFEx= y.

Injecting uFE and pFE into the last row of Equation (18) gives the sound pressure and velocity

distribution at the boundary �BE as follows:

pp =
[

I 0

−S−1
p CBF

BE

T
A−1
FEC

FE
BE

]

︸ ︷︷ ︸
=:C p

[
pBE

vBE

]
+S−1

p CBF
BE

T
A−1
FEr

0
FE︸ ︷︷ ︸

=:pp0

vv =
[
j�S−1

v CS
BE

T
A−1
FEC

FE
BE

0 I

]

︸ ︷︷ ︸
=:Cv

[
pBE

vBE

]
− j�S−1

v CS
BE

T
A−1
FEr

0
FE︸ ︷︷ ︸

=:vv0

The vectors pp0 and vv0 exert an additional load on �BE due to nodal forces and surface loads

given at �S, and these will contribute to the vector r
0
BE alone, whereas the matrix S−1

p CBF
BE

T
A−1
FEC

FE
BE
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can be regarded as a global impedance and j�S−1
v CS

BE

T
A−1
FEC

FE
BE as a global admittance condition

imposed on the fluid domain �BE at the corresponding parts of its boundary �BE. These two

matrices form the counterpart to the local impedance or admittance boundary condition often

introduced to approximate the presence of vibrating structures or absorbing materials in acoustic

analyses.

Finally, the unknown variables pBE and vBE follow from the solution of

[HC p−GCv]
[
pBE

vBE

]
= r0BE−Hpp0+Gvv0

ABEx = rBE

(19)

To solve this non-symmetric system of linear equations, the iterative solver GMRes [44] was

applied. The convergence of this iterative solver was improved using a preconditioner [45] based on
an incomplete LU-factorization [46] procedure. As neither the matrices C p and Cv nor SDTH and

SDTG are available explicitly, only the near-field matrices HN and GN can be used to calculate

the preconditioner at an acceptable numerical cost. Therefore, only the matrix

[
H

pp

N
−G

pv

N

H
vp

N
−Gvv

N

]

was factorized and used as a preconditioner. The symbol H
pp

N
denotes the part of the matrix HN

corresponding to a part of the boundary �BE where the sound pressure is the unknown quantity

and H
vp

N
denotes the part of the matrix HN corresponding to a part of the boundary �BE where

the velocity is the unknown quantity of the BEM. The corresponding notation has been used for

the matrix G.

The FE/FMBEM-coupling method presented here has been encoded at the LMA in Marseille

using Fortran 90. This computer code, named AKUSPOR, is applicable to a wide range of

industrial applications arising in the field of structural mechanics, sound propagation in fluids and

absorbing materials and the coupling between these fields.

6. EXPERIMENTS AND NUMERICAL EXAMPLES

The present FE/FMBE-coupling method will be applied to calculate the absorption coefficient of

the acoustic lining used in the large anechoic chamber at the LMA. In the second example, the

numerical method presented will be applied to simulate the acoustic behavior of an entire anechoic

chamber in the low-frequency range.

In the first step, a series of experiments was carried out in an impedance tube measuring 1.2×
1.2×6m3 to obtain experimental data with which to check the quality of the numerical algorithm

dealing with a problem of practical interest. In the second step, the numerical algorithm was used

to calculate the absorption coefficient in the case of a configuration that could not be investigated

experimentally. The main particularity of these measurements and numerical simulations is that

the mounting of the acoustic lining has to be taken into account in order to obtain accurate results.

The acoustic lining in question consists of melamine wedges, the bottom part of which has a

rectangular cross section measuring 0.3×0.3m2. The wedges are 0.4m in length and they have
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Figure 2. Influence of the mounting conditions on the absorption coefficient (left-hand
side sub-figure). Absorption coefficients measured with air gaps of different sizes around

the sample of the absorbing material (right-hand side sub-figure).

a tapering section 0.7m in length. The wedges are held in place by an iron wire frame. To account

for the mounting conditions of the acoustic lining in the anechoic chamber at LMA, the wire

frame was also used when carrying out the impedance tube experiments. A sample of 3×3 wedges

was chosen and the frame was screwed to three wooden bars, leaving an 11 cm air gap behind

the sample. Wooden bars were assumed to be motionless, which was checked by measuring their

displacement. The use of a sample of 3×3 wedges leaves an air gap of 15 cm around the melamine

wedges. This prevents the occurrence of any lateral contact between the absorbing material and

the iron wire frame and the walls of the impedance tube. This configuration is characterized

by well-defined boundary conditions, which will reduce the sources of errors in the subsequent

numerical analysis. To study the influence of the air gap around the sample, it was closed up using

a multi-piece wooden frame. Three different configurations were investigated: (1) a wooden frame

