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A new fast multipole method (FMM) is proposed to accelerate the time-domain boundary

integral equation method (TDBIEM) for the three-dimensional wave equation. The proposed

algorithm is an enhancement of the interpolation-based FMM for the time-domain case,

adopting the notion of the plane-wave time-domain algorithm. With the application being

targeted at a low-frequency regime, the proposed time-domain interpolation-based FMM

can reduce the computational complexity of the TDBIEM from O(N2
s Nt) to O(N1+δ

s Nt)

(where δ = 1/3 or 1/2) with the help of multilevel space–time hierarchy, where Ns and Nt

are the spatial and temporal degrees of freedom, respectively. The computational accuracy

and speed of the proposed accelerated TDBIEM are verified in comparison with those of

the conventional (direct) TDBIEM via numerical experiments.

 2013 Elsevier Inc. All rights reserved.

1. Introduction

The application of the fast multipole method (FMM) [1–4] to accelerate the time-domain boundary integral equation

method (TDBIEM) still remains a challenge, whereas its frequency-domain counterpart (including the static limit) has been

investigated extensively [5].

In particular, for wave problems, the plane-wave time-domain (PWTD) algorithm is known as the time-domain version

of the FMM [6]. The core of the PWTD algorithm is the plane-wave expansion of the fundamental solution (or the re-

tarded Green’s function for free space) of the wave equation. This expansion corresponds to the multipole expansion (in

ordinary FMMs) that allows a given kernel K (x, y) to be re-expressed as a degenerate form such as
∑

n an(x)bn(y), where x

and y represent the positions of the target and source, respectively [7]. Using the plane-wave expansion, one can develop

a fast method to evaluate the retarded potential or time-dependent pairwise interactions among targets and sources by

systematically grouping them in space–time. The computational cost of the conventional integral equation (IE) solver (that

adopts an ordinary marching-on-in-time (MOT) scheme) is O(N2
s Nt), whereas that of the multilevel PWTD-enhanced IE

solver scales as O(Ns log
n Ns · Nt), where Ns and Nt denote the spatial and temporal degrees of freedom, respectively. The

value of n is two for the complete spherical expansion and one for finite-cone representations [8]. Thus far, the PWTD algo-

rithm has been successfully applied to accelerate the time-domain IE solvers for electromagnetics [6,8–12], acoustics [13,14],

and elastodynamics [15,16]. Concurrently, the accelerated Cartesian expansion (ACE) algorithm is proposed to resolve the
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breakdown of the PWTD algorithm in the low-frequency regime [17]. The ACE algorithm uses the Taylor expansion instead

of the plane-wave expansion and attains a computational complexity of O(NsNt) in that regime.

The proposed algorithm is similar to the PWTD algorithm; in particular, the mechanism of time-gating, which allows

to a set of elapsed time-steps to be managed together at the current time-step (see Section 4), belongs to the PWTD

algorithm. Specifically, because the low-frequency regime is the prime target, the proposed algorithm can be identified

as an alternative for the ACE algorithm rather than that for the PWTD algorithm. However, the proposed algorithm uses

neither the plane-wave expansion nor the Taylor expansion. Instead, it interpolates the fundamental solution with respect

to the spatial and temporal variables for the target and source in order to reduce the fundamental solution to a degenerate

form. Using this approach, one can develop another fast algorithm with a computational complexity of O(N1+δ
s Nt) (where

δ = 1/3 or 1/2; see Section 4.4). This algorithm is slightly slower than the PWTD and ACE algorithms but is faster than the

conventional algorithm.

The class of FMMs that exploit interpolation, as in this study, is termed the interpolation-based FMM. In general, an

FMM in this class is kernel-independent, i.e. it can manage a certain class of kernels (or pairwise interactions) in a single

formulation. (Note that interpolation is not the only method to construct kernel-independent FMMs; see [18] for example.)

In addition, broadly speaking, the mathematical formulation and numerical implementation of the interpolation-based FMMs

are simpler than those of the classical FMMs specialised for individual kernels (e.g. [1–4,6]).

Presently, the class of FMMs includes the one-dimensional FMM [19], the black-box FMM [20], the directional FMM [21],

and the FMM for low-frequency three-dimensional (3D) electromagnetics [22]. These FMMs correspond to the static or

frequency-domain problems. Meanwhile, the concept of the interpolation-based FMM was extended to the transient heat

problem in [23], where a time-domain FMM for the heat kernel was proposed to reduce the computational cost from

O(N2
s N

2
t ) to O(NsNt) in order to evaluate the heat potential.

From the viewpoint of kernel independency, the proposed FMM for the wave equation can be regarded as a variant

of the time-domain interpolation-based FMM for the heat equation in [23]. In fact, these FMMs have some similarities

in their formulations. The difference essentially originates in the properties of the kernels in relevant boundary integral

equations. To be specific, the heat kernel is very smooth and decays exponentially when the distance between the target

and source increases, i.e. it decays as exp(−r2/(4T )), where r and T denote distances in space and time, respectively.

Hence, one can ignore pairwise interactions when r is sufficiently large. In contrast, the kernel for the wave equation is

always nondifferentiable on the wavefront and decays more slowly, i.e. 1/r. Therefore, one needs to consider a formulation

that is different from the heat equation, especially in the multipole-to-local (M2L) operation.

The remainder of this paper is organised as follows: Section 2 summarises the basics of the conventional MOT-based

TDBIEM for the wave equation. Section 3 highlights the mathematical aspect of the proposed interpolation-based FMM used

to accelerate the TDBIEM. In Section 4, from the formulae derived in Section 3, the proposed algorithm is developed in a

similar manner of the multilevel PWTD algorithm. In Section 5, the constructed fast TDBIEM is numerically investigated to

validate its computational accuracy and time in comparison with the conventional TDBIEM.

2. Time-domain boundary integral equation method for the wave equation

This section summarises the conventional MOT-based TDBIEM (e.g. [24]), which is accelerated using the fast algorithm

that will be described in Sections 3 and 4. Following the accurate and memory-efficient TDBIEM for elastodynamics [25,26],

this study considers a TDBIEM (for the wave equation) that is based on the collocation method that uses the piecewise-

constant and piecewise-linear bases for space and time, respectively. The selection of these bases is not absolutely necessary,

but the formulation of the proposed fast algorithm depends on the selection to some extent.

2.1. Boundary integral equation

Let D be a domain in R
3 with the piecewise-smooth boundary ∂D and let t denote time. Suppose that D is filled

with a homogeneous and isotropic medium with a constant c (> 0), which is the wave (phase) velocity. The concerned

initial–boundary value problem is to solve the field u from the wave equation

△u(x, t) =
1

c2

∂2u

∂t2
(x, t) for x ∈ D, t > 0 (1)

subject to the null initial condition, i.e. u = ∂u
∂t

= 0 for t � 0, and the typical boundary conditions, i.e. either u or q := ∂u
∂n

is

given on each point in ∂D for t > 0, where n is the unit outward normal to ∂D .

As is well known, this problem is reduced to solve the following boundary integral equation (BIE):

1

2
u(x, t) =

t∫

0

∫

∂D

(
Γ (x− y, t − s)q(y, s) −

∂Γ

∂ny

(x, y, t − s)u(y, s)

)
dsdS y for x ∈ ∂D, t > 0, (2)

where Γ (x, t) := δ(t−|x|/c)
4π |x| denotes the fundamental solution with Dirac’s delta function δ.
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Fig. 1. Temporal piecewise-linear basis for t = tβ (solid line). This basis can be decomposed to three truncated power functions (dashed lines).

Note that even if D is unbounded, the BIE in (2) holds without requiring any artificial condition, i.e. the absorbing

boundary conditions (ABCs). This property has an advantage over major solvers, such as the finite-difference time-domain

(FDTD) method and finite element method (FEM), because these methods always request such ABCs in the case of external

problems. To analyse external scattering problems using the BIEM, one may append a given incident field to the right-hand

side (RHS) of (2).

2.2. Discretisation

The collocation method is adopted to solve the BIE in (2). To discretise (2), the boundary is represented with Ns triangular

boundary elements E i (1� i � Ns) and the temporal axis is segmented at tα := α�t (α = 0,1,2, . . .), where �t denotes a

constant time-step size given a priori. The centre of E i , which is denoted by xi , and tα are selected as the spatial and

temporal collocation points, respectively.

The boundary densities u and q are approximated with the piecewise-constant and piecewise-linear bases for space

and time, respectively. For conciseness, uα
i

(respectively, qα
i
) denotes the value of u (respectively, q) on E i at tα . Then, the

boundary density denoted by ϕ for u and q is expressed for any x ∈ E i and t > 0 as follows:

ϕ(x, t) ≈
∑

β=1

ϕ
β

i

(
(t − tβ−1)+

�t
− 2

(t − tβ)+
�t

+
(t − tβ+1)+

�t

)
, (3)

where each piecewise-linear basis is expressed by a linear combination of three truncated power functions with exponent

one, which is denoted by x+ := max(x,0), to simplify the successive formulation (Fig. 1).

