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a b s t r a c t

This work concerns the interaction of light membrane structures enclosing incompressible fluids. Large

displacements and collapsed boundaries (initially slender subdomains) are characteristic of this class

of problems. A finite-element/boundary-element (FE/BE) coupled discretization is presented as an

enabling technology, addressing these challenges by avoiding volumetric meshing as required by arbi-

trary Lagrangian Eulerian or immersed boundary type methods. The presented formulation includes a

compatibility condition, to which a physical interpretation is given; and a regularizing bending stiffness,

observed to be necessary from both the theoretical (well-posedness) and numerical (stability) point of

view. A cheap contact load is designed to deal with possibly complex geometries, reusing already com-

puted discrete boundary element kernels. Numerical experiments show the capabilities of the proposed

scheme.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Inflatable structures appear in a wide variety of engineering

applications, e.g., evacuation slides in aircraft, air beams for tempo-

rary civil structures, stowable space structures, parachutes and air

cushions. One of the most prominent examples of an inflatable

structure is the airbag. Airbags form an indispensable component

of passenger-safety systems in modern cars. Statistics of the US Na-

tional Highway Traffic Safety Agency (NHTSA) corroborate that air-

bags yield a significant reduction in the fatality risk in frontal

crashes, provided that the passenger is in position with respect

to the airbag. On the other hand, US National Highway Traffic

Safety Agency (NHTSA) investigations have shown that airbags

can form an important safety risk in out-of-position situations. Air-

bags deploy at more than 300 km/h with an impact force exceeding

5 kN and, hence, an airbag can severely injure or kill a passenger if

impact occurs before full deployment. Incentivized by the danger

of airbags in out-of-position situations, the US National Highway

Traffic Safety Agency (NHTSA) has issued new regulations that re-

quire car manufacturers to develop auxiliary restraint systems and

new airbag systems to prevent such situations.

Numerical airbag-deployment simulations can provide valuable

information in the assessment and control of out-of-position risks.

Reliable numerical simulation of airbag-deployment dynamics is a

complicated endeavor, however, on account of the inherent multi-

scale character of the inflation process. The initial stowed or folded

configuration of the airbag forms a complex labyrinth of small

folds with a characteristic length scale that is orders of magnitude

smaller than that of the bulbous final configuration. On the macro-

scale associated with the final configuration, the flow of the inflator

gas exhibits highly complex behavior, on account of its multi-com-

ponent composition, high temperature gradients, and a wide spec-

trum of flow velocities, extending over subsonic, transonic and

supersonic regimes. On the microscale pertaining to the small

folds, compressibility effects are negligible and the flow exhibits

relatively simple behavior. The complexity of the airbag-deploy-

ment process is further compounded by self-contact of the airbag

fabric, which is particularly manifest in the initial stages of the

deployment process. Hence, airbag-deployment processes consti-

tute fluid–structure interaction (FSI) problems with contact, in

which the characteristic length scale of the geometry changes by

many orders of magnitude, and each of the length scales must be

adequately resolved in the numerical method to arrive at a reliable

prediction of the dynamical behavior.

Many related and challenging fluid–structure interaction (FSI)

computations have been performed with a wide array of methods,

such as interface tracking [20,29,33,34] and interface capturing

[6,17,25,42,39] techniques. Intrinsically, these methods, being

based on discretizations of the volume occupied by the fluid, are

not employed in the analysis of realistic stowed configurations

on account of the geometrical complexity of the domain as well

as the very large displacements. For that reason, in industrial

applications the load on the airbag fabric is determined by overly
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simplified fluid models, e.g., uniform-pressure models or empirical

expressions. Such simplified models lack detailed information

about the underlying physical processes, and generally cannot cap-

ture and predict the phenomena observed during experiments

[24]. Recently, computational methods composed of particle-based

approximation methods for the fluid, analogous to smoothed-

particle hydrodynamics [27], have emerged [18]. The resolution

provided by the moving particles in such approaches is uncontrol-

lable, however, and on account of the large displacements that

occur in airbag-deployment processes, the accuracy of particle-

based methods is questionable.

The fundamental conundrum in airbag-deployment simula-

tions, is that the scale disparity is so severe that the volumetric

approximation methods that are suitable on the macroscale, can-

not be employed on the microscale. The geometric complexity of

the initial configuration precludes volumetric meshing with ade-

quate resolution, even with adaptive interface-capturing or inter-

face-tracking techniques [6,17]. However, conversely, the flow

model that underlies volumetric approximation methods, viz.,

the Euler or Navier–Stokes equations, appears unnecessarily

sophisticated for the flow in the small-scale features of the airbag.

It is anticipated that the flow in small-scale features can be repre-

sented by a simplified model, without essentially degrading the

accuracy of the prediction of the dynamics of the airbag on the

large scales. Airbag-deployment simulation therefore necessitates

an adaptive multiscale approach of type-A [12] in which the flow

in the small-scale features of the airbag is resolved by a different

model than the flow in the large-scale features.

The boundary-integral equation can be conceived of as a micro-

scale model for the fluid flow in small-scale features of airbags or,

more generally, inflatable structures. In the present work, a fluid–

structure interaction (FSI) model for inflatable structures based on

a boundary-integral formulation of the fluid is considered. The

considerations are restricted to a 2D potential-flow model, but

the investigation extends mutatis mutandis to for instance Stokes

flow, which is treated in [37]. The connection to a macroscale mod-

el for the flow in the large-scale features and the corresponding

model adaptivity is treated in [35]. The essential attribute of the

boundary-integral formulation is that it provides an adequate

model for the flow in the small-scale features of airbags, which

does not require a volumetric mesh. In particular, the boundary-

integral equation is set on the manifold of codimension one formed

by the fluid–structure interface. The corresponding boundary ele-

ment method (BEM) is therefore invulnerable to the extreme

deformations that occur in airbag-deployment processes. An addi-

tional advantage of the boundary-integral formulation in the con-

text of fluid–structure interaction (FSI) problems, is that it provides

a very efficient model, as the domain of the flowmodel is restricted

to the domain where the interaction with the structure actually oc-

curs, viz., the fluid–structure interface.

The membrane in 2D is modeled as a linearly-elastic string

[41,1], regularized by a small flexural rigidity. The membrane

equation is approximated by means of a standard finite-element

discretization based on Hermite polynomials. Accordingly, the

approximation of the aggregated fluid–structure interaction (FSI)

problem consists of an finite-element/boundary-element (FE/BE)

coupled discretization. Contiguous use of finite-element/bound-

ary-element (FE/BE) methods to exploit the advantages of both ap-

proaches, is an established practice; for a review see [43,31].

Applications include blood flow [38], elasto-plasticity [13], crack

propagation [28] and electromagnetics [32], among others. Cou-

pled finite-element/boundary-element (FE/BE) approaches have

also been applied to fluid–structure interaction (FSI) problems in,

e.g., [11,4,5,9], but the application of finite-element/boundary-ele-

ment (FE/BE) has so far been restricted to fluid–structure interac-

tion (FSI) problems with small deformations. The novelty of the

present contribution lies in the exploitation of the boundary inte-

gral formulation in a new manner, viz., to enable very large

deformations.

The remainder of this paper is organized as follows. Section 2

contains a statement of the considered fluid-membrane-interac-

tion problem. Section 3 presents details of the discrete approxima-

tions and of the iterative solution procedure for the aggregated

fluid–structure interaction (FSI) problem with contact. In Section 4,

numerical experiments are conducted to exemplify the properties

of the boundary element method (BEM) for fluid-membrane-inter-

action problems with large displacements. Finally, Section 5 pre-

sents concluding remarks.

2. Problem statement

In this section, the mathematical formulation of the considered

fluid–structure interaction (FSI) problem with contact is presented.

Section 2.1 considers the boundary-integral formulation for the

fluid subproblem, consisting of an irrotational, incompressible

flow. Section 2.2 is concerned with the structure subproblem.

The interface conditions which provide for the connection between

the fluid and the structure are specified in Section 2.3.

