Cours « Problèmes inverses »

Sujet 13: identification par erreur en relation de comportement

On considère l'identification de *champs* de modules d'élaticité *isotropes* $\kappa(x)$, $\mu(x)$ (modélisant par exemple un défaut sous la forme d'une perturbation de caractéristiques de référence connues κ_0 , μ_0 correspondant à un matériau sain), dans le cadre de l'élasticité plane (déformations planes), κ , μ désignant les modules de compressibilité isotrope et de cisaillement tels que le comportement élastique linéaire s'écrit

$$\sigma = \kappa \text{Tr}(\varepsilon) \mathbf{1} + 2\mu e$$
 e : déviateur de la déformation ε

On se place dans le cas où on connaît complètement des couples déplacement-effort (\bar{u}_i, \bar{t}_i) sur la frontière (l'expérience i consistant à exercer les efforts \bar{t}_i et à mesurer la réponse \bar{u}_i).

Travail proposé : Il s'appuiera sur une fonctionnelle d'erreur en relation de comportement « simple », du type présenté en page 15 des transparents de la séance 8 (sommer sur toutes les expériences les fonctionnelles E_i associée à chaque expérience i).

- Choisir une géométrie plane Ω et une distribution $\kappa(x)$, $\mu(x)$ de modules à identifier, par exemple associée à une inclusion dans un matériau sain de modules connus κ_0 , μ_0 ;
- Choisir un ensemble d'excitations \bar{t}_i à appliquer sur $\partial\Omega$, et simuler les réponses \bar{u}_i pour le matériau réel $\kappa(x)$, $\mu(x)$;
- Mettre en œuvre une méthode de minimisation alternée de $E(v, \tau, A)$ consistant à chaque itération à :
 - (i) Calculer les champs de déplacement u_i^D correspondant à l'application de \bar{u}_i sur $\partial\Omega$;
 - (ii) Calculer les champs de déplacement $u_i^{\rm N}$ correspondant à l'application de \bar{t}_i sur $\partial\Omega$ (attention aux mouvements rigidifiants!);
 - (iii) Actualiser les champs de modules par

$$\kappa^2(\boldsymbol{x}) = \frac{1}{9} \frac{[\text{Tr}(\boldsymbol{\sigma}_i^{\text{N}})]^2}{[\text{Tr}(\boldsymbol{\varepsilon}_i^{\text{D}})]^2}, \quad \mu^2(\boldsymbol{x}) = \frac{1}{4} \frac{\boldsymbol{s}_i^{\text{N}}(\boldsymbol{x}) : \boldsymbol{s}_i^{\text{N}}(\boldsymbol{x})}{\boldsymbol{e}_i^{\text{D}}(\boldsymbol{x}) : \boldsymbol{e}_i^{\text{D}}(\boldsymbol{x})} \qquad \boldsymbol{s}_i^{\text{D}} : \text{déviateur de la contrainte } \boldsymbol{\sigma}_i^{\text{D}}$$

Voir transparents, et chapitre 4 du poly.

— Appliquer la méthode aux données simulées. Etudier sa capacité à reconstruire $\kappa(x)$, $\mu(x)$ selon nombre d'expériences, incertitudes sur les données, maillage...