By substituting (3) in (2) and calculating the temporal integral, one can obtain the following discretised BIE at the αth

time-step (α = 1,2, . . .):

Ns∑

j=1

Ai jx
α
j =

Ns∑

j=1

B i j y
α
j −

α−1∑

β=1

Ns∑

j=1

({
W

(α−β+1)
i j

− 2W
(α−β)

i j
+ W

(α−β−1)
i j

}
u

β

j

−
{
U

(α−β+1)
i j

− 2U
(α−β)

i j
+ U

(α−β−1)
i j

}
q
β

j

)
for 1� i � Ns, (4)

where

U
(γ )

i j
:=

1

�t

∫

E j

tγ∫

0

Γ (xi − y, tγ − s)sdsdS y =
1

4πc�t

∫

E j

(ctγ − |xi − y|)+
|xi − y|

dS y, (5a)

W
(γ )

i j
:=

1

�t

∫

E j

tγ∫

0

∂Γ

∂ny

(xi, y, tγ − s)sdsdS y =
1

4πc�t

∫

E j

ctγ (xi − y) · n(y)

|xi − y|3
H(ctγ − |xi − y|)dS y . (5b)

Here, H denotes the Heaviside function, and U
(γ )

i j
:= 0 and W

(γ )

i j
:= 0 if γ � 0. Further, xα

j
(respectively, yα

j
) represents

the unknown (respectively, given) uα
j
or qα

j
on E j at the current time-step α. The coefficients Ai j and B i j coincide with

either ±U
(1)
i j

or ±W
(1)
i j

according to the boundary condition on E j . Because of the truncated power functions, the spatial

integrals in (5) can be calculated analytically [26], whereas the fast TDBIEM presented below considers the spatial integrals

numerically.

One can solve (4) for the unknown xαj when the RHS is computed with u
β

j , q
β

j , and yα
j , i.e. the data of all the elapsed

time-steps β and the current time-step α.

Note that the influence coefficients U
(γ )

i j and W
(γ )

i j represent the source information emitted tγ ago from E j and subse-

quently observed at xi . Here, the index γ represents the time-difference and not the time-step. Consequently, matrices U(γ )
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and W(γ ) , which consist of elements U
(γ )

i j
and W

(γ )

i j
, respectively, derive a narrow (respectively, wide) band when γ is

small (respectively, large).

Finally, a useful property of the influence coefficients is worth mentioning. Although U
(γ )

i j
and W

(γ )

i j
can have non-zero

values for any γ , one can prove that the triplets U
(γ +2)

i j
− 2U

(γ +1)

i j
+ U

(γ )

i j
and W

(γ +2)

i j
− 2W

(γ +1)

i j
+ W

(γ )

i j
in the RHS of (4)

exactly vanish if the time difference tγ is sufficiently large to satisfy ctγ > |xi − y| for any y ∈ E j for a pair of i and j.

This indicates that the influence coefficients U
(γ )

i j
and W

(γ )

i j
for a sufficiently large γ are not necessarily computed. The

minimum value of γ for arbitrary pairs of i and j is given by a constant

γmin := ceil

(
maxx,y∈∂D |x− y|

c�t

)
, (6)

where the numerator in the RHS represents the size of the boundary ∂D . Note that γmin cannot exceed Nt , i.e. the upper

bound of γmin is Nt .

2.3. Issues of conventional TDBIEM

In the conventional TDBIEM or direct method, computing multiple matrix-vector products (W(·)u· and U(·)q·) in the RHS

of (4) is the most time-consuming process. The computational complexity scales as O(N2
s Nt), where Nt denotes the total

number of time-steps; the exponent of Nt is not two because the number of the elapsed time-steps β to be considered

is bounded by the constant γmin for every α. The quadratic complexity in space restricts the conventional TDBIEM from

analysing large-scale problems. The FMM presented in Sections 3 and 4 aims at reducing the computational cost.

On the other hand, in general the cost required to solve (4) for the current unknown vector xα does not matter in general

because the matrix A is associated with the narrow band matrices U(1) and W(1) . Hence, achieving the solution requires a

computational cost of O(Ns) every time-step, resulting in O(NsNt) for all time-steps.

Another issue of the conventional TDBIEM is the significant memory consumption. To avoid calculation of the same

time-difference in different time-steps, it is usual to store the non-vanishing coefficients W
(γ )

i j
and U

(γ )

i j
for every time-

difference γ (only if γ < γmin). Therefore, the memory requirement is O(N2
s γmin), although the exponent of Ns is in fact

less than two because U(γ ) and W(γ ) are sparse when γ is small. If it is impossible to store all values, one may store a part

of the coefficients and recalculate the unstored coefficients; however, such recalculations increase the computational time.

It should be noted that regardless of which non-zero coefficients are stored, the computational complexity of the conven-

tional TDBIEM is O(N2
s Nt) because matrix-vector products, each of which incurs a cost of O(N2

s ), are performed (at most

γmin times) for every time-step in the RHS of (4).

To resolve the memory consumption issue, it is worth mentioning that the memory-saving algorithm [25] can reduce the

upper bound of γmin in (6) from Nt to Nt/2 without any computational penalty. Although this study exploits this efficient

algorithm, memory shortage (thus, the recalculation of some influence coefficients) can still arise in large-scale problems.

For the sake of readability, the details of this auxiliary algorithm are not described in this paper.

3. Formulation of time-domain interpolation-based FMM

Let us develop a fast method to evaluate the RHS of (4). To this end, this study proposes an interpolation-based FMM,

which is based on approximating the integral kernel(s) of interest through interpolation. This section derives the formulae

to construct the FMM discussed in Section 4.

3.1. Interaction between two clusters in space–time

For simplicity, (4) is equivalently rewritten with respect to a single time-difference α − β + 1 as follows:

Ns∑

j=1

Ai jx
α
j =

α∑

β=1

Ns∑

j=1

(
U

(α−β+1)
i j

τ
β

j
− W

(α−β+1)
i j

σ
β

j

)
, (7)

where, to simplify the notation, σ
β

j
and τ

β

j
are defined as follows:

σ
β

j
:= u

β

j
− 2u

β−1
j

+ u
β−2
j

, τ
β

j
:= q

β

j
− 2q

β−1
j

+ q
β−2
j

.

Here, u
β

j
= q

β

j
= 0 if β � 0 because of the null initial condition. Further, in the definitions of σ ·

j
and τ ·

j
, the unknown density

at the current time-step α, i.e. either uα
j or qα

j for each j, is set to zero because it is exactly xαj in the left-hand side (LHS)

of (7). Note that σ
β

j
and τ

β

j
are already known at the current time-step α.

Now, let us focus on one part of the RHS of (7), i.e. the interaction between two clusters that are separated from each

other in space–time (see Fig. 2). Specifically, let O and S be separated cubes (or cells) with the same edge length 2hs(=: ds).
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Fig. 2. Schematic illustration to evaluate the layer potential in (8), which is associated with the observation cluster O × I and the source cluster S × J ,

through the three FMM-steps formulated in Section 3.3. The space is represented in one dimension for explanation.

The centres of O and S are denoted by Ō and S̄ , respectively. Further, let I and J be non-overlapping time-intervals with

the same length 2ht(=: dt) and centres Ī and J̄ , respectively. Then, the RHS of (7) regarding the influence from the source

cluster S × J to the observation (target) cluster O × I , where Ī > J̄ is assumed without the loss of generality because of the

causality, is represented as follows:

1

4πc�t

∑

tβ∈ J

∑

E j⊂S

(
τ

β

j

∫

E j

U (xi, y, tα, tβ − �t)dS y − σ
β

j

∫

E j

W (xi, y, tα, tβ − �t) · n(y)dS y

)
for xi ∈ O , tα ∈ I,

(8)

where U and W are referred to as the single- and double-layer kernels, respectively, and are defined from (5) as follows:

U (x, y, t, s) :=
(c(t − s) − |x− y|)+

|x− y|
, (9a)

W (x, y, t, s) := ∇yU (x, y, t, s) =
c(t − s)(x − y)

|x− y|3
H

(
c(t − s) − |x− y|

)
. (9b)

In the following sections, several formulae of the proposed interpolation-based FMM used to compute (8) are described.

3.2. Approximation of U and W with interpolation

According to the methodology adopted in previous studies on the interpolation-based FMM [19–23] (where the time-

domain case is investigated only in [23]), the kernels U and W in (9) are approximated using certain interpolation functions.

The approximated kernels are expressed in a degenerate form [7], i.e. in the form of the separation of variables, which is

necessary to develop an FMM-like algorithm. Unlike the previous studies (especially, [23]), the kernels under investigation

lack smoothness on the wavefront, i.e. the sphere |x− y| = c(t − s) with centre y and radius c(t − s). More precisely, U is

nondifferentiable and W (= ∇yU ) is discontinuous on the wavefront. These properties can lead to undesirable oscillations

when the kernels are interpolated, as will be observed in Section 5.1. Nonetheless, the numerical examples in Sections 5.2

and 5.3 will show that the proposed interpolation-based FMM can work well for the TDBIEM for the wave equation.

Note that, because U and W in (9) are obtained from the temporal convolution of the fundamental solution with a

given temporal basis (recall (5)), the smoothness of U and W originates in that of the piecewise-linear basis selected in this

study. Hence, if a smoother basis is used, the accuracy of interpolation can improve. However, thus far, the present author

has not discovered any appropriate base that is not only sufficiently smooth but also computationally cost-effective.

Let us consider an interpolation scheme such that the given function f (x) defined in [−1,1] is approximated by

f̃ (x) =
∑

i<p

f
(
ω

p

i

)
ℓi(x), (10)

where
∑

i<p abbreviates
∑p−1

i=0 , ℓi(x) represents the prescribed interpolants, and ω
p

i
∈ [−1,1] denotes the prescribed nodes

where f is sampled.