2.1. Boundary-integral formulation of the fluid subproblem

Consider a time-dependent open bounded domain Xt � R
2 with

almost everywhere C1 continuous boundary @Xt . The boundary

consists of the disjoint union of the time-dependent wet boundary

Ct and the fixed inflow boundary Cin. It is assumed that the initial

configuration of the boundary is specified by means of an arc-

length parametrization conforming to:

C0 ¼ fx 2 R
2 : x ¼ v0ðsÞ; s 2 ð0; LÞg;

Cin ¼ fx 2 R
2 : x ¼ v0ðsÞ; s 2 ðL;KÞg; ð1Þ

with jDv0ðsÞj ¼ 1; j � j the euclidean norm and D the (distributional)

derivative Dz ¼ @z=@s. The configuration of the boundary is denoted

by z : ð0; TÞ � ð0; LÞ ! R
2, such that zðt; sÞ is the position at time t, of

the material point initially at v0ðsÞ. The condensed notation zt de-

notes the configuration at specified time t. The boundary at time t

is thus parametrized with respect to the arc length of the initial

configuration according to @Xt ¼ fx 2 R
2 : x ¼ ztðsÞ; s 2 ð0;KÞg; see

Fig. 1 for an illustration. Because the inflow boundary is fixed, must

hold that ztðsÞ ¼ v0ðsÞ for s 2 fL;Kg.
The fluid subproblem consists of the irrotational flow of an

incompressible fluid on the time-dependent domain Xt . Accord-

ingly, there exists a harmonic potential / : Xt ! R such that the

fluid velocity v coincides with r/. The wetted boundary Ct corre-

sponds to a material boundary of the fluid domain, which implies

that the normal velocity of the fluid coincides with the velocity of

the boundary in its normal direction. Moreover, on the inflow

boundary Cin, a normal velocity is prescribed. The boundary condi-

tions for the fluid translate into Neumann-type conditions for the

Fig. 1. Schematized problem geometry.
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potential. The fluid is therefore described by the Laplace–Neumann

problem:

�D/ ¼ 0 in Xt ; ð2aÞ

@n/ ¼ h on @Xt; ð2bÞ
where D denotes the Laplace operator and h : @Xt ! R represents

time-dependent exogenous data. To connect the fluid to the struc-

ture in the aggregated fluid–structure interaction (FSI) problem,

only the trace of / on @Xt is required. It is to be noted that (2) com-

plies with a Fredholm alternative: existence of a solution to (2) is

contingent on the condition that
H

h ¼ 0, and the solution is unique

only up to a constant; see also Section 2.4.

Given the structure of (2) and the restricted interest in the trace

of /, the Laplace–Neumann problem can be cast into a boundary-

integral formulation. Various formulations of this type exist, viz.,

the direct formulation, and single-layer and double-layer formula-

tions; see for instance [8]. To facilitate the connection with the

membrane in the aggregated fluid–structure interaction (FSI) prob-

lem, the following direct formulation is most suitable:

/=2þ K/ ¼ Vh on @Xt; ð3Þ
where explicit use has been made of the assumed smoothness of

@Xt . The operators Kð�Þ and Vð�Þ, generally referred to as the sin-

gle-layer potential and the double-layer potential, respectively, corre-

spond to (traces of) convolutions with singular kernels:

ðVhÞðxÞ :¼
I

@Xt

Gðx; yÞhðyÞdrtðyÞ; ð4aÞ

ðK/ÞðxÞ :¼
I

@Xt

@nGðx; yÞ/ðyÞdrtðyÞ; ð4bÞ

where G denotes the Green’s function for the negative Laplace oper-

ator in R
2,

Gðx; yÞ :¼ �ð2pÞ�1 log jx� yj; ð5Þ
and drt denotes the measure carried by the boundary @Xt . More-

over, @nGðx; yÞ stands for the conormal derivative of the Green’s

function with respect to its second argument:

@nGðx; yÞ :¼ ð2pÞ�1jx� yj�2ðx� yÞ � nðyÞ: ð6Þ
The double-layer potential is to be understood in the Cauchy-princi-

pal-value sense; see, e.g., [26,19,30]. A derivation of the above

boundary-integral form of (2) can be found in, for instance, Refs.

[22,40].

To enable a more precise interpretation of (3), denote by H1ðXtÞ
the Sobolev space of square-integrable functions with square-inte-

grable distributional derivatives, by H1=2ð@XtÞ the image of the

trace operator on H1ðXtÞ, and by H�1=2ð@XtÞ the dual space of

H1=2ð@XtÞ. Note that the space H1ðXtÞ, and its trace and the dual

thereof, are well defined whenever Xt corresponds to a Lipschitz

transformation of a fixed Lipschitz domain, because H1 is invariant

with respect to such transformations. The data h in (2) corresponds

to an element of H�1=2ð@XtÞ. The function / in the left-hand side of

(3) is the trace of a function in H1ðXtÞ and, accordingly, it resides in
H1=2ð@XtÞ. An important result due to Costabel [7, Theorem 1] is

that the single-layer potential V : H�1=2ð@XtÞ ! H1=2ð@XtÞ and the

double-layer potential K : H1=2ð@XtÞ ! H1=2ð@XtÞ are continuous

mappings. Hence, Eq. (3) can be conceived of as an identity of ele-

ments in H1=2ð@XtÞ.
The Fredholm alternative that holds for the Laplace–Neumann

problem (2) also applies to the boundary-integral formulation

(3), as 1=2þ K has a nontrivial kernel consisting of constant func-

tions and the image of 1=2þ K does not contain constant functions

other than 0; cf. [36, Appendix B], for further details. A weak

formulation of (3) is considered, in which the constant

functions are removed from the test and trial spaces. Let L2ð@XtÞ
denote the Hilbert space of real-valued square-integrable functions

on @Xt , equipped with the inner product ð/;wÞL2ð@Xt Þ ¼
H

@Xt
/w. The

inner product ð�; �ÞL2ð@XtÞ extends by continuity to a duality

pairing on H1=2ð@XtÞ � H�1=2ð@XtÞ or H�1=2ð@XtÞ � H1=2ð@XtÞ.
Denoting by H�1=2

H

¼0
ð@XtÞ :¼ fw 2 H�1=2ð@XtÞ : ðw;1ÞL2ð@Xt Þ ¼ 0g the

class of distributions in H�1=2ð@XtÞ orthogonal to constants, the

boundary-integral formulation (3) can be cast into the weak

form:

find / 2 H
1=2
H

¼0
ð@XtÞ : afð/;wÞ ¼ bfðwÞ 8w 2 H

�1=2
H

¼0
ð@XtÞ; ð7Þ

where the bilinear form af : H
1=2ð@XtÞ � H�1=2ð@XtÞ ! R and the lin-

ear form bf : H
�1=2ð@XtÞ ! R are defined by:

afð/;wÞ ¼
1

2
/þ K/;w

� �

L2ð@XtÞ
; bf ðwÞ ¼ ðVh;wÞL2ð@XtÞ: ð8Þ

The bilinear form afð�; �Þ and linear form bf ð�Þ according to (8) are

continuous. From [30, Theorems 3.8.7 and 3.8.9] it moreover fol-

lows that:

CKk/kH1=2ð@XtÞ 6
1

2
/þ K/

�

�

�

�

�

�

�

�

H1=2ð@XtÞ
8/ 2 H

1=2
H

¼0
ð@XtÞ; ð9aÞ

CKkwkH�1=2ð@XtÞ 6
1

2
wþ K 0

w

�

�

�

�

�

�

�

�

H�1=2@XtÞ
8w 2 H�1=2

H

¼0
ð@XtÞ; ð9bÞ

with K 0
: H�1=2ð@XtÞ ! H�1=2ð@XtÞ the dual operator corresponding

to K, and CK a positive constant. These lower bounds on the

norms of 1=2þ K and 1=2þ K 0 imply that the bilinear form afð�; �Þ
satisfies:

inf
/2H1=2
H

¼0
ð@XtÞnf0g

sup
w2H�1=2
H

¼0
ð@Xt Þnf0g

jaf ð/;wÞj
k/kH1=2ð@XtÞkwkH�1=2ð@Xt Þ

P Cf > 0; ð10aÞ

8w 2 H�1=2
H

¼0
ð@XtÞ n f0g : sup

/2H1=2
H

¼0
ð@XtÞnf0g

jafð/;wÞj > 0; ð10bÞ

for some constant Cf . The bilinear form and the linear form there-

fore comply with the conditions of the Banach–Nečas–Babuška

(BNB) theorem [14, Theorem 2.6], which implies that there exists

a unique and stable solution to (7).