14.5 cm in width, leaving an air gap of approximately 0.5 cm between the sample and the wooden

frame; (2) a wooden frame 10 cm in width, leaving an air gap of 5 cm between the sample and

the wooden frame; and (3) no wooden frame, leaving an air gap of 15 cm between the sample and

the walls of the tube. The first configuration was installed and measurements were carried out. The

wooden frame was than accordingly removed to obtain configurations 2 and 3 without changing the

position of the sample of the absorbing material. The transfer function method [47–49] and a pure

sine tone excitation were used to measure the acoustic properties of the sample. The absorption

coefficients measured in the three configurations are shown in Figure 2. Reducing the air gap led

to a significant increase in the absorption coefficient at low frequencies and to a slight decrease

at frequencies above 120Hz. Besides this quite well-known effect, an increase in the absorption

coefficient was observed in the 80–110Hz frequency range, which was attributable to longitudinal

structural modes of the wedges.

It is worth pointing out the significant decrease in absorption observed in the 110–140Hz

frequency range. In this frequency range, as well as in the 70–90Hz range, there exist no structural

modes‡ that might lead to additional absorption apart from that of the material itself. Hence,

spreading out the structural modes of the wedges over the 70–150Hz frequency range provides a

possible means of improving the quality of the acoustic lining.

‡Longitudinal displacement of the wedges was measured using an MTI-2000 fiber-optic-based sensor.
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The experiments described above were simulated using the FE/FMBE-coupling method

presented here. The iron wire frame, the absorbing material and the air behind and around the

bottom part of the wedges were modeled using the FEM and quadratic basis functions. Sound

propagation in the impedance tube was modeled using the BEM and linear discontinuous basis

functions. The acoustic sound source, a 40-cm-diameter loudspeaker, was simulated by a uniform

normal surface velocity at the corresponding end of the tube. Parts of the meshed geometry

(wedges, air gap, iron wire frame and part of the BE-surface mesh) are shown in Figure 3. The

resulting linear system of equation consists of NFE=120377 FE and NBE=10888 BE-unknowns.

A four-level FMM with a truncation length M equal to M=5, . . . ,18 depending on the level of

FMM and the excitation frequency was applied. The numerical solution required ≈2Gb main

memory.

As the material properties of the melamine foam are anisotropic as the result of the foaming

processes, attention must be paid to the orientation of the material axis with respect to the wedge

geometry. The wedges were cut out of raw melamine blocks in an unpredictable manner, but in

the direction in which the material was foamed. However, the actual orientation of the material

axes of the wedges used for these experiments could not be determined. To meet this specific

configuration, the sample of 3×3 wedges was modeled by setting Young’s modulus in the direction

of the wedge length to the values given in Table I, taking three wedges at a time. The configuration

chosen is shown on the left-hand side of Figure 3 where each of the three material orientations is

indicated by a different number. To account for the structural damping occurring in the melamine

foam, a complex Young’s modulus Ẽi =Ei (1+0.01j) was used. Numerical simulations were run

on an SGI Origin3800 at the Center for Information Services and High Performance Computing of

the Technische Universität Dresden, Germany. The iterative solver GMRes preconditioned with an

ilut(350,1e−5) preconditioner [46] required between niter=800 iterations at 20Hz and niter=230

iterations at 200Hz to solve Equation (19) with a relative residual of �=1.0e−6. Without the

preconditioner, niter=1700 at 20Hz and niter=1050 at 200Hz iterations were required.

Figure 3. Photograph showing the position of the wedges and the wooden frame in the impedance tube
(left-hand side figure). Numbering of the wedges indicates the three sets of material orientations in use. The
meshed geometry of the melamine wedges and surrounding air and (parts of the) walls of the impedance

tube are shown in the right-hand side figure.
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Table I. Melamine material parameters used for the numerical simulations.

Young’s modulus (N/m2) Shear modulus (N/m2) The Poisson ratio

Ex Ey Ez Gxy G yz Gxz �xy �xz �yz

0.30e6 0.22e6 0.50e6 0.10e6 0.08e6 0.21e6 0.44 0.26 0.19

Parameters were identified in impedance tube experiments using a 6×6×6cm3 sample glued to the sample-
holder of a 10-cm-diameter impedance tube.
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Figure 4. Comparisons between the measured and calculated absorption coefficients of the 3×3 sample
of wedges with different air gap sizes. Numerical simulations were performed using Biot’s theory and the

equivalent fluid model to describe the behavior of the absorbing material.