Applying any interpolation in the form of (10) to the eight variables of U (viz. x1 , x2 , x3 , y1 , y2 , y3 , t , and s) individually,

one can approximate U as

Ũ (x, y, t, s) =
∑

a<ps

∑

b<ps

∑

m<pt

∑

n<pt

Ua,b,m,n(O , S, I, J )ℓa

(
x− Ō

hs

)
ℓb

(
y − S̄

hs

)
ℓm

(
t − Ī

ht

)
ℓn

(
s − J̄

ht

)
, (11)

where ps and pt are the prescribed number of nodes for spatial and temporal interpolations, respectively. Also, the values

of U at the p6
s p

2
t nodes are denoted by
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Ua,b,m,n(O , S, I, J ) := U
(
Ō + hsω

ps
a , S̄ + hsω

ps
b

, Ī + htω
pt
m , J̄ + htω

pt
n

)

with the nodal vector ω
ps
v := (ω

ps
v1 ,ω

ps
v2 ,ω

ps
v3 ) ∈ [−1,1]3 , and the following abbreviation is used:

∑

v<ps

ℓv(z) :=
∑

v1<ps

∑

v2<ps

∑

v3<ps

ℓv1(z1)ℓv2(z2)ℓv3(z3)

for v = a,b and z := (z1, z2, z3) ∈ [−1,1]3 . The RHS of (11) is in the form of the separation of variables. Indeed, the four

independent variables x ∈ O , y ∈ S , t ∈ I , and s ∈ J are separated by four individual interpolants. Note that one can adopt

different interpolation schemes (interpolants or nodes) for different variables in general, although this study uses the same

scheme (see Section 5.1).

On the other hand, the double-layer kernel W is not interpolated directly. Instead, because W = ∇yU holds, the approx-

imation of W , which is denoted by W̃ , is obtained from ∇y Ũ , where ∇y operates on ℓb in (11). Note that the discontinuous

double-layer kernel is consequently smoothed across the wavefront according to the smoothness of ℓb .

3.3. FMM-like expression for the layer potential in (8)

The interpolated kernels Ũ and W̃ in the previous section are substituted in U and W in the layer potential of interest

in (8) to yield the following FMM-like expression:

1

4πc�t

∑

tβ∈ J

∑

E j⊂S

(
τ

β

j

∫

E j

U (xi, y, tα, tβ − �t)dS y − σ
β

j

∫

E j

W (xi, y, tα, tβ − �t) · n(y)dS y

)

≈
∑

a<ps

∑

m<pt

ℓa

(
xi − Ō

hs

)
ℓm

(
tα − Ī

ht

)
La,m(O , I) for xi ∈ O , tα ∈ I. (12)

This is the so-called local expansion of the layer potential and La,m is the local-coefficient computed by the multipole-to-local

(M2L) formula

La,m(O , I) :=
∑

b<ps

∑

n<pt

Ua,b,m,n(O , S, I, J )Mb,n(S, J ), (13)

where Mb,n represents the so-called multipole moment:

Mb,n(S, J ) :=
1

4πc�t

∑

tβ∈ J

∑

E j⊂S

ℓn

(
tβ − �t − J̄

ht

)∫

E j

(
τ

β

j
ℓb

(
y − S̄

hs

)
− σ

β

j
∇yℓb

(
y − S̄

hs

)
· n(y)

)
dS y . (14)

Eqs. (12), (13), and (14) are the fundamental formulae that will be used to develop the proposed FMM-like algorithm.

Finally, it is worth noting that the M2L translation in (13) can be accelerated by the fast Fourier transform (FFT). To this

end, this study assumes that the nodes ω
p·
i

are equidistant. Then, because the kernel U in (9a) is a translation-invariant

function [20] with respect to space and time, the M2L translator Ua,b,m,n in (13) can be re-expressed as Ua−b,m−n , where

a−b ∈ (−ps, ps)
3 and m−n ∈ (−pt, pt) are the two new indices replacing the four original indices, and the M2L translation

is therefore rewritten as La,m =
∑

b

∑
n Ua−b,m−nMb,n . This can be identified as a 4D discrete Fourier convolution, and can

be computed efficiently using the 4D FFT. The computational cost can be reduced from O(p6
s p

2
t ) to O(p3

s pt(log ps + log pt)).

This study utilises the FFTW library [27,28], specifically, the routines fftw_execute_dft_{r2c,c2r} from the class of

‘multi-dimensional DFTs of real data’. This technique is called the FFT-based diagonalisation method and it was originally

proposed for the interpolation-based FMM in the frequency domain [22].

3.4. M2M and L2L formulae

To construct a multi-level FMM, one needs the so-called multipole-to-multipole (M2M) and local-to-local (L2L) formulae

that translate the multipole moment and local coefficient, respectively, across two levels in the space–time hierarchy, which

will be defined in Section 4.1. These formulae can be derived with the help of the interpolation of interpolants [23], i.e.

ℓi

(
t − s

2

)
≈

∑

j<p

ℓi

(
ω

p

j
− s

2

)
ℓ j(t) =

∑

j<p

D i, j(s)ℓ j(t), (15)

where s, t ∈ [−1,1] and D i, j(s) := ℓi(
ω

p
j
−s

2
).

Now, let S ′ be one of the eight sub-cells (children) of S (see Fig. 3). Denote the edge length of S ′ by 2h′
s , where h′

s = hs/2

is assumed. Similarly, let J ′ be one of the two sub-intervals of J . Denote the length of J ′ by 2ht , where h′
t = ht/2. Then,

one can derive the following M2M formula by applying (15) to (14):
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Fig. 3. Schematic illustration for the M2M and L2L translations. Let C = S and K = J in the M2M translation in Eq. (16) and C = O and K = I in the L2L

translation in Eq. (17). The space is represented in one dimension for explanation.

Fig. 4. Schematic illustration of computing La,m(O , I ′) (i.e. the mth component of the local-coefficient for a time interval I ′) from La,m(O , I) (i.e. the same

component of the local-coefficient for a time-interval I) according to Eq. (18a).

Mb,n(S, J ) ≈
∑

b′<ps

∑

n′<pt

Db,b′

(
S̄ − S̄ ′

h′
s

)
Dn,n′

(
J̄ − J̄ ′

h′
t

)
Mb′,n′

(
S ′, J ′

)
, (16)

where the identities
y−S̄
hs

= 1
2
(
y−S̄ ′

h′
s

− S̄−S̄ ′

h′
s

) and
tβ−1− J̄

ht
= 1

2
(
tβ−1− J̄ ′

h′
t

− J̄− J̄ ′

h′
t

) are considered. Further,
∑

b′<ps
Db,b′(z) repre-

sents

∑

b1<ps

∑

b2<ps

∑

b3<ps

Db1,b
′
1
(z1)Db2,b

′
2
(z2)Db3,b

′
3
(z3)

for z := (z1, z2, z3) ∈ [−1,1]3 .
Similarly, let O ′ be a sub-cell of O and I ′ be a sub-interval of I (see Fig. 3). Then, one can obtain the following L2L

formula:

La′,m′
(
O ′, I ′

)
≈

∑

a<ps

∑

m<pt

Da,a′

(
Ō − Ō ′

h′
s

)
Dm,m′

(
Ī − Ī ′

h′
t

)
La,m(O , I). (17)

Note that the prescribed parameters ps and pt are assumed to be constant through all the levels in the hierarchy, which

implies that the target of the proposed method is the low-frequency regime. Because the wavelength (respectively, period)

becomes relatively small as the spatial (respectively, temporal) scale becomes large, the approximation parameters ps and pt

should be sufficiently large to be able to approximate the wave field at the largest scale, i.e. at level 2.

3.5. Translation of the local-coefficient with respect to time

In principle, the source information for a certain time-interval must be transmitted to all time-intervals in the future. The

M2L formula in (13) can be used for this purpose; however its naïve application leads to a computational cost of O(N2
t ),

which is entirely unacceptable.

This issue can be avoided by computing the local-coefficient in a different manner from that in (13). Suppose that I is

far from J such that c(t − s) > |x− y| holds for any x ∈ O , t ∈ I , y ∈ S , and s ∈ J (see Fig. 4). Then, the kernel U is a linear

function with respect to t as follows:

U (x, y, t, s) =
c(t − s) − |x− y|

|x− y|
.

(Note that this property was used to derive (6).) Let I ′ be a time-interval such that Ī ′ > Ī (thus, I ′ is also sufficiently

separated from J ). Then, one can obtain

U
(
x, y, t′, s

)
= U (x, y, t, s) +

c

|x− y|
(
t′ − t

)
for t ∈ I, t′ ∈ I ′.

Substituting this equation in (13) where I is replaced with I ′ , one can obtain the following formula to compute the local-

coefficient for I ′ from that for I:
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Code 1 Main
Input parameters; basically, c, ∂D (boundary model and conditions), Ns , �t , Nt , ps , pt and Z .

Build the space–time hierarchy.

Initialise all the RHS vectors: let rα = 0 for α ∈ [1,Nt).

for time-step α = 1 to Nt − 1 do

Calculate the near-field component of the RHS vector rα for the current time-step α according to Code 2.

Solve Eq. (7) or Axα = rα to obtain the unknown vector xα .

Output the solution xα .

Calculate the far-field component of the RHS vectors rβ for the future time-steps (i.e. β > α) according to Codes 3 and 4.

end for

Fig. 5. Example of cells S in the interaction-list I (O ) and cells N in the neighbour-list N (O ). The cell with a thick border is O ’s parent. The white cells

at the same level as O represent empty cells. Meanwhile, a white cell at the same level as O ’s parent is either an empty cell or a leaf and such a leaf is

neither in I (O ) nor N (O ), but in the neighbour-list of O ’s parent. This illustration is in two dimensions for explanation.