Although H1=2
H

¼0
ð@XtÞ � H�1=2

H

¼0
ð@XtÞ is the natural setting of the

weak formulation of the boundary-integral formulation,

in view of the connection to the underlying Laplace–Neumann

problem, an alternative weak formulation in L2H¼0
ð@XtÞ ¼

f/ 2 L2ð@XtÞ : ð/;1ÞL2ð@Xt Þ ¼ 0g can be established. Theorem 1 in

[7] (see also [30, Section 3.1.2]) asserts, more precisely, that

K : H1=2þ1ð@XtÞ ! H1=2þ1ð@XtÞ is a continuous linear operator for

any 1 2 ½�1=2;1=2�. Therefore, (7) can be conceived of as a weak

formulation on L2H¼0
ð@XtÞ � L2H¼0

ð@XtÞ,

find / 2 L2H ¼0
ð@XtÞ : afð/;wÞ ¼ bf ðwÞ 8w 2 L2H¼0

ð@XtÞ; ð11Þ

if, accordingly, the bilinear form ð�; �ÞL2ð@Xt Þ in the definition of af and

bf in (8) is interpreted as a standard L2 inner product, and not the

extension to a duality pairing; see also [30, Section 3.8]. The BNB

conditions (10) must then also be assessed with respect to

L2H¼0
ð@XtÞ.

Regarding Galerkin finite-element discretizations of (7) or (11),

it is to be noted that standard conforming discretizations of the

two formulations can be distinct, as discretizations of (7) have to

be H1=2ð@XtÞ conforming, while discretizations of (11) only have

to be L2ð@XtÞ conforming. For instance, a conforming approxima-

tion to (7) would have to be continuous, while a conforming
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approximation to (11) does not. Approximations of (7) and (11)

based on H1=2ð@XtÞ-conforming finite-element spaces are evidently

identical.

Moreover, to further facilitate the implementation, the orthog-

onality condition ð�;1ÞL2ð@Xt Þ ¼ 0 is removed from the test- and trial-

spaces and instead impose it by means of Lagrange multipliers.

2.2. Structure subproblem

The wet boundary of the fluid is composed of a membrane cor-

responding to a regularized linearly-elastic string:

z00 � D Dzð1� jDzj�1Þ
� �

þ �D4z ¼ f on ð0; TÞ � ð0; LÞ; ð12Þ

where ð�Þ0 denotes the time derivative. Recall that zðt; sÞ governs the
current position of the boundary @Xt . The load f depends implicitly

on z due to contact forces and fluid loads; see Eq. (15) below. The

first two terms in the left-hand side of (12) correspond to a line-

arly-elastic string. The final term yields a regularization, which is

required to avoid instability in compression, i.e., when jDzj 6 1.

The string equation in (12) can be derived from the general equa-

tions of motion of an elastic solid under the assumptions of line-

stress and linear elasticity and, in particular, the strain term

corresponds to a strain energy W ¼ Eþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eþ 1
p

with

E ¼ ðjDzj2 � 1Þ=2 the Green–Lagrange strain tensor. Eq. (12) is in

fact in nondimensional form. The nondimensionalization is elabo-

rated in Appendix A.

Eq. (12) must be complemented with suitable initial and bound-

ary conditions. Themembrane is attached tohinged supports,which

fix the position of the membrane without inducing moments:

zðt; sÞ ¼ v0ðsÞ; D2zðt; sÞ ¼ 0 for s 2 f0; Lg and t 2 ð0; TÞ: ð13Þ

The initial conditions on the position of the membrane are provided

by
zð0; �Þ ¼ v0ð�Þ; z0ð0; �Þ ¼ v1ð�Þ; ð14Þ
where v0 refers to the initial configuration and v1 represents a pre-

scribed initial velocity.

The load on the membrane consists of the fluid traction, propor-

tional to pressure p, and the contact force. The fluid traction in-

duces a load in the normal direction of the membrane. The

contact force is represented by a nonlinear operator, uz , which

associates to any configuration a load on that configuration; see

Section 2.5. The load f can be separated into

f :¼ jDzjðp � znz � z þuz � zÞ ¼ p � z rotDz þ jDzjuz � z; ð15Þ
with rot : R2 ! R

2 the rotation operator, rot ða1; a2Þ ¼ ða2;�a1Þ. It is
to be noted that the normal vector depends explicitly on the config-

uration. The composition of p;nz and uz with z serves to transport

the pressure, the normal vector and the contact load to the parame-

terized interval ð0; LÞ. Themultiplication by jDzj accounts for the ratio
of the surface measures in the initial and the actual configuration.

A more precise specification of (12)–(15) is now considered. To

this end, some elementary notational conventions are required.

Denote by Lpð0; LÞ ð1 6 p < 1Þ the Lebesgue space of functions

from ð0; LÞ into R
2 with p-integrable Euclidean norm, equipped

with the norm k � kLpð0;LÞ ¼ ð
R L

0
j � jpÞ1=p. For p ¼ 1, the above defini-

tion is extended by setting kzkL1ð0;LÞ ¼ ess supfjzðsÞj : s 2 ð0; LÞg.
Furthermore, denote by Wm;pð0; LÞ the Sobolev space of functions

z 2 Lpð0; LÞ with distributional derivatives Dkz 2 Lpð0; LÞ for all

k 6 m. The spaces L2ð0; LÞ and Hmð0; LÞ :¼ Wm;2ð0; LÞ (m 2 ZþÞ are

Hilbert spaces when provided with the inner products

ðw; zÞL2ð0;LÞ ¼
Z L

0

wðsÞ � zðsÞds; ðw; zÞH2ð0;LÞ

¼ ðw; zÞL2ð0;LÞ þ
X

2

k¼1

ðDkw;DkzÞL2ð0;LÞ:

The subspace of Hmð0; LÞ (m 2 N) of functions that vanish on the

boundary f0; Lg is denoted Hm
0 ð0; LÞ, which, for notational conve-

nience, deviates from the standard notation Hmð0; LÞ \H1
0ð0; LÞ. Con-

sidering a time interval ð0; TÞ and a normed space ðB; k � kBÞ, denote
by Lqð0; T;BÞ (1 6 q < 1) the Bochner space of functions

z : ð0; TÞ ! B such that the function t# kzðtÞkH is q-integrable,

equipped with the norm kzkLqð0;T;BÞ ¼ ð
R T

0
kzðtÞkqB dtÞ

1=q
. These

definitions are extended to q ¼ 1 by setting kzkL1ð0;T;BÞ ¼
ess supfkzðtÞkB : t 2 ð0; TÞg.

On account of the nonlinear dependence of the stress

ð1� jDzj�1Þ and of the load vector f in (15) on z, a precise specifi-

cation of the domain of the structure operator is nontrivial. The

principal part of the operator, corresponding to the regularizing

term �D4ð�Þ, is however linear and elliptic. Assume now that the

character of the principal part extends to the nonlinear structure

operator. Restricting considerations to the principal part of the

structure operator, Eq. (12) corresponds to an evolution equation

of the second order (in t) with an elliptic operator �D4 from

H2
0ð0; LÞ into its dual space H�2ð0; LÞ. A comprehensive general the-

ory is available for evolution equations of this type; see, for in-

stance, [10,15,23]. Ignoring the nonlinear term in (12), and

insisting that v0 2 H2
0ð0; LÞ and v1 2 L2ð0; LÞ, Eq. (12) subject to

(13) and (14) defines a unique solution in v0 þWð0; TÞ for all

f 2 L2ð0; T; L2ð0; LÞÞ, withWð0; TÞ the collection of admissible struc-

ture displacements:

Wð0; TÞ ¼ w 2 L2 0; T;H2
0ð0; LÞ

� �

: w0 2 L2 0; T; L2ð0; LÞ
� �n o

: ð16Þ

Moreover, it holds that z00 2 L2ð0; T;H�2ð0; LÞÞ.
It is assumed that the setting of the structural position in (16)

can be retained for the nonlinear operator. In addition, it is as-

sumed that jDzj is a.e. bounded from below, i.e.,

jDzj P a > 0; s 2 ð0; LÞ; ð17Þ
and that zðt; �Þ : ð0; LÞ ! Ct is bijective for all t 2 ð0; TÞ. The first

assumption reflects that parts of the membrane that initially have

finite extent do not vanish during the motion. The second assump-

tion prohibits self-intersection of the membrane.