The results of the numerical simulation were compared with the experimental data obtained

with the three experimental configurations in Figure 4. Simulated and experimental data agree

quite well over the entire frequency range, when Biot’s theory was applied to model the absorbing

material. However, the exact position of the resonance peaks could not be predicted in the case

of the 15 cm air gap configuration. Nevertheless, the numerical model predicted the effects of

the structural modes on the absorbing behavior of the sample quite accurately. Note that only

using three orientations of the material axes yielded a set of structural modes in the 80–110Hz

frequency range as observed experimentally. Using an isotropic material for the melamine foam

yields a single mode in that frequency range. In general, the simulation seems to have overestimated

the stiffness of the melamine foam, which results in a slight shift of the absorption coefficient

curve toward higher frequencies, whereas the absorption coefficients at higher frequencies were

underestimated, possibly due to absorption by the wooden frame, which was not taken into account

in the numerical model. The choice of material orientations may have been a further source

in errors in the numerical simulation. Note that the absorption coefficients measured reflect the

acoustic behavior of the wedges, the wooden frame and the remaining air gap. The lower right-hand
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side sub-figure in Figure 4 shows the numerical results obtained on the 3×3 sample of wedges

placed in an impedance tube measuring 0.9×0.9m2, which reflects the properties of the melamine

wedges placed in the anechoic chamber. The absorption coefficient of the acoustic lining sample

was found to be acceptable in the 50–75Hz frequency range. However, a significant decrease in

the absorption coefficient was observed in the 110–170Hz frequency range. This behavior of the

melamine wedges contrasts with the results of the impedance tube experiment conducted without

an iron wire frame (see left-hand side sub-figure of Figure 2) but is in good agreement with the

results of measurements carried out in the anechoic chamber, where significant deviations from

the free-field conditions were observed in this frequency range. Spreading out the structural modes

of the wedges over the 110–170Hz frequency range may reduce the decrease in the absorption

coefficient observed with the present configuration. Structural modes were already partly spread

out by randomly adopting the orientation of the wedges relative to the orientation of the material

axes. The length of the wedges can also be varied to create a lining with a less strongly fluctuating

absorption coefficient. Therefore, in each of the three material orientations, three wedges with

different tapering section lengths of 0.6, 0.7 and 0.8m were simulated numerically. The result

of this simulation, labeled ‘simulation Biot II’, is given in the lower right-hand side sub-figure

in Figure 4. The absorption coefficient of this sample shows weaker variations and a much less

marked breakdown at a frequency of around 120Hz. Hence, with almost the same quantity of

absorbing material, a more efficient acoustic lining can be obtained. The flexibility of the proposed

FE/FMBE-coupling method in terms of the geometric shape of the wedges means that this method

provides an efficient means of designing acoustic linings with better performances.

It is worth noting that taking the frame of the melamine foam to be motionless, that is, using

the equivalent fluid model instead of the complete Biot model, yields absorption coefficients (see

Figure 4) that do not reflect the behavior of the melamine wedges, as the acoustic behavior of the

melamine foam depends on the elastic frame.

After these preliminary investigations on the behavior of the acoustic lining in an impedance

tube, numerical simulations were carried out on the entire anechoic chamber at the LMA. The

aim of these numerical experiments was to predict the quality of the anechoic chamber in

the low-frequency range. The quality of an anechoic chamber was defined here as the size of the

region where the perturbations caused by reflections from the walls are smaller than 1.5-dB. This

region will be referred to as the 1.5-dB region in what follows. At the large anechoic chamber at

the LMA, this 1.5-dB region was determined experimentally in the 20–200Hz frequency range. At

higher frequencies, no significant perturbations were observed experimentally. The bounds of the

1.5-dB region measured with two source positions are given by the solid line in the two sub-figures

in Figure 6.

The acoustic lining consists of 3720 melamine wedges held in place by means of an iron

wire frame. In the simulations, each individual element of the lining was meshed using 24 Biot,

four-fluid and 28 structural elements. With this FE-mesh of the absorbing material, 26 boundary

elements were obtained. Figure 5 shows the meshed model for a single component of the acoustic

lining. Linear basis functions were used for the domains �B, �F and �S. To prevent locking

effects, extra displacement shape functions were added to the linear basis functions of the Biot

and structural elements and constant boundary elements were used.

The anisotropy of the melamine foam observed was accounted for in the same way as in

the previous numerical example. Different material orientations were randomly distributed over

the walls of the chamber. The model for the entire anechoic chamber consisted of NFE=3.3e6

FE-unknowns and NBE=104172 BE-unknowns. To store the Cholesky-factor L , 6.1Gb of memory
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Figure 5. A geometric model of the anechoic chamber and the meshing of a
single component of the acoustic lining.