La,m
(
O , I ′

)
= La,m(O , I) + L̇a(O , I)

(
Ī ′ − Ī

)
, (18a)

where

L̇a(O , I) :=
∑

b<ps

∑

n<pt

c

|(Ō + hsω
ps
a ) − ( S̄ + hsω

ps
b

)|
Mb,n(S, J ) (18b)

represents the first-order time derivative of the local-coefficient for I . As described in Section 4.3.2, one can perform the

M2L operation with the computational cost of O(Nt) by using another M2L formula in (18), which is meant for the condi-

tion Ī ≫ J̄ , together with the usual M2L formula in (13), which is meant for the condition Ī ∼ J̄ .

Note that in the RHS of (18b), the summation over n can be initially computed. If ω
ps
· are equidistant nodes, the resulting

RHS is of the form of discrete convolution with respect to b, and thus can be computed efficiently by the 3D FFT.

4. Algorithm

Using the formulae derived in the previous section, one can construct a fast algorithm to solve the BIE in (2) with the

computational complexity of O(N1+δ
s Nt), where δ is 1/3 or 1/2 according to the assumption of the spatial distribution

of Ns boundary elements. The details of the algorithm are described below along with four pseudo codes.

4.1. Main routine

Code 1 presents the main routine of the proposed TDBIEM. After the setup stage that includes the creation of the

space–time hierarchy, the unknown vector xα is solved from (7) or its matrix form Axα = rα for every time-step α
(= 1, . . . ,Nt − 1). Prior to the solution of (7), the RHS vector rα is computed using near- and far-field calculations. Here,

the evaluation of the RHS vectors using the multipole and local expansions is termed the far-field calculation. This calcu-

lation is based on the formulae given in Section 3 and the details are described in Section 4.3. On the other hand, the

remaining calculation is termed the near-field calculation and is performed in the conventional MOT manner, as described in

Section 4.2.

In the remaining part of this section, the space–time hierarchy and relevant concepts such as interaction-list, neighbour-

list, time-intervals, and time-gating are described.

Similar to ordinary FMMs, the proposed FMM utilises an adaptive (or non-uniform) octree for space to create the hi-

erarchy of boundary elements. According to the conventional manner, an octree is constructed by assigning the maximum

number of boundary elements per leaf, denoted by Z . The maximum (finest) level of the constructed octree is denoted

by lmax . Further, the length of edges of the cells (cubes) at level l (= 0, . . . , lmax) is denoted by 2h
(l)
s (=: d(l)

s ) as per the

notations used in Section 3.

With the help of the hierarchy of cells, the interaction-list of a certain cell O , which is denoted by I (O ), is defined as

the set of non-empty cells S at the same level as O . In particular, such a cell S in I (O ) must satisfy that S is not adjacent

to O and that S ’s parent is adjacent to O ’s parent. An interaction-list contains a maximum of 189 cells. Meanwhile, the

set of non-empty cells that are at the same level as O and adjacent to O is termed the neighbour-list of O and is denoted

by N (O ). There are at most 27 neighbour cells in N (O ), which includes O itself. Fig. 5 illustrates an example.
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Fig. 6. Example of the time hierarchy. The numbers represent the indices of time-intervals for each level.

Fig. 7. The region surrounded by the dashed line represents the region where the source influence (information) that radiates from the source cell S ,

which is one of the closest cells to O in the interaction-list I (O ), can reach within a given time d
(l)
t (the length of the given time-interval). Because

d
(l)
s � cd

(l)
t is guaranteed by Eqs. (19) and (20), the influence from any S ⊂ I (O ) never reaches the inside of O within the time d

(l)
t . This figure illustrates

a two-dimensional case for explanation.

The hierarchy of time-intervals is created from the abovementioned spatial hierarchy. The length of the time-intervals

associated with (spatial) level l is denoted by 2h
(l)
t (=: d(l)

t ). Then, the number of time-steps per d
(l)
t , which is denoted

by M
(l)
t , is recursively determined as follows:

M
(lmax)
t := floor

(
d

(lmax)
s

c�t

)
and M

(l)
t := 2M

(l+1)
t for 2� l < lmax, (19)

where the levels 0 and 1 are ignored because the proposed algorithm does not use any cells at these levels, as in ordi-

nary FMMs. From (19), d
(l)
t is determined as

d
(l)
t := M

(l)
t �t for 2� l� lmax. (20)

From (20), the ith time-interval at level l is defined by

I
(l)
i

:=
(
id

(l)
t , (i + 1)d

(l)
t

]
for i = 0,1,2, . . . .

Fig. 6 illustrates the hierarchy (basically, a binary tree) of time-intervals. Obviously, each time-interval consists of two sub-

intervals, except for the lowest level lmax; in general, the sub-intervals of I
(l)
i are given by I

(l+1)
2i and I

(l+1)
2i+1 .

Note that the relationship d
(l)
s � cd

(l)
t , which is obtained from (19) and (20), guarantees that for every observation cell O

at level l, influence (information) from any source cells S ⊂ I (O ) takes time d
(l)
t or more before arriving at O (see Fig. 7).

Therefore, one can delay the instant to perform the far-field calculation for the underlying time-interval I
(l)
i

until the end of

the time-interval. At the end, it is allowed to create the multipole moment for I
(l)
i

and translate it to the local-coefficient

for future time-intervals, i.e. I
(l)
i+1, I

(l)
i+2, . . . . This method is borrowed from the PWTD algorithm [6] and is referred to as

time-gating.

4.2. Near-field calculation

The near-field calculation is performed at every time-step (see Code 2). Let α be the current time-step and O be a cell

at level l. Then, if O or S ⊂ N (O ) is a leaf, one directly computes the relevant part of rα , i.e.

α∑

β=α−γ
(l)
min

∑

E j⊂S

(
U

(α−β+1)
i j

τ
β

j
− W

(α−β+1)
i j

σ
β

j

)
for every xi ∈ O , (21)
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Code 2 Near-field calculation
The current time-step is α.

for level l = 2 to lmax do

for cell O in level l do

for cell S in the neighbour-list N (O ) do

if O or S is a leaf then

for collocation point xi in O do

for boundary element E j in S do

for time-step β = α − γ
(l)

min
to α do

Calculate (21), i.e. the contribution from (E j , tβ ) to (xi , tα). The result is accumulated to the ith component of the current RHS

vector rα , which already contains the contribution for the far-field calculation.

end for

end for

end for

end if

end for

end for

end for

Code 3 Upward pass in the far-field calculation

The current time-step is α.

for level l = lmax to 2 do

if α mod M
(l)
t is 0 then

Denote the index of the current time-interval α

M
(l)
t

− 1 by i (� 0).

for cell S in level l do

if S is a leaf then

Compute M(S, I
(l)
i ) according to Eq. (14).

else

Compute M(S, I
(l)
i ) from M(S ′, I(l+1)

2i ) and M(S ′, I(l+1)
2i+1 ) for every child S ′ according to Eq. (16).

end if

end for

end if

end for

where not all but only the last γ
(l)

min
time-steps may be considered because the influence from S passes over O after a

specific period. Similar to γmin in (6), the constant γ
(l)

min
is given by

γ
(l)

min
:= ceil

(
2
√
3d

(l)
s

c�t

)
, (22)

where the numerator in the RHS represents the maximum distance between O and S ⊂ N (O ) at level l.

Using the memory-saving algorithm [25] from the conventional TDBIEM (recall Section 2.3), the proposed TDBIEM stores

non-zero coefficients U
(·)
i j

and W
(·)
i j

in (21) as much as possible to avoid calculating the same coefficients in different

time-steps. The proposed TDBIEM requires less memory than the conventional TDBIEM because γ
(l)

min
< γmin holds. However,

even if non-zero coefficients are stored, the computational complexity given in Section 4.4 does not decrease because the

complexity of computing the relevant matrix-vector products U(·)τ · and W(·)σ · is essentially the same as that of filling the

matrices.

4.3. Far-field calculation

The far-field calculation is performed through the upward pass and the subsequent downward pass.

4.3.1. Upward pass

Starting from level lmax towards 2, one computes multipole moments (see Code 3). This computation is in fact done for

levels l such that the current time tα meets the end of the current time-interval, which is denoted here by I
(l)
i
. (Recall the

note in Section 4.1 for the instant at which the far-field calculation is performed.) For all the cells at such levels l, their

moments for I
(l)
i

are computed.

In particular, if S is a leaf at level l, one computes S ’s moment for the current time-interval I
(l)
i

according to (14), where

the spatial integral is numerically evaluated using the triangular Gaussian quadrature [29]; the three-points formula is used

in the actual computation in Section 5.

Alternatively, if S is not a leaf, one computes the moment of S for I
(l)
i by collecting the moments of S ’s children for I

(l)
i ’s

sub-intervals (i.e. I
(l+1)
2i and I

(l+1)
2i+1 ) according to the M2M formula in (16).



T. Takahashi / Journal of Computational Physics 258 (2014) 809–832 819

Code 4 Downward pass in the far-field calculation

The current time-step is α.

for level l = 2 to lmax do

if α mod M
(l)
t is 0 then

Denote the index of the current time-interval α

M
(l)
t

− 1 by i (� 0).

for cell O in level l do

for cell S in I (O ) do

Compute L(O , I
(l)
i+1), . . . , L(O , I

(l)
i+μ+1) from M(S, I

(l)
i

) according to Eq. (24).