The general theory for evolution equations of the second order

in [23, Section 3.8.4] provides a refined regularity result for the

solution to (12)–(14). Under the above conditions on the data,

the displacement and the velocity can be conceived of as continu-

ous-in-time functions, taking values in H2
0ð0; LÞ and L2ð0; LÞ, respec-

tively, and the solution to (12)–(14) in fact satisfies

z 2 v0 þ w 2 L1 0; T;H2
0ð0; LÞ

� �

: w0 2 L1 0; T; L2ð0; LÞ
� �n o

: ð18Þ

This refined regularity result is important to assign significance to

the transmission conditions in the aggregated fluid–structure inter-

action (FSI) problem; see Section 2.3.

It is to be remarked that the above elementary model for a

membrane is in fact surprizingly difficult to analyze. Refs. [41,1]

derive the model (without regularization) without regard for the

complications related to compression. Results on existence and

uniqueness appear to be nonexistent; see also [2].

2.3. Transmission conditions

The fluid and the structure interact at their mutual interface via

so-called transmission conditions. These transmission conditions

can be separated into a dynamic condition, which specifies conti-

nuity of tractions, and a kinematic condition, which expresses con-

tinuity of motion. The kinematic condition imposes that on the

wetted boundary Ct , the normal velocity of the fluid coincides with

the normal velocity of the membrane. Indicating the normal veloc-

ity on the inflow boundary Cin by q, the kinematic condition trans-

lates into the following specification of the Neumann data h in (2):
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h ¼ nzt � ðz0t � z�1
t Þ at Ct ;

q at Cin:

(

ð19Þ

The composition of z0t with z�1
t serves to transport z0t to Ct .

The dynamic condition imposes continuity of tractions at the

fluid–structure interface. The pressure can be extracted from Ber-

noulli’s principle. Considering only quasi-static flows, allows to

suppress the time-dependence of the potential in Bernoulli’s rela-

tion, it follows that the pressure p in the structure load according

to (15) is related to the flow potential by:

pð/Þ :¼ p0 �
1

2
#jr/j2 ¼ p0 �

1

2
#j@n/j2 �

1

2
#jrC/j2

¼ p0 �
1

2
#ðnz � ðz0 � z�1ÞÞ2 þ 1

2
#jrC/j2; ð20Þ

with # the fluid–structure mass ratio. The second equality follows

from splitting the gradient into normal and tangential components

respectively. The normal component is the Neumann data provided

in (19). In the tangential component, the symbol rC denotes the

so-called tangential gradient (or C-gradient), formally, rC/ ¼
r/� n@n/. Moreover, p0 represents a (possibly time-dependent)

pressure level; cf. Section 2.4.

To be compatible with the domain of the single-layer potential,

the Neumann data (19) in accordance with the kinematic condition

must reside in Lqð0; T;H�1=2ð@XtÞÞ (1 6 q 6 1). The time-depen-

dence of the Neumann data then extends to the solution of the

boundary-integral formulation and / 2 Lqð0; T;H1=2ð@XtÞÞ. By

transporting the integral on Ct to the parameter interval ð0; LÞ
and, subsequently, applying Hölder’s inequality, it is inferred

that:

khkL1ð0;T;L2ðCtÞÞ ¼
Z

Ct

nzð�; xÞ � z0 � z�1ð�; xÞ
� 	2

drt

� �1=2
�

�

�

�

�

�

�

�

�

�

L1ð0;TÞ

6

Z L

0

jnz � zð�; sÞj2jz0ð�; sÞj2jDzð�; sÞjds
� �1=2
�

�

�

�

�

�

�

�

�

�

L1ð0;TÞ

6 kz0kL1ð0;T;L2ð0;LÞÞkDzk
1=2
L1ð0;T;L1ð0;LÞÞ:

ð21Þ
In the final inequality it has been taken into account that

jDzj�1jrotDzj 6 1 almost everywhere. Sobolev’s inequality (cf. for

instance [3, Theorem 1.4.6]) implies that the embedding

H1ð0; LÞ,!L1ð0; LÞ is continuous. The refined regularity result (18)

then leads to the conclusion that khkL1ð0;T;L2ðCt ÞÞ is bounded. Assum-

ing that the inflow data satisfies q 2 L1ð0; T; L2ðCinÞÞ, it can be

shown that h 2 L1ð0; T; L2ð@XtÞÞ and, a fortiori, it holds that h de-

fines a functional in L1ð0; T;H�1=2ð@XtÞÞ. The refined regularity re-

sult in [7, Theorem 3] in fact conveys that the increased regularity

of the Neumann data, viz., h 2 L1ð0; T; L2ð@XtÞÞ rather than

h 2 L1ð0; T;H�1=2ð@XtÞÞ, carries over to the solution of the bound-

ary-integral formulation and results in / 2 L1ð0; T;H1ð@XtÞÞ instead
of / 2 L1ð0; T;H1=2ð@XtÞÞ.

Dynamic equilibrium at the fluid–structure interface imposes

that the fluid exerts a load pnz on the structure, with p according

to Bernoulli’s relation (20). The standard setting of the structure

subproblem therefore insists on ðpnzÞ � z 2 L2ð0; T; L2ð0; LÞÞ; see

Section 2.2. A result of this type however requires more regularity

for z and rC/. We shall therefore consider the weaker result

ðpnzÞ � z 2 L2ð0; T;H�2ð0; LÞÞ, which is consistent with the interpre-

tation of (12) as an identity in L2ð0; T;H�2ð0; LÞÞ. To this end, it will

be shown that the map

w#

Z T

0

Z L

0

wðt; sÞ � ðp � zðt; sÞrotDzðt; sÞÞdsdt ð22Þ

with p according to Bernoulli’s relation (20), corresponds to a con-

tinuous linear functional on L2ð0; T;H2
0ð0; LÞÞ; cf. (15). Without loss

of generality, # is set to 1. Application of Hölder’s inequality to

the term corresponding to the pressure level p0 yields:

Z T

0

Z L

0

p0ðtÞwðt; sÞ � rotDzðt; sÞdsdt
























6 kp0kL2ð0;TÞkwkL2ð0;T;L2ð0;LÞÞkDzkL1ð0;T;L2ð0;LÞÞ:

Anticipating that the pressure level p0 resides in L2ð0; TÞ (see Sec-

tion 2.4) and and recalling the refined regularity result (18), the

p0-term is therefore indeed continuous. Hölder’s inequality implies

that the term corresponding to ð@n/Þ2 in (20) is bounded according

to

Z T

0

Z L

0

wðt; sÞ � rotDzðt; sÞðz0ðt; sÞ � nz � zðt; sÞÞ2 dsdt
























6

Z T

0

kwðt; �ÞkL1ð0;LÞkDzðt; �ÞkL1ð0;LÞkz0ðt; �Þk2L2ð0;LÞdt

6 kwkL2ð0;T;L1ð0;LÞÞkDzkL1ð0;T;L1ð0;LÞÞkz0k2L1ð0;T;L2ð0;LÞÞ;

Note that the first inequality takes into account that jnzj 6 1 almost

everywhere. The refined regularity result (18) and the continuity of

the embedding Hmð0; LÞ,!L1ð0; LÞ ðm 2 NÞ then conveys that the

term related to ð@n/Þ2 is indeed bounded. Hence, it remains to

bound the term originating from the surface gradient in Bernoulli’s

relation. Hölder’s inequality yields:

Z T

0

Z L

0

wðt; sÞ � rotDzðt; sÞ ðrC/Þ2 � zðt; sÞdsdt
























6 kwkL2ð0;T;L1ð0;LÞÞkDzkL1ð0;T;L1ð0;LÞÞkrC/ � zk2L4ð0;T;L2ð0;LÞÞ:

Boundedness of the first two factors in the right-hand side again fol-

lows from the refined regularity result (18) and the aforementioned

embedding relation. Boundedness of the right-most factor follows

straightforwardly from the lower bound (17) on jDzj and the refined

regularity result / 2 L2ð0; T;H1ð@XtÞÞ.