Table II. Memory requirements (left-hand side sub-table) and computational resources required to obtain
one matrix–vector product (right-hand side sub-table), using an 8-level FM algorithm.

Matrix Memory (Gb)

L 6.1
HN 2.3
GN 2.3
MLFMA 0.2
GMRes(m) 6.1
Sum 17.0

CPU time Flops

Operation (s) (%) (Mflops) (%) Flop rate (%)

BEM ILU SOL 5.9 6.2 372.2 4.9 15.6
BEM MLFMA 29.4 30.8 2783.1 36.9 23.6
FEM AX=B 60.3 63.0 4386.0 58.2 18.2
Total 95.7 100.0 7541.3 100.0 19.7

The last column in the right-hand side table gives the performance of the algorithm versus the peak performance
of the computer processor.

was required. This corresponds to a band matrix with an average bandwidth of 133. A single

2.6GHz AMD Opteron-processor at the Linux Networx PC-Farm of the Technische Universität

Dresden, Germany, took ≈35min to calculate the factorization. The BE part of the entire numerical

simulation required 5Gb main memory and the evaluation of the matrices HN and GN took 1 h

on the above-mentioned computer. The length M of the series expansion in Equation (17) was

equal to M=5, . . . ,24 depending on the frequency. The computational resources, the time and

the number of floating point operations required to perform a matrix–vector product are given on

the right-hand side of Table II. The results given in this table show that the numerical complexity

and the memory required were more or less equally allocated to the two numerical methods.

But the number of matrix–vector products required by the preconditioned iterative solver to solve

Equation (19) with a residual of �=1.0e−6 was highly frequency dependent. The total solution time

per frequency was 25 h at 20Hz, 12 h at 40Hz and 4 h at 80–200Hz, which corresponds to 4100,

2100 and 330 iterations, respectively, due to the slow convergence of the iterative solver although

the preconditioner was applied. The decrease in the number of iterations with the frequency may

be attributable to the fact that at higher frequencies, the acoustic lining is more absorbent than at

lower frequencies. It has been established previously (see [50, 51]) that the absorption significantly

affects the number of iterations.

In Figure 6, the results of the numerical simulations are compared with the experimental data.

The 1.5-dB region of the large anechoic chamber at the LMA was determined using two source

positions. The bounds of the 1.5-dB region measured are indicated in Figure 6 by a solid line.

Note that the perturbations are higher than the allowed 1.5-dB in the 110–160Hz frequency range.
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Figure 6. The 1.5-dB region (solid line) measured superimposed on the results of the numerical simulation
(dots) in the case of two sound source positions.

Comparisons with the results of the impedance tube experiments on the acoustic lining show that

this frequency range corresponds to the frequency range in which a breakdown of the absorption

coefficient occurred in the one-dimensional experiments.

Results of the numerical simulation are given in Figure 6. Each frequency/position pair predicted

to belong to the 1.5-dB region is indicated by a solid dot. Good agreement with the experimental

data can be observed up to at least 100Hz. At higher frequencies a slight frequency shift in

the numerical results was observed. This may be due to insufficient spatial discretization. The

imperfections of the acoustic lining in the 110–160Hz frequency range are correctly mapped, but

their effects on the 1.5-dB region of the chamber is somehow underestimated, especially in the

140–160Hz frequency range. The computation time was less than 12 h at frequencies above 40Hz,

and thus parametric studies on the influence of some parameters of the acoustic lining on the

performance of an anechoic chamber can be carried out using current computers. The flexibility of

the FE/FMBE-coupling method means that it is possible to vary the shape, size and the material

properties of each individual lining component with almost no additional effort.

7. CONCLUSIONS

An FE/BE-coupling method is presented here for simulating fluid/structure interaction problems

of practical interest, where arbitrarily shaped objects are embedded in a homogeneous fluid. The

FEM was used to model the structural and absorbing material parts of the problem. The flexibility

of this method in terms of the geometry, boundary conditions and material behavior makes it

applicable to a large range of industrial problems. To avoid the need to mesh the fluid domain, the

FMBEM was used to model the sound propagation in the surrounding homogeneous fluid.

The resulting FE/FMBE-coupling method turned out to be a highly flexible numerical tool,

as it benefits from the advantages of both numerical methods. However, the iterative solution

of the system of linear equations is often the most time-consuming part of the simulation. The

development of a more suitable preconditioner is urgently required and this problem is now being

addressed in an ongoing research project.

The FE/FMBE-coupling method presented here was used to calculate the absorption coefficient

of an acoustic lining and to simulate the acoustic behavior of an entire anechoic chamber.
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