Compute L̇(O , I
(l)
i+μ+1) from M(S, I

(l)
i ) according to Eq. (18b).

end for

Compute L(O , I
(l)
i+μ+2) according to Eq. (25).

Compute L̇(O , I
(l)
i+μ+2) according to Eq. (26).

if O is a leaf then

Evaluate the filed for any xi ∈ O and tβ ∈ I
(l)
i+1 with L(O , I

(l)
i+1) according to Eq. (12) (where I and tα read I

(l)
i+1 and tβ , respectively).

else

Compute L(O ′, I(l+1)
2(i+1)) and L(O ′, I(l+1)

2(i+1)+1) from L(O , I
(l)
i+1) for every child O ′ according to Eq. (17).

end if

end for

end if

end for

Fig. 8. Translation from the multipole moment for the current time-interval I
(l)
i to the local-coefficients for future time-intervals.

4.3.2. Downward pass

Beginning from level 2 towards lmax , one computes the local-coefficients and evaluates the RHS vectors rβ for the future

time-steps β ( > α) (see Code 4). The instant at which the downward pass is performed is the same as that for the upward

pass.

First, for every cell O at each relevant level, the local-coefficient of O is computed from the moments of S in I (O )

according to the M2L formula in (13). As noted in Section 4.1, S for the current time-interval I
(l)
i

cannot interact with O

during the same time-interval. Hence, one translates S ’s moment for the current time-interval I
(l)
i

to O ’s local-coefficients

for the future time-intervals, i.e. I
(l)
i+1 , I

(l)
i+2 , . . . .

However, the M2L formula in (13) is not allowed to manage all future time-intervals from the viewpoint of the compu-

tational cost, as mentioned in Section 3.5. To avoid this issue, the naïve M2L formula in (13) is applied to a finite number of

future time-intervals I
(l)
i+1, . . . , I

(l)
i+μ+1 , which are relatively close to the current time-interval I

(l)
i . Meanwhile, another M2L

formula in (18) is applied to the remaining future time-intervals I
(l)
i+μ+2, I

(l)
i+μ+3, . . . , which are sufficiently away from the

current time-interval I
(l)
i
.

The above constant μ is determined so that the prerequisite of (18) is satisfied for this case. Namely, c(t − s) > |x− y|
must be satisfied for any x ∈ O , t ∈ I

(l)
i+μ+1 , y ∈ S ⊂ I (O ), and s ∈ I

(l)
i
. Because min(t − s) = μM

(l)
t �t and max |x− y| =

4
√
3d

(l)
s hold, one can determine μ such that it is minimised, i.e.

μ = floor

(
4
√
3d

(l)
s

cM
(l)
t �t

)
= 8, (23)

where (19) is used. Note that μ is independent of levels.

Let us state the M2L operation in detail. On the one hand, the moment for the current time-interval I
(l)
i is translated to

the local-coefficients for I
(l)
i+1, . . . , I

(l)
i+μ+1 as follows (see Fig. 8):

La,m
(
O , I

(l)
j

)
+=

∑

S⊂I (O )

∑

b<ps

∑

n<pt

Ua,b,m,n

(
O , S, I

(l)
j

, I
(l)
i

)
Mb,n

(
S, I

(l)
i

)
for j = i + 1, . . . , i + μ + 1, (24)

where ‘+=’ represents adding the LHS by the RHS. This incremental operation is necessary because the LHS may already

have a value given by (i) the M2L translations for the elapsed time-intervals and/or (ii) the L2L translation from the upper

level l − 1 for the current time-interval (see below).
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On the other hand, the local-coefficients for the other time-intervals, i.e. I
(l)
i+μ+2, I

(l)
i+μ+3, . . . , are computed using the

second M2L formula in (18). However, if one simply applies this formula to all these time-intervals, the computational cost

becomes O(N2
t ) after all computations. To achieve linear complexity, one may apply (18a) only to the first time-interval

I
(l)
i+μ+2 , i.e. one may translate the local-coefficient for I

(l)
i+μ+2 from that for I

(l)
i+μ+1 as follows:

La,m
(
O , I

(l)
i+μ+2

)
+= La,m

(
O , I

(l)
i+μ+1

)
+ L̇a

(
O , I

(l)
i+μ+1

)
d

(l)
t , (25)

where the rate L̇a(O , I
(l)
i+μ+1) is computed by (18b) where I = I

(l)
i

and J = I
(l)
i+μ+1 . Once (25) is computed, one superimposes

the rate for I
(l)
i+μ+1 to that for the next time-interval I

(l)
i+μ+2 as follows:

L̇a
(
O , I

(l)
i+μ+2

)
+= L̇a

(
O , I

(l)
i+μ+1

)
. (26)

The procedure given by (25) and (26) is equivalent to the direct application of the M2L translation from the moment for I
(l)
i

to the local-coefficients for I
(l)
i+μ+2, I

(l)
i+μ+3, . . . .

Note that the rate in the RHS of (26) is no longer used after (26) has been computed. Hence, the memory required for

these rates is considerably small. Moreover, once a multipole moment for a certain time-interval is used in (24) and (18b),

it can be eliminated unless it is used in the M2M translation in the next time-interval. As a result, one may provide two

memory spaces to the multipole moment of each cell; one for the even time-intervals and the other for odd time-intervals.

Next, if O is not a leaf, O ’s local-coefficient for the next time-interval I
(l)
i+1 is translated to its children according to (17).

Alternatively, if O is a leaf, one evaluates the field (the layer potential) for all the time-steps in I
(l)
i+1 with the local-coefficient

for I
(l)
i+1 according to (12). Note that, once a local-coefficient for I

(l)
i+1 is used in either operation, it is no longer used, and

thus may be immediately discarded. As a result, one may store local-coefficients only for μ + 2 (= 10) time-intervals in

every cell.

4.4. Computational complexity

To calculate the computational complexity of the proposed algorithm (say, the multilevel time-domain interpolation-

based FMM), it is assumed that Ns boundary elements are distributed either (i) uniformly or (ii) flatly in a fixed domain.

In the case of (i), the resulting octree is uniform and thus there are 8l cells at level l. Meanwhile, in the case of (ii), the

octree is regarded as a uniform quad-tree and thus there are 4l cells at level l. In addition, it is assumed that the num-

ber of boundary elements per leaf is constant, i.e. Z ∼ 1, where Z is defined in Section 4.1. Then, because all the leaves

exist in the finest level lmax , Ns = Z · 8lmax and Ns = Z · 4lmax hold in the case of (i) and (ii), respectively. Moreover, recall

that γ
(l)

min
∝ d

(l)
s ∼ 2−l , d

(l)
t ∝ M

(l)
t ∼ 2−l , and μ, ps, pt ∼ 1. Thus, the computational complexity is calculated as O(N

4/3
s Nt)

and O(N
3/2
s Nt) in the case of (i) and (ii), respectively (For details, see Appendix A). Therefore, the proposed TDBIEM is

essentially faster than the conventional one that has the computational complexity of O(N2
s Nt).

Note that the time-step size �t does not explicitly appear in the above calculation, implying that �t can be arbitrarily

chosen. However, an excessive �t can make M
(lmax)
t in (19) zero and thus the algorithm fails. Hence, �t is assumed to be

sufficiently small for any Ns and l under consideration.

4.5. Optimisation of codes

The fast and conventional TDBIEM codes used in this paper are parallelised by multiple threads running on a computer.

Similar to ordinary FMMs, the fast TDBIEM has a parallelism with respect to cells at each level. Meanwhile, the conventional

TDBIEM has a parallelism with respect to the row index i and column index j (in fact, only j is considered) when storing

the influence coefficients U
(γ )

i j
and W

(γ )

i j
in (5) and another parallelism with respect to i when computing the matrix-vector

products in (4). In the codes, the loops corresponding to these parallelisms are parallelised by inserting the OpenMP directive

‘#omp parallel for’ for the case of the C/C++ language [30].

In spite of the FFT acceleration, the M2L translation in (13) or (24) is often time-consuming because of the large

pre-factor 189(μ + 1) and the overhead of FFT. To relieve this, an easy and effective optimisation is to pre-compute the

translator Ua−b,m−n (recall Section 3.3). Specifically, one may first compute Ua−b,m−n(O , S, I, J ) for all the 316 (= 73 − 33)

pairs of O and S and all the μ + 1(= 9) pairs of I and J . Here, each translator is a real square matrix with dimension

(2ps − 1)3(2pt − 1). Subsequently, one may apply the 4D-FFT to each translator and store the Fourier transformed data.

Note that this pre-computation is independent of levels.

In addition, it is effective to fuse the three loops (summations) over spatial variables (e.g. b1 , b2 , and b3 in the M2M

operation in (16)) into a loop of length p3
s because SIMD units (i.e. Intel’s AVX unit in this study [31]) can work efficiently

for long loops. This is certainly effective to compute (12), (14), (16), and (17).
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Fig. 9. Configuration to compute the error resulting from the cubic Hermite interpolation.

5. Numerical experiments

This section addresses the numerical aspects of the proposed interpolation-based TDBIEM. First, the interpolation of the

kernels U and W in (5) is examined in Section 5.1. Next, in Section 5.2, the accuracy and performance of the proposed TD-

BIEM are validated by performing analysis for an external scattering problem. Finally, in Section 5.3, a simulation regarding

architectural acoustics is demonstrated to observe the feasibility of the proposed method to solve practical problems. All

computations are performed in double precision.