2.4. Compatibility condition

The selection of the pressure level p0 is not obvious. The

pressure level is in fact related to an auxiliary coupling condition

between the fluid and the structure, in addition to the aforemen-

tioned kinematic and dynamic interface conditions, which origi-

nates from the incompressibility of the fluid. The

incompressibility of the fluid engenders a Fredholm alternative

for the Laplace–Neumann problem (2). By the divergence theorem,

the identities are obtained:
Z

Xt

D/ ¼
I

@Xt

@n/ ¼
I

@Xt

h ¼ 0: ð23Þ

Hence, the Laplace–Neumann problem admits a solution if and only

if the data h complies with the compatibility condition
H

h ¼ 0.

Moreover, kerðD; @nÞ ¼ spanf1g and, hence, the solution to (2) is un-

ique only up to an additive constant. On account of (19), the com-

patibility condition in (23) translates into a compatibility

condition on the structure displacement. Such an auxiliary coupling

between the fluid and the structure is typical for fluid–structure

interaction (FSI) problems with enclosed incompressible fluids;

see also [21].

Denoting by QðztÞ the volume contained within a certain

structure configuration zt and by cðtÞ the content of the fluid

domain,

cðtÞ ¼ Qðv0Þ þ
Z t

0

Z

Cin

q; ð24Þ
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the structure displacement must comply with QðztÞ ¼ cðtÞ. This

compatibility condition is now imposed in the weak formulation

of (12)–(14) by means of a Lagrange multiplier. Moreover, to eluci-

date the relation between the pressure level, p0, and the compatibil-

ity condition, f in (12) is separated in accordance with (15) and,

subsequently, p is replaced in accordance with (20). Denote by

W0ð0; TÞ ¼ z 2 Wð0; TÞ; zð0; �Þ ¼ 0f g; ð25aÞ

WTð0; TÞ ¼ z 2 Wð0; TÞ; zðT; �Þ ¼ 0f g; ð25bÞ
the admissible structure-displacement fields with vanishing initial

and terminal traces, respectively. It is to be remarked that the trace

of z at t ¼ 0 in (25a) is well defined in L2ð0; LÞ; see, for instance,

[23,15,14]. The structure-displacement problem, including the vol-

ume constraint, can then be condensed into the weak formulation:

find z 2 v0 þW0ð0; TÞ, k 2 L2ð0; TÞ such that 8w 2 WTð0; TÞ,
l 2 L2ð0; TÞ:

�
Z T

0

ðz0ðt; �Þ;w0ðt; �ÞÞL2ð0;LÞ dt þ
Z T

0

asðzðt; �Þ;wðt; �ÞÞdt

�
Z T

0

p0ðtÞðrotDzðt; �Þ;wðt; �ÞÞL2ð0;LÞ dt

þ #

2

Z T

0

hjr/j2 � zðt; �ÞrotDzðt; �Þ;wðt; �Þidt

�
Z T

0

hjDzðt; �Þjuz � zðt; �Þ;wðt; �Þidt

þ
Z T

0

kðtÞ hdQðzðt; �ÞÞ;wðt; �Þidt þ
Z T

0

lðtÞQðzðt; �ÞÞdt

¼
Z T

0

lðtÞcðtÞdt þ ðv1;wð0; �ÞÞ
L2ð0;LÞ; ð26aÞ

where the semilinear form as : H
2ð0; LÞ �H2ð0; LÞ ! R is defined by

asðz;wÞ ¼ ð1� jDzj�1ÞDz;Dw
� �

L2ð0;LÞ
þ � D2z;D2w
� �

L2ð0;LÞ
ð26bÞ

and h�; �i denotes the duality pairing between H�2ð0; LÞ and H2
0ð0; LÞ.

Moreover, dQ : H2ð0; LÞ ! H�2ð0; LÞ denotes the Fréchet derivative

of the volume functional Q.

In the weak formulation (26a), the pressure level p0 can be iden-

tified with the Lagrange multiplier k 2 L2ð0; TÞ. More precisely, if

ðz; kÞ0 denotes the solution to (26a) for p0 ¼ 0 and by ðz; kÞ1 the

solution to (26a) for some arbitrary p0 2 L2ð0; TÞ, then it holds that

z1 ¼ z0 and k1 ¼ k0 þ p0. To prove this assertion, it will shown that

hdQðzðt; �ÞÞ;wðt; �Þi ¼ ðrotDzðt; �Þ;wðt; �ÞÞL2ð0;LÞ; ð27Þ

for all admissible structure configurations z 2 v0 þW0ð0; TÞ and all

w 2 L2ð0; T;H2
0ð0; LÞÞ. The time-dependence of the structure config-

uration is in fact irrelevant in (27) and will be suppressed in the

ensuing derivation. First, note that

QðzÞ ¼
Z

Xt

dx ¼ 1

2

Z

Xt

divxdx ¼ 1

2

I

@Xt

x � ndrt

¼ 1

2

Z K

0

zðsÞ � rotDzðsÞds: ð28Þ

The penultimate expression in (28) is a straightforward conse-

quence of the divergence theorem. The ultimate expression follows

from the transformation s# x ¼ zðsÞ. Consider an arbitrary

w 2 H2
0ð0; LÞ and extend it to ðL;KÞ by zero. The extension is still de-

noted by w. From (28), it holds that:

hdQðzÞ;wi :¼ d

de
Qðz þ ewÞ













e¼0

¼ 1

2
ðrotDz;wÞL2ð0;LÞ þ

1

2
ðz; rotDwÞL2ð0;LÞ: ð29Þ

It is easily verified that the right-hand side of (29) is linear in z and

w and that

1

2
ðrotDz;wÞL2ð0;LÞ þ

1

2
ðz; rotDwÞL2ð0;LÞ

























6 kzkH2ð0;LÞkwkH2ð0;LÞ: ð30Þ

Hence, the Fréchet derivative dQð�Þ can be identified with

a linear continuous operator fromH2ð0; LÞ intoH�2ð0; LÞ, and for each

z 2 H2ð0; LÞ the duality pairing of dQðzÞ with w 2 H2
0ð0; LÞ

is defined by the right-hand side of (29). The identity (27) is obtained

by recasting the second term in the right-hand side of (29) into:

ðz; rotDwÞL2ð0;LÞ ¼ �ðrotz;DwÞL2ð0;LÞ ¼ ðrotDz;wÞL2ð0;LÞ: ð31Þ

The first identity in (31) is a consequence of the skew-symmetry of

the rotation operator. The second identity follows from integration-

by-parts and wjf0;Lg ¼ 0.

2.5. Contact forces

In the treatment of complex folded geometries, adequate mod-

eling of self-contact of the membrane is imperative to avoid self-

intersection. Because the primary interest concerns the coupled

problem described in Sections 2.1–2.4 and, in this context, contact

modeling is only accessory, any cogent contact model that pre-

vents self-intersection is therefore satisfactory. For this reason, a

soft-contact model is considered based on repulsive potentials, in-

stead of a hard-contact model, as the latter requires contact detec-

tion, which is nontrivial. Moreover, the soft-contact model admits

an efficient implementation by recycling the kernels that have al-

ready been generated in the boundary-element method for the

fluid subproblem.

In the soft-contact model, each segment of the membrane ex-

erts a force on every other segment, depending on their relative

distance and orientation. The contact-induced traction on the

structure, z# uz , is modeled as the marginal of a vector-valued

traction density, i.e., it is postulated that:

uzðxÞ ¼ f

I

@X

Fðx; yÞdrðyÞ; ð32Þ

for some traction density F : @X� @X ! R
2, with f > 0 a model

parameter. Note thatuz depends implicitly on the structure configu-

ration, z, on account of the dependence of the domain X on z. More-

over, assume that the inflow boundary Cin also exerts a contact

traction. The time dependence of the structural configuration and

of the domain are irrelevant for the exposition, and will be sup-

pressed. The traction density should comply with the following ele-

mentary conditions:

C1. The traction density should be essentially local, i.e., it should

have local support or decay rapidly as the distance jx� yj
increases;

C2. The traction density is repulsive and acts in the direction

x� y of the relative position of segments of the membrane;

C3. The traction at any point induced by segments in the vicinity

of that point vanishes. This means that for each x 2 @X and

each e > 0 there exist a d > 0 and a connected subset

Cd � @X such that x 2 Cd and
1

measCd

Z

Cd

Fðx; yÞdrðyÞ
























< e ð33Þ

with measCd the surface measure of Cd;

C4. The contact force should prevent self-intersection of the

membrane. To this end, the traction density must approach

infinity if y ! x while y and x are separated on the mem-

brane. In particular, if there exists a sequence fyng � C,

yn ! x as n ! 1, a corresponding sequence of sections

Cn � C,
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Cn ¼ fCn is the smallest connected subset of

@X containing x and yng ð34Þ

and a number e > 0 such that measCn P e as n ! 1, then

jFðx; ynÞj ! 1 as n ! 1; cf. also condition C3;

C5. The traction density should satisfy a reciprocity principle in

accordance with Newton’s third law of motion, which

implies Fðy; xÞ ¼ �Fðx; yÞ.

An important observation pertains to the fact that, in the finite-

element approximation, the concomitant computational complex-

ity of the soft-contact model is proportional to the number of ele-

ments squared, as for each element all other elements are to be

visited to determine the relative distances. In the present setting,

however, the relative distances have already been computed in

the boundary-integral formulation of the fluid subproblem. More-

over, it will be shown that the dependence of the contact force on

the relative distance and orientation can be formulated such that

the aforementioned conditions are obeyed, and that the traction

density can be composed of the singular kernel in the double-layer

potential in (4b). The authors are not aware of previous work on

such recycling of discrete kernels of a boundary-integral formula-

tion to determine contact forces.

To facilitate the presentation, the traction density is factorized

in four components according to Fðx; yÞ ¼ bðr=dÞmðx; yÞ r�1dðx; yÞ,
where r :¼ jx� yj is a condensed notation for the distance between

x and y and d > 0 is a preselected cut-off radius. The function b

serves to localize the traction density in accordance with condition

C1. To this end, a smooth window function based on a b-spline

b : Rþ ! ½0;1� is applied:

bðrÞ :¼
1� 3r2; r < 1=3;

3=2� 3r þ ð3=2Þr2; 1=3 6 r 6 1;

0; otherwise;

8

>

<

>

:

This is a common kernel in the realm of smooth particle hydrody-

namics. The vector-valued function d accounts for the directional

dependence in condition C2:

dðx; yÞ ¼ r�1ðx� yÞ:
The function m serves to impose the non-contiguity condition C3

and the reciprocity Principle C5:

mðx; yÞ ¼ jr�1 x� yð Þ � nðxÞ � nðyÞð Þj: ð35Þ
Finally, the factor r�1 serves to introduce the singular behavior of

the traction density to fulfill condition C4. Another important argu-

ment for selecting the particular form of m in (35) and the r�1 depen-

dence, is that these lead to a traction density that can be

conveniently expressed in terms of the singular kernel @nG accord-

ing to (6) in the double-layer potential.

The expression for m in (35) warrants some further elaboration.

To prove that the corresponding traction density satisfies condition

C3, a parametrization ð0; LÞ 3 s# zðsÞ 2 C is considered. Note that

for jaj < d and d ! þ0, it holds that

where oð�Þ denotes the Landau symbol with the property that

oðdbÞ=jdbj ! 0 as d ! 0 for all b P 0 and

CzðsÞ ¼ � DzðsÞ
jDzðsÞj �

DzðsÞ � D2zðsÞrotDzðsÞ
jDzðsÞj3

� rotD2zðsÞ
jDzðsÞj

 !





























DzðsÞ

supposing that all the above derivatives exist. Hence, the leading

order term of FðzðsÞ; zðsþ aÞÞ corresponds to an odd function in a,
and its integral on a symmetric interval around a ¼ 0 vanishes.

More precisely, selecting Cd in (33) according to

Cd ¼ fx 2 C : x ¼ zðsþ aÞ; jaj < dg ð37Þ
in the limit d ! þ0 it is seen that

1

measCd

Z

Cd

FðzðsÞ; yÞdrðyÞ
























¼ 1

2djDzðsÞj þ oðdÞ

Z d

�d

CzðsÞ
a
jaj þ oð1Þ

� �

jDzðsÞ þ oð1Þjda
























¼ oð1Þ;

ð38Þ

and, hence, for each e > 0 there exists a d > 0 such that (33) holds

with x ¼ zðsÞ.
Summarizing, the contact-induced traction on the structure

reads:

uzðxÞ :¼ f

I

@X

Fðx; yÞdrðyÞ

¼ 2f

I

@X

bðx; yÞ ðx� yÞ � ðnðxÞ � nðyÞÞ
2r2

























x� y

r
drðyÞ

¼ 2pf
I

@X

bðx; yÞj@nGðx; yÞ þ @nGðy; xÞj
x� y

r
drðyÞ: ð39Þ

In a numerical procedure, the expressionuzðxÞ is required at certain

integration points, fxig. Moreover, for each x 2 fxig, the integral on

@X in (39) is computed by means of a quadrature rule, which in-

volves determining the value of the integrand at points fyjg. Hence,
the value of the integrand is required for all pairs of points

ðx; yÞ 2 fxig � fyjg. The final expression in (39) conveys that uz

can indeed be efficiently computed, because the values of the singu-

lar kernel @nGðx; yÞ and of the relative positions x� y at fxig � fyjg
have already been computed in the numerical approximation of the

double-layer potential (4b).

To establish that the contact-induced traction defines

a meaningful load on the structure, it must be shown that the

map:

w#

Z T

0

Z L

0

wðt; sÞ �uz � zðt; sÞ jDzðt; sÞjdsdt ð40Þ

defines a continuous linear functional on L2ð0; T;H2
0ð0; LÞÞ; cf. (15)

and (22). First note that by Hölder’s inequality,

Z T

0

Z L

0

wðt; sÞ �uz � zðt; sÞ jDzðt; sÞjdsdt
























6 kwkL2ð0;T;L1ð0;LÞÞkDzkL1ð0;T;L1ð0;LÞÞkuz � zkL2ð0;T;L1ð0;LÞÞ ð41Þ

FðzðsÞ; zðsþ aÞÞ ¼ b
jzðsÞ � zðsþ aÞj

d

� �

zðsÞ � zðsþ aÞ
jzðsÞ � zðsþ aÞj3

� rotDzðsÞ
jDzðsÞj � rotDzðsþ aÞ

jDzðsþ aÞj

� �































zðsÞ � zðsþ aÞð Þ

¼ b
jDzðsÞaþ oðdÞj

d

� � �DzðsÞaþ oðdÞ
jDzðsÞaþ oðdÞj3

� DzðsÞ � D2zðsÞrotDzðsÞa
jDzðsÞj3

� rotD2zðsÞa
jDzðsÞj þ oðdÞ

 !





























ð�DzðsÞaþ oðdÞÞ

¼ CzðsÞ
a
jaj þ oð1Þ ð36Þ
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Hence, by the same arguments as in Section 2.3, it remains to bound

the right-most factor in (41). The function uz � zðt; sÞ can be ex-

panded into:

uz � zðt; sÞ ¼ f

I

@X

Fðzðt; sÞ; yÞdrtðyÞ

¼ 2pf
I

@X

�@nG zðt; sÞ; yð Þ � @nG y; zðt; sÞð Þð ÞHðzðt; sÞ; yÞdrtðyÞ

ð42Þ

where

Hðx; yÞ ¼ b
jx� yj

d

� �

1suppðmÞðx; yÞ
x� y

jx� yj ð43Þ

with 1suppðmÞ the characteristic function of the support of m according

to (35), i.e., 1suppðmÞðx; yÞ is 1 if mðx; yÞ– 0 and 0 otherwise. BecauseH

in the ultimate expression depends on z, standard results on conti-

nuity of the double-layer potential and its adjoint do not suffice to

bound the right-most factor in (41). A detailed analysis of uz � zðt; sÞ
is technical and is beyond the scope of this paper, and boundedness

of kuz � zkL2ð0;T;L1ð0;LÞÞ is left as a conjecture. However, in support of

this conjecture, note that the asymptotic result in (36) implies that,

under suitable smoothness conditions on z, the traction density

FðzðsÞ; zðsþ aÞÞ is bounded at the singularity of @nG, i.e., in the limit

as a ! 0.