5.1. Interpolation

This study employs the cubic Hermite interpolation (CHI; see Appendix B) for both spatial and temporal interpolations

of U in (11), using equidistant nodes, i.e. ω
p

i
:= 2i

p−1
− 1 for 0� i < p, which is necessary to use the FFT-based diagonali-

sation method. However, because the CHI requires the data of the first derivative of a function to be interpolated, it does

not obey (10), which assumes that a given function f is interpolated only with its values. To resolve this problem, the first

derivative is approximated by a finite difference as described in Appendix B.

In contrast to global interpolations (e.g. Lagrange interpolation), local interpolations that includes the CHI are relatively

robust near nondifferentiable or discontinuous points, whereas global interpolations can exhibit severe oscillations (over/un-

der shoots) in general. In addition, the computational cost of local interpolations is less than that of global ones; the cost of

a local (respectively, global) interpolation is O(p) (respectively, O(p2)) to evaluate f̃ (x) in (10) for a certain x.

Let us investigate the error resulting from CHI. Now, U (x, y, t, s) and its gradient are examined with respect to (x, t)

in the observation cluster O × I and (y, s) in the source cluster S × J for a certain level l (see Fig. 9). To make the two

clusters interact strongly, let O and S be separated by the length d
(l)
s (i.e. S is one of the nearest cells in the interaction-list

of O ) and let I be next to J , where J := (0,d
(l)
t ] and I := (d

(l)
t ,2d

(l)
t ] without loss of generality. Here, it is assumed that d

(l)
s

and d
(l)
t satisfy d

(l)
s = cd

(l)
t , which is derived from (19) and (20) if one ignores a small variation owing to the floor operation

in (19). For the source, let y := (0,0,0) and s := 0. With respect to the observer, let x be the 50 equally-spaced points on

the x1-axis in O and let t be the 50 equally-spaced points in I .

Because the wavefront goes through O × I in the above configuration, the present test is a strict one from the viewpoint

of interpolation. Note that it is not allowed to adjust the positions of interpolation nodes (ω
p·
i
) according to the location of

wavefront because ω
p·
i

must be given a priori.

For the sake of generality, U and the gradient ∂U
∂ y1

(the other components are zero in the current configuration) are

re-expressed with the normalised distance ρ := |x−y|
d
(l)
s

= x1

d
(l)
s

and time τ := t−s

d
(l)
t

= t

d
(l)
t

as follows:

U =
(τ − ρ)+

ρ
,

∂U

∂ y1
=

1

d
(l)
s

τ

ρ2
H

(
τ

ρ
− 1

)
,

where d
(l)
s = cd

(l)
t is used.

For example, to observe how CHI works in the case of ps = pt = 8, Fig. 10 plots the absolute error of the interpolated

functions Ũ and d
(l)
s

∂ Ũ
∂ y1

(where d
(l)
s is used to eliminate the dependency on levels) against the exact values. Obviously, the

error is large near the wavefront, i.e. the line ρ = τ . Note that the error is slightly large near the line ρ = 1. This is because

the order of the finite difference used in CHI at the end nodes is not two, but one (see (B.2)).

Let us consider the general case. In the same configuration as the above, the relative error of the interpolated functions

compared to the exact functions are computed for various ps and pt . For simplicity, ps = pt is assumed and the common

value is designated by ps,t . The relative error is computed with the l2-norm as follows:

√∑
x∈O

∑
t∈I ( f̃ (x,0, t,0) − f (x,0, t,0))2∑
x∈O

∑
t∈I f (x,0, t,0)

2
for ( f̃ , f ) = (Ũ ,U ) or

(
∂ Ũ

∂ y1
,

∂U

∂ y1

)
. (27)
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Fig. 10. Comparison of the exact and interpolated values of U (x, y, t, s) and d
(l)
s

∂U
∂ y1

(x, y, t, s), where y = 0, s = 0, x1 ∈ [d(l)
s ,2d

(l)
s ] (i.e. ρ ∈ [1,2]), x2 = x3 = 0,

and t ∈ (d
(l)
t ,2d

(l)
t ] (i.e. τ ∈ [1,2]).

Note that the level-dependent parameter d
(l)
s in ∂U

∂ y1
is cancelled in this relative error, and therefore, the result shown below

is independent of levels.

Fig. 11 plots the relative errors of U and ∂U
∂ y1

against ps,t . It should be pointed out that both relative errors decrease

monotonically as ps,t increases. However, the decreasing rate especially for ∂U
∂ y1

is very slow, i.e. the rate is between − 1
2

and −1. On the other hand, the computational time scales as O(p4
s,t log ps,t) owing to the FFT-accelerated M2L translation

(or O(p8
s,t) if the M2M or L2L translation is considered). Consequently, using a large value of ps or pt can be infeasible in

the current framework. This provides a possible direction for future work.

5.2. Validation

This section investigates the accuracy and speed of the CHI-based TDBIEM in comparison with the conventional TDBIEM.

Let us solve an external scattering problem for a sphere D with diameter one and centre ( 1
2
,0,0) in an infinite medium

with the velocity c as one (Fig. 12). The sphere is irradiated with the sinusoidal plane pulse uin in the −x1 side from t = 0,

i.e. uin(x, t) = A{1 − cos 2π
Λ

(x1 − ct)}, where A = Λ = 1
2

and cos x is equal to cos x if 0� x� 2π and 1 otherwise. Here, Λ
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Fig. 11. Relative error of the interpolated functions compared to the exact functions with respect to the l2-norm. Here, ps,t = 2,4,8,16,32,64, and 96 are

examined.

Fig. 12. (Left) Schematic illustration of the scattering problem to be solved in Section 5.2. (Right) Boundary element mesh for Case 3 or Ns = 5120.

Table 1

Discretisation parameters and related quantities used in Section 5.2.

Case Ns �s

Min.–Max.

�t Nt lmax
† M

(lmax)
t

†

1 320 0.138–0.163 0.04 100 2 6

2 1280 0.069–0.084 0.02 200 2 12

3 5120 0.035–0.042 0.01 400 3 24

4 20480 0.017–0.021 0.005 800 4 48

5 81920 0.009–0.011 0.0025 1600 5 96

† Determined by Z = 100 in the case of the proposed TDBIEM.

represents the length of the support of the pulse. Now, let q = 0 on the sphere. Then, this problem is reduced to solve the

following BIE with respect to the total field u:

1

2
u(x, t) = uin(x, t) −

t∫

0

∫

∂D

∂Γ

∂ny

(x, y, t − s)u(y, s)dsdS y for x ∈ ∂D, 0 < t < T ,

where the duration T is set to 4, which is sufficiently long to observe that the field u on the sphere is excited and then it

almost vanishes. Note that this analysis aims at verifying the double-layer potential because it can be less accurate than the

single-layer potential when their kernels are approximated with interpolation, as seen in the previous section.

The exact solution of this transient problem is not available in a closed form; however the numerical solution can be

computed by applying a numerical Laplace inverse transform to the corresponding exact solution in the frequency domain

(e.g. [32]). This numerical solution is referred to as the semi-analytical solution.

Table 1 shows the five cases of different Ns to discretise the sphere. Following an empirical manner for the MOT scheme,

�t is scaled such that �t ∼ �s/c is satisfied, where �s denotes the edge lengths of boundary elements. The total number

of time-steps (Nt) is given by T /�t in each case.

To solve Axα = rα in (4) at every time-step, the iterative solver GMRES [33] is used without preconditioning. The iteration

is stopped when the relative residual ‖Axα − rα‖2/‖rα‖2 is less than 10−5 , where ‖·‖2 denotes the l2-norm. Note that

because A is a narrowly banded matrix (Section 2.3), there are only a few number of iterations until convergence in any

case, and thus, the fraction of the solution time to the entire computational time is negligibly small.
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Fig. 13. Relative error of the numerical solutions compared to the semi-analytical solution.

With respect to the proposed TDBIEM, let ps,t = 4, 6, 8, 10, and 12 for comparison. Note that 2ps (respectively, 2pt)

interpolation nodes are considered per Λ, i.e. the support length of the pulse (respectively, per Λ/c, i.e. the duration of the

pulse) at level 2, which is the most critical level in view of the accuracy of interpolation (recall Section 3.4). The octree is

created by assuming Z = 100 (recall Section 4.1). Then, as Ns increases, lmax (i.e. the depth of the octree) increases from 2

to 5, and M
(lmax)
t (i.e. the number of time-steps per time-interval at the maximum level lmax) increases from 6 to 96 (see

Table 1).

The above configuration satisfies the assumptions in Section 4.4, where the computational complexity of the proposed

TDBIEM is discussed. In fact, the domain D is fixed and the parameters Z , ps , and pt are constant through all the cases.

However, it is not trivial if the distribution of the boundary elements on a spherical surface ∂D is flat or uniform in D ,

although the numerical result will approve the flat distribution, as seen subsequently.

In the following analysis, a desktop computer with sixteen cores in two Intel Xeon CPUs (Model: E5-2687W clocked

at 3.1 GHz) and 128 GB RAM was used. The amount of RAM was sufficient for the conventional TDBIEM to store all the

non-zero influence coefficients (W
(γ )

i j
) in Cases 1–3. In Case 4, the coefficients for γ � 140 could be stored and the others

were re-calculated. Meanwhile, Case 5 was not carried out because the estimated computational time was extremely long

(� 50 days). The Intel C++ Composer (version 13.1.0) was used as the compiler.