3. Numerical approximation and solution

In this section, the numerical approximation of the aggregated

fluid–structure-interaction problem are considered, composed of

the weak form of the boundary-integral formulation of the fluid

equations (7), the weak formulation of the membrane equations

and the compatibility condition (26), and the kinematic and dy-

namic transmission conditions (19) and (20). Section 3.1 presents

the spatial and temporal discretizations of the fluid and structure

subproblems. The aggregated system is solved by means of a par-

titioned iterative solution procedure, which is elaborated in

Section 3.2.

3.1. Finite-element approximations

Recalling that the initial wet boundary C0 and the inflow

boundary Cin of the fluid domain are parametrized with respect

to the arc-length intervals ð0; LÞ and ðL;KÞ, a sequence of nested

regular partitions Sh of these intervals is introduced, parametrized

by a strictly decreasing sequence of mesh parameters

h 2 fh0;h1; . . .g. For each h, the partition Sh provides a cover of

ð0; LÞ and ðL;KÞ by disjoint open subsets fjh
1;j

h
2; . . .g. The quasi-

uniformity of the partitions implies that there exist moderate, po-

sitive constants c and �c, independent of h, such that for each j 2 Sh

it holds that ch 6 measj 6 �ch. The nesting of the partitions implies

that whenever h1 < h0, for each subset j 2 Sh1 there exists a subset

, 2 Sh0 such that j#,. A partition Sh and the subintervals it con-

tains are referred to as a mesh and elements, respectively.

The partitions form the substructure of the finite-element

approximation spaces for the fluid and structure subproblems,

S
h
:¼ M 2 C1ð0; LÞ : Mjj 2 P

3ðj;R2Þ 8j 2 Sh; j � ð0; LÞ
n o

; ð44aÞ

F
h
p :¼ N 2 C0ð0;KÞ : Njj 2 P

1ðj;RÞ 8j 2 Sh
; Nð0Þ ¼ NðKÞ

n o

; ð44bÞ

respectively, where P
pðj;RnÞ represents the class of polynomials of

degree 6 p from j into R
n. The approximation space S

h � H2ð0; LÞ
(resp. F

h
p � H1

pð0;KÞ, viz., the periodic functions in H1ð0;KÞ) is

H2ð0; LÞ-conforming (resp. H1
pð0;KÞ conforming). On account of the

regularity and nesting properties of the meshes, the sequence of

approximation spaces S
h has the approximability property [14].

This means that Sh is nested and asymptotically dense in H2ð0; LÞ,
i.e., S

h0 � S
h1 � � � � #H2ð0; LÞ and distðSh;H2ð0; LÞÞ ! 0 as h ! 0.

Similarly, Fh
p is a sequence of asymptotically dense, nested subspac-

es in H1
pð0;KÞ. The basis functions (coinciding with test functions)

for the spaces S
h and F

h
p are furnished by the Hermite and linear

functions (cf. [14]) respectively, as illustrated in Fig. 2.

To facilitate the evaluation of the singular integrals in the

boundary-element formulation of the fluid, the element-wise poly-

nomial representation of the boundary provided by the approxi-

mation of the structure position is not used. Instead, a

continuous element-wise linear approximation of the domain

boundary is selected, which nodally coincides with the structure

position or, along the section associated with the inflow boundary,

with the initial configuration. This is illustrated in Fig. 2. In partic-

ular, for an approximate structural position zh 2 Sh, the boundary

of the approximate fluid domain is parametrized according to

@Xh ¼ fx 2 R
2 : x ¼ ~zhðsÞ; s 2 ð0;KÞg, where ~zh is the unique func-

tion defined by:

f~zh 2 C0ð0;KÞ : ~zhjj 2 P
1ðj;R2Þ 8j 2 Sh

;

~zhjN h\½0;LÞ ¼ zhjN h\½0;LÞ; ~zhjN h\½L;K� ¼ v0jN h\½L;K�g; ð45Þ

where N h
:¼ [j2Sh@j is the set of nodes corresponding to Sh. Singu-

lar contributions to the integrals in (7) occur on elements where

both w and / are supported. Denote the linear basis on ~zhðjÞ by

Nj
i ; i 2 f0;1g. For convenience of notation Jj :¼ D~zh













j
measj is

introduced, which is a constant on j by virtue of the approximation
~zh of the configuration. The singular contributions can than be com-

puted by combinations of the integrals

ðNi;KNjÞL2ð~zhðjÞÞ ¼ 0;

ðNi;VNjÞL2ð~zhðjÞÞ ¼ ð6þ ð�1Þiþj � 4 log JjÞ
J2j
2p

:

The contributions of element pairs, including neighboring ele-

ments, are computed using standard high-order Gaussian quadra-

ture rules. The convergence tests in Section 4 indicate that this

basic approach is sufficient. However, an essential improvement

in efficiency can be attained by means of, for instance, adaptive

quadrature schemes.

For the temporal discretization of the structure equation (26),

an implicit backward-Euler approximation is used. To facilitate

the formulation of the discretization of the fluid–structure-interac-

tion problem, denote by zh0 2 S
h a suitable approximation to the

initial position v0 such that zh0jf0;Lg ¼ v0jf0;Lg, and by S
h
0 ¼

fzh 2 S
h
: zjf0;Lg ¼ 0g the functions in S

h that vanish at the end

points of the interval ð0; LÞ. Denoting by n 2 N the time step and

by s the time step size (such that zhn ¼ zhðtnÞ with tn ¼ ns), the dis-

crete approximation of the aggregated fluid–structure-interaction

problem can then be formulated as:

For n ¼ 1;2; . . ., find zhn; kn;/
h
n; fn

� �

2 ðzh0 þ S
h
0Þ � R� F

h
p � R, such

that for all w;l;w; tð Þ 2 S
h
0 � R� F

h
p � R, there holds:

s�2ðzhn;wÞL2ð0;LÞ þ asðzhn;wÞ � knðrotDzhn;wÞL2ð0;LÞ

þ #

2
ðjrC/

h
nj2 � ~zhn rotDzhn;wÞL2ð0;LÞ

þ #

2
ððs�1ðzhn � zhn�1Þ � ðjDzhnj�1 rotDzhnÞÞ

2
rotDzhn;wÞL2ð0;LÞ

� ðjDzhnjFzhn
� zhn;wÞ

L2ð0;LÞ
þ lQðzhnÞ þ

1

2
/h

n þ K/h
n;w

� �

L2ð@Xh
nÞ

� ðVðjD~zhnj�1 rotD~zhn � ðs�1ð~zhn � ~zhn�1ÞÞ � ð~zhnÞ
�1
;wÞL2ðCh

nÞ

þ tð/h
n;1ÞL2ð@Xh

nÞ
þ fnðw;1ÞL2ð@Xh

nÞ
¼ s�2ðzhn�1;wÞL2ð0;LÞ

þ s�1ðvh
n�1;wÞL2ð0;LÞ þ lcðtnÞ þ ðVq;wÞ

L2ðCh
in
Þ: ð46Þ
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Furthermore, vh
0 denotes a suitable approximation of the initial

velocity and v
h
n ¼ s�1ðzhn � zhn�1Þ for n ¼ 1;2; . . .; cf. (26) and (7). It

is to be noted that the term pertaining to the pressure level p0 in

(26) has been merged with the Lagrange-multiplier term, in accor-

dance with the exposition in Section 2.4. Moreover, in (46), the

jr/j2 term in (26) has been expanded in accordance with the ulti-

mate identity in (20), and the orthogonality conditions

ð/;1ÞL2ð@Xt Þ ¼ 0 and ðw;1ÞL2ð@Xt Þ ¼ 0 in (7) are instead imposed by

means of Lagrange multipliers.