Fig. 13 plots the relative error of the numerical solutions compared to those of the semi-analytical solution. Here, the

relative error is computed with 33Nt data with regard to the l2-norm as follows:

√√√√
∑

0�i<33

∑
0�α<Nt

(u(x(θi), tα) − v(x(θi), tα))2
∑

0�i<33

∑
0�α<Nt

(v(x(θi), tα))2
,

where u and v represent the numerical and semi-analytical solutions, respectively, and x(θi) denotes the position of the

collocation point whose angle θ from the x1-axis (see Fig. 12) is the closest to π i
32

in all Ns collocation points. In Fig. 13,

the error of the conventional TDBIEM is interpreted as the discretisation error. On the other hand, the proposed TDBIEM is

dominated by the approximation error because of the interpolation. In fact, the proposed TDBIEM is likely to converge to the

conventional TDBIEM as ps,t increases for every Ns .

Because the curve for every ps,t is approximately flat for Case 5 in Fig. 13, the errors of Case 5 can represent the

approximation error of the proposed method. These errors are fitted to nearly 5.1p−2.8
s,t . The rate of −2.8 is better than

that of the double-layer kernel in the previous test in Section 5.1. This is because the previous analysis considered only

the discontinuous case (i.e. the kernel interpolated in a space–time always involves a wavefront), whereas this analysis also

includes the continuous case.

To visualise the relative errors, the profiles of u for θ = π (the front side of the sphere) in Cases 1 and 4 are shown

in Figs. 14(a) and 14(b), respectively, where the numerical solutions use the data at the collocation point whose angle θ

is the closest to π in all Ns points. Likewise, Figs. 14(c) and 14(d) show the profiles for θ = 0 (back side). Compared to

the conventional TDBIEM, the proposed TDBIEM has larger oscillations after the pulse has passed (t ≈ 3.0 in the front side

and 3.8 in the back side) and larger over/under shoots in the back side. However, the deviations can be basically reduced

by increasing ps,t . This tendency is consistent in Fig. 13.

It should be noted that late-time instability is not observed even when the duration T is doubled. More precisely, the

conventional method and proposed method (using ps,t = 4,6,8) are stable until T = 8 in Cases 1–3 and 1–5, respectively.
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Fig. 14. Comparison of the profiles of the total field u on the front and back sides of the sphere. The insets in (b) and (d) clearly show that the solution of

the proposed TDBIEM converges to that of the conventional TDBIEM, which is in good agreement with the semi-analytical solution.

Table 2

Total computational time to perform the present analysis. The numbers in the brackets show the speedup of the proposed TDBIEM with respect to the

conventional one.

Case Ns Nt Conventional

TDBIEM [s]

Proposed TDBIEM [s]

ps,t = 4 ps,t = 6 ps,t = 8 ps,t = 10 ps,t = 12

1 320 100 0.4 0.3 1.0 4.1 19.0 45.9

(1.4) (0.4) (0.1) (0.0) (0.0)

2 1280 200 14.2 3.1 3.8 6.9 22.3 49.7

(4.5) (3.7) (2.1) (0.6) (0.3)

3 5120 400 595.7 76.9 80.1 93.4 187.4 397.3

(7.8) (7.4) (6.4) (3.2) (1.5)

4 20480 800 144089.1† 597.0 660.8 870.2 1876.6 4214.1

19061.1♯ (31.9) (28.8) (21.9) (10.2) (4.5)

5 81920 1600 n/a 6707.7 7120.3 8769.8 16375.5 34949.9

609956.4♯ (90.9) (85.7) (69.6) (37.2) (17.5)

† This time includes the additional time owing to the recalculation of the influence coefficients W
(γ )

i j
such as γ > 140, and it is not used to calculate the

speedup of the proposed method.
♯ These times are ideal ones that are estimated by extrapolating Case 3 according to the scale of N2

s Nt and are used to calculate the speedup in Cases 4

and 5.

Next, let us observe the run-time aspect of the proposed method. The total computational time required to perform each

case is shown in Table 2. Note that the computational time of the conventional method in the fourth case is exceptionally

long. This is because of the recalculation of influence coefficients owing to memory shortage. If all the non-zero coefficients

could be stored in Cases 4 and 5, their computational times would be 32 (= 42 · 2) and 322 times longer, respectively, than

that of Case 3. Even in comparison with these ideal times of the conventional method, the proposed method is relatively

fast in Cases 4 and 5 for any ps,t under consideration. For clarity, the same table shows the speedup of the proposed method

relative to the conventional one.
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Fig. 15. Comparison for computational time per time-step. Two plots of ‘estimated’ are obtained by extrapolating Case 3 of the conventional method

according to its complexity of O(N2
s ).

Fig. 15 shows the computational time per time-step, which is defined as the total computational time divided by Nt . (The

actual computational time per time-step fluctuates at every time-step due to the far-field calculation, which is performed at

every time-interval (not time-step); however, the computational time per time-step defined above can represent an averaged

value because the far-field calculation is periodically performed.) In the figure, the observed computational complexity of

the proposed TDBIEM is less than the quadratic order for every ps,t . The complexity appears to be 4/3 rather than 3/2,

implying that the distribution of the boundary elements is uniform rather than flat. On the other hand, the complexity of

the conventional method is indeed O(N2
s ) as seen from the first three cases.

Finally, it should be noted that the performance of the proposed method is unsatisfactory when it is compared with

that of the conventional method in terms of the same accuracy. For example, Fig. 13 and Table 2 show that the proposed

method for ps,t = 12 spent 34949.9 seconds in Case 5 (Ns = 81920) and the resulting error was approximately 5 × 10−3 .

For the same case, the conventional method would be 17 (≈ 609956.4/34949.9) times slower, where it is assumed that

the method can use sufficient memory. However, Table 2 indicates that Ns = 5120 (Case 3) is sufficient for the conventional

method to obtain the same error. Hence, the conventional method is 59 (≈ 34949.9/595.7) times faster than the proposed

method in achieving the same accuracy.

Nevertheless, it is very important to solve a given problem within an acceptable time. If Ns and/or Nt is large, the

application of the conventional method is in fact difficult. Note that, in order to reduce the computational time, it is gen-

erally difficult to decrease the Ns of a given model (much less a complicated model unlike the present sphere model) with

preserving its shape. Therefore, to manage such complicated (thus large-scale) models, the proposed method is promising

with respect to its high computational speed and low memory consumption. Although the accuracy of the fast method is

relatively low, the improvement is not impossible if larger parameters (ps and pt) are used at the cost of computational

time.

5.3. Demonstration

To observe the applicability of the proposed TDBIEM in more complicated problems, let us consider a model of a

rectangular-parallelepiped house (dimensions 1.4 × 0.8 × 0.6) located in an infinite medium (Fig. 16). The house has two

rooms connected to each other and is open to the outside space through an entrance and three windows. The boundary

condition q = 0 is applied to all the surfaces of the model. In this analysis, the following point source f (x, t) is given:

f (x, t) := A

(
1− cos

2πct

Λ

)
δ(x− q),

where the position q of the source is set to the centre of the RHS room in Fig. 16, i.e. q := (0.4,0.4,0.3). Further, A = Λ = 1
2
.

The BIE to be solved here is given by the previous BIE (see Section 5.2) where uin is formally replaced with

t∫

0

∫

D

Γ (x− y, t − s) f (y, s)dsdV y =
A

4π |x− q|

(
1− cos

2π

Λ

(
|x− q| − ct

))
.

In the following case, let c = 1, �t = 0.04, and Nt = 512. Thus, T := Nt�t = 20.48. For the fast TDBIEM, let lmax (the

maximum level of the hierarchy) be two and ps,t = 6 or 8.
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Fig. 16. Model of a rectangular-parallelepiped house with two rooms. The following observation points are considered: o1 = (0.43,0.39,0.10), o2 =
(1.08,0.39,0.10), and o3 = (1.38,0.39,0.20), where o1 and o2 are near the centres of the floor of the rooms and o3 is on the stand of the window

in the LHS room.

Fig. 17 shows the profiles of u at three observation points o1,2,3 (see Fig. 16 for their positions). The proposed TDBIEM

that uses ps,t = 6 deviates significantly from the conventional TDBIEM with time. Meanwhile, ps,t = 8 is more stable and in

good agreement with the conventional TDBIEM. In this analysis, the value of u ranged from −1.23 to 1.48 in the proposed

TDBIEM that uses ps,t = 8, whereas it ranged from −1.28 to 1.49 in the conventional TDBIEM. Fig. 18 shows the snapshots

of u inside the house in the case of the fast TDBIEM that uses ps,t = 8. The corresponding animation is available from the

journal’s webpage.

Note that the conventional TDBIEM (and thus the proposed TDBIEM) can become unstable with time, although no solu-

tion is considered for this late-time instability issue in this paper. In fact, when Nt is doubled (then, T = 0.04 ·1024 = 40.96),

the conventional method diverged gradually after t ≈ 30. However, with respect to its early-time behaviour shown in Figs. 17

and 18, the conventional method seems reliable as a reference for the proposed method from the physical viewpoint that (i)

the field u inside the house decays gradually because of the energy radiation to the outside space through the entrance and

windows and (ii) the profiles at o2 and o3 (recall their locations relative to the source location q) are similar in shape but

different in phase (because of the propagation distance from the source) and amplitude (because of the radiation effect).

To verify the stability of the proposed TDBIEM, further investigation is necessary. It is worth noting that a large ps,t (if

available) can be a remedy for the divergence of the solution. In addition, a small �t compared to �s/c can cause instability

with time. In this regard, because a very small �t can also make the conventional TDBIEM unstable, the instability of both

TDBIEMs may be caused by the collocation method or low-order elements. Therefore, it may be interesting to enhance the

proposed framework to the Galerkin method and high-order elements.

With respect to the computational time, the conventional TDBIEM spent 1171 s, while the proposed TDBIEM with

ps,t = 8 spent 531 s. Furthermore, when lmax was changed to three (respectively, four), the proposed method spent 333 s

(respectively, 607 s) with a slight change in u; u ranged from −1.22 to 1.52 (respectively, from −1.21 to 1.49). Hence, a

3.5 (≈ 1171/333) times speedup was achieved by the fast TDBIEM in this simulation.

6. Conclusion

A novel fast time-domain boundary integral equation method (TDBIEM) to solve initial–boundary value problems for

the three-dimensional wave equation in the low-frequency regime is proposed in this paper, based on the studies of the

plane-wave time-domain (PWTD) algorithm for wave problems [6,14] and the interpolation-based fast multipole method

(FMM) particularly for the transient heat problem [23]. The cubic Hermite interpolation, which uses a finite difference

for the first-order derivative, was applied to re-express the fundamental solution of the wave equation in the form of

the separation of variables with respect to both spatial and temporal variables. Similar to ordinary FMMs, the degenerate

form that was derived enabled us to formulate the (so-called) multipole and local expansions as well as the translation

formulae of multipole-moments and local-coefficients across two levels of a multilevel space–time hierarchy, which is a

compound of an octree for space and a binary tree for time. By using these interpolation-based formulae systematically on a

multilevel hierarchy in a similar manner to the PWTD algorithm, one can construct a fast algorithm to evaluate the retarded

potential with respect to the elapsed time in the boundary integral equation for the wave equation. The proposed algorithm

can reduce the computational complexity of the conventional (marching-on-in-time-based) TDBIEM, which is based on the

collocation method and adopts the piecewise-constant spatial basis and the piecewise-linear temporal basis, from O(N2
s Nt)

to O(N1+δ
s Nt), where Ns and Nt denote the numbers of boundary elements and time-steps, respectively, and the exponent δ

is 1/3 or 1/2 according to the assumption of the spatial distribution of boundary elements (Section 4.4). In comparison with

the PWTD-based TDBIEM, the proposed interpolation-based TDBIEM is semi-fast; however, the numerical implementation

is easy because the formulation is simple. The result of some numerical experiments indicates that the fast TDBIEM can

control the precision by the interpolation parameters (ps and pt), although this paper does not conduct any theoretical



828 T. Takahashi / Journal of Computational Physics 258 (2014) 809–832

Fig. 17. Comparison of the profiles of the total field u at three observation points. From an acoustic viewpoint, the echo of the given pulse decays because

of the sound propagation to the outside. This is consistent with the results of the conventional TDBIEM and the proposed one that uses ps,t = 8, while

ps,t = 6 makes the proposed TDBIEM relatively unstable.

error analysis. In addition, the proposed solver significantly outperformed the conventional one in large-scale problems

(� 104) with the relative error ∼ 10−2 for ps , pt � 10. In summary, the proposed TDBIEM is likely to be useful for solving

large-scale problems, for example, in acoustics.

A direction for future work is to reduce the computational cost of the time-consuming M2L translation (see Sections 4.5

and 5.1). This reduction allows not only to shorten the CPU time, but also to use large ps and pt , which will allow over-

coming the potential instability of the proposed algorithm in long-time simulations. A possible candidate is some low-rank

approximation such as a truncated singular value decomposition or adaptive cross approximation investigated for the black-

box and the directional FMMs [21]. Furthermore, the application of the proposed interpolation-based FMM to other wave

problems such as electromagnetics and elastodynamics is an interesting and important future direction with respect to

science and engineering.



T. Takahashi / Journal of Computational Physics 258 (2014) 809–832 829

Fig. 18. Snapshots of the distribution of u from the 0th to 120th time-step every 8 time-steps. This is the result of the analysis with the proposed TDBIEM

using ps,t = 8, where u ranges from −1.23 to 1.48. To observe the inside of the house, the outside walls and roof are removed.
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Appendix A. Calculation of the computational complexity of the proposed TDBIEM

From the assumptions mentioned in Section 4.4, the numbers of floating-number operations (flops) for the major stages

can be calculated. First, let us consider the case where boundary elements are distributed uniformly in a fixed 3D domain.

In this case, there are 8l cells at level l and Ns = Z ·8lmax , i.e. 2lmax = (Ns/Z)1/3 holds. Then, the flops are counted as follows:

1. Near-field calculation in (21):

(flops per leaf and time-step) × (# of leaves) × (# of time-steps)

∼ Z · 27Z · γ (lmax)

min
× 8lmax × Nt

∼ Z4/3N
2/3
s Nt.

2. Creation of moments in (14):

(flops per leaf and time-interval) × (# of leaves) × (# of time-intervals)

∼ ZM
(lmax)
t p3

s pt × 8lmax ×
Nt

M
(lmax)
t

∼ p3
s ptNsNt.

3. M2M translation in (16):

lmax−1∑

l=2

(flops per cell and time-interval) × (# of cells) × (# of time-intervals)

∼
lmax−1∑

l=2

p6
s p

2
t · 8× 8l ×

Nt

M
(l)
t

∼ Z−4/3p6
s p

2
t N

4/3
s Nt.

4. M2L translation in (24):

lmax∑

l=2

(flops per cell and time-interval) × (# of cells) × (# of time-intervals)

∼
lmax∑

l=2

p3
s pt(log ps + log pt) · 189 · (μ + 1) × 8l ×

Nt

M
(l)
t

∼ Z−4/3p3
s pt(log ps + log pt)N

4/3
s Nt.

Here, the FFT-based diagonalisation method [22] is considered (see Section 3.3).

5. Another M2L translation in (25) and (26): The dominant part is the calculation of the rate of local-coefficients in (18b),

which is necessary for (26). When the FFT is used for the spatial summations, the number of flops of (18b) is given by

lmax∑

l=2

(flops per cell and time-interval) × (# of cells) × (# of time-intervals)

∼
lmax∑

l=2

(
p3
s pt + p3

s log ps

)
· 189 · 1× 8l ×

Nt

M
(l)
t

∼ Z−4/3p3
s (pt + log ps)N

4/3
s Nt.

6. L2L translation in (17): This is essentially the same as the M2M translation.

7. Evaluate the layer-potential by local-coefficients in (12):

(flops per leaf and time-interval) × (# of leaves) × (# of time-intervals)

∼ ZM
(lmax)
t p3

s pt × 8lmax ×
Nt

M
(lmax)
t

∼ p3
s ptNsNt.



T. Takahashi / Journal of Computational Physics 258 (2014) 809–832 831

From this calculation, the computational complexity of the proposed method is determined as O(p6
s p

2
t N

4/3
s Nt) in the

case of uniform distribution. This complexity originates in the M2M and L2L; however, the most of the run-time is spent

for the M2L translation whenever ps,t ∼ 10 in this study.

Note that the second and seventh items assume that the cost to compute a value of an interpolant ℓ in (12) and (14)

is independent of ps or pt . In general, the use of local interpolations such as the cubic Hermite interpolation is assumed,

which is actually used in this study.

In the case that boundary elements are distributed on a surface in a fixed 3D domain, one can show that the compu-

tational complexity is O(p6
s p

2
t N

3/2
s Nt) because there exists 4l cells at level l, and thus Ns = Z · 4lmax , i.e. 2lmax = (Ns/Z)1/2

holds.

Appendix B. Cubic Hermite interpolation

Consider a function f (x) defined on [−1,1]. Let fk and ḟk be the function value and its derivative at node ω
p

k
, respec-

tively, where −1 � ω
p
0 < · · · < ω

p
p−1 � 1. In the cubic Hermite interpolation, the approximated function, which is denoted

by f̃ (x) on the interval [ωp

k
,ω

p

k+1
] (k = 0, . . . , p − 2), is given by

f̃ (x) = A(t) fk + B(t)
(
ω

p

k+1
− ω

p

k

)
ḟk + C(t) fk+1 + D(t)

(
ω

p

k+1
− ω

p

k

)
ḟk+1, (B.1)

where t := x−ω
p

k

ω
p

k+1
−ω

p

k

∈ [0,1], and A, B , C , and D are Hermite basis functions defined as

A(t) := 2t3 − 3t2 + 1, B(t) := t3 − 2t2 + t, C(t) := −2t3 + 3t2, D(t) := t3 − t2.

Here, these functions are determined such that f̃ (ω
p

k
) = fk and ˙̃f (ωp

k
) = ḟk are satisfied.

Because the proposed method does not use derivatives (see (10)), each ḟ is approximated as follows with the second-

order (three-point) finite difference at each node, except for the end nodes:

ḟ0 ≈ s0, ḟ i ≈
si−1 + si

2
for i = 1, . . . , p − 2, ḟ p−1 ≈ sp−2, (B.2)

where si := f i+1− f i

ω
p
i+1

−ω
p
i

for i = 0, . . . , p − 2. Substituting (B.2) in (B.1), one can obtain f̃ (x) =
∑p−1

i=0 f (ω
p

i )ℓi(x), where the

interpolants ℓi(x) are cubic polynomials consisting of A, B , C , and/or D .

Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2013.11.008.
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