3.2. Partitioned solution of coupled system

Having fixed solution methods for both the fluid and structure

subsystems, the partitioned solution of the coupled system is elab-

orated upon in this section, see Table 1. A linear extrapolation of

the initial data serves as a first approximation of the new coupled

solution. Within a fluid–structure subcycle, a structural solve is

performed first, to ensure compatibility of the fluid boundary data.

The subcycle is considered converged if the norm of the structure

residual is below the tolerance before a Newton solve is performed.

In performing Newton iterations, the pressure and contact loads

are treated explicitly whereas the stiffness semilinear form and

volume constraint are consistently linearized as

hdasðzhn;wÞ; dzi ¼ ð½ð1� jDzhnj�1ÞIdþ jDzhnj�3Dzhn 	 zhn�Ddz;DwÞL2ð0;LÞ
þ �ðdz;wÞH2

semð0;LÞ

and

hdhdQðzhnÞ;wi; dzi ¼ ðrotDdz;wÞL2ð0;LÞ
respectively.

The return statement is not reached if either the coupling iter-

ation or the structure solve does not converge due to, for instance,

large contact forces. This high temporary stiffness of the problem is

resolved by invoking the simplest possible time adaptivity, where

the time step is resolved with increasingly finer time steps 2�ks
until the iterations converge. At the subsequent time level, k is

coarsened according to k ¼ maxðk� 1;0Þ.
Though performing a linearization on the aggregate fluid–struc-

ture system is known to improve convergence of the discrete cou-

pled problem, the complexity rises considerably. The zhn-derivative

of the fluid subproblem is highly nontrivial due to the zhn-depen-

dence of the kernels. For this reason, a partitioned solution strategy

was preferred above a monolithic scheme.

4. Numerical examples

To demonstrate the performance of the finite-element/bound-

ary-element (FE/BE) approach proposed here, first a convergence

study is performed on the case of a pancake-shaped domain,

adapted from [29,6], see Section 4.1. Secondly, a simple folded con-

figuration is considered, to observe the response and convergence

rates in the presence of contact forces. Note that the derivation of

convergence rates for coupled problems is very technical, see for

instance [16]. The exposition below is restricted to the experimen-

tally observed convergence rates.

4.1. Pancake-shaped domain

The initial configuration, v0, is as given in Fig. 3 with geometri-

cal parameters r ¼ 1=3, w ¼ 4. Furthermore the mass ratio # is set

to 0.1, and perform spatial and temporal convergence tests with

regularization set to � ¼ 1� 10�4. The parametric domain is di-

vided into elements of size h 2 L=f24;48;72;96;144;288g. The

time domain ð0; TÞ is divided into increments of s 2 per=2f5;...;10g

with per ¼ ðK=pÞ2 an approximation of the period of the first

eigenmotion (based on the flexural term). Finally, the inflow is

specified as q ¼ qrðs� LÞhðtÞ, with

rðsÞ ¼ 4sðr � sÞ=r2;

Table 1

Partitioned solution algorithm in Python™ pseudo code, given numerical parameters

(s;imax;jmax;TOL), and input (zðt; �Þ;zðt � s; �Þ;/t ; q; ct). For simplicity, the Lagrange

multipliers have been incorporated into the respective solution vectors. Note that

indices do not denote tensor entries, but iterates.

z00 ;/0 = extrapolate(s;zðt; �Þ;zðt � s; �Þ;/t)

# Coupling iteration

for 0 6 i < imax:

# Structure solve

for 0 6 j < jmax:

rij = assembleResidual(zij;zðt; �Þ;/i; ct ; q; s)
if krijkL2 < TOL: break

ðdrÞij = assembleTangent(zij)

zijþ1 -= ½dr��1
ij rij

# Return statement

if not j: return zij

# Fluid solve

Vhi;K i = assembleFluid(zij ;zðt; �Þ)
/iþ1 = ½1=2þ K��1

i Vhi

Fig. 3. Pancake-shaped domain, initial geometry.

Fig. 2. Schematic of basis functions of the approximation spaces in the parametric domain. On the left, the Hermite basis of Sh is depicted; and on the right, the linear basis of

F
h
p . In the center, the isoparametric representation of the fluid and structure in the current domain at their mutual interface is shown, where � indicates the collocated nodes.
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hðtÞ ¼ 1

t2

ð1� cosðpt=t1ÞÞ=2; 0 < t 6 t1;

1; t1 < t 6 t2;

ð1þ cosðpðt � t2Þ=t1ÞÞ=2; t2 < t 6 t1 þ t2;

0; t1 þ t2 < t:

8

>

>

>

<

>

>

>

:

In these relations t1 ¼ 100, t2 ¼ 2t1, T ¼ 4t1 and the mean influx

q ¼ ðjXð0Þj � jXt jÞ=t2. The initial volume can be found in terms of

w and r1 and the final volume is specified as jXt j ¼ 1:05K2=4p. Note
that the mean flux has a negative sign as it is directed into the

enclosure.

The convergence behavior is assessed in the space–time norm

of the structure defined by

jjj z jjj:¼ kzkL2ð0;T;H2ð0;LÞÞ ¼
Z T

0

Z L

0

X

a62

jDazj2 dsdt
 !1=2

ð47Þ

and is plotted in Fig. 4, with reference solution zref obtained from

the finest discretization in space and time. Spatial convergence is gi-

ven in the left panel. The optimal (quadratic) convergence rate of

the decoupled structural problem seems to be preserved in the ini-

tial response. This trend breaks down when simulation times in-

crease and phase-lag dominates the errors. This is due to the fact

that, on long time intervals, marginal phase differences cause large

deviations in the norm. Snapshots of the associated response are gi-

ven at different time-levels in Fig. 5.

For temporal convergence (right panel) the linear rate expected

of the backward Euler scheme is retained. Also, a linear increase in

time of the error norm is observed initially, just like in the spatial

convergence case. A reduction in the convergence rate is observed

as the time interval increases because the phase-lag precludes cor-

relation between the different time-steps. It is however anticipated

that even for long time intervals, the asymptotic first-order conver-

gence is recovered at very small time steps.

In the above pancake case, a second order h-convergence rate of

the coupled response z in the Wð0; TÞ space–time norm is ob-

served. Surprisingly, this is not hampered by the convergence of

the fluid load (see Eq. (22))

w#

Z T

0

Z L

0

wðt; sÞ � ðp � zðt; sÞrotDzðt; sÞÞdsdt:

which is expected to exhibit OðhÞ convergence, as p depends on the

C-gradient of / 2 F
h, the space of piece-wise linears. It is conjec-

tured that the higher-order rate of convergence is caused by the

symmetry of the configuration. To verify this conjecture, the follow-

ing case is considered. A hierarchy of nested meshes and corre-

sponding linear spaces is generated on each level. The pancake

geometry of Fig. 3 and fabricated boundary conditions are projected

onto the coarsest mesh. In this case the boundary conditions are

g ¼ z0 � n with

z0 ¼ f0:3ðjx1j � r=2Þ; 0g; ð48Þ
thus, g both satisfies the compatibility constraint (23) and respects

the structural boundary conditions. These projections form the in-

put of the fluid problems that are solved at each mesh level. This

ultimately yields the desired family of load functionals that can

be tested against the projection of

w ¼ f0; sinðkps=LÞg;
onto a Hermite space on the finest mesh. Note that the test function

is thus identical at each resolution of the convergence analysis,

eliminating the effect of this projection on observed convergence

rates. The cases k ¼ 1 and 2 correspond to symmetric and asymmet-

ric test functions w, respectively.

Employing a hierarchy of equidistant meshes with

16 � f2; . . . ;15;60g elements, and comparing the errors with re-

spect to the finest approximation, the convergence behavior in

Fig. 6 is obtained. Note that the three curves corroborate the above

assertions, namely, that the pressure converges with rate 1 in the

L2ð0; LÞ norm, but that the rate for the load functional is 2 in the

case of a symmetric w. This enables the structure solution to con-

verge with rate 2 as observed in the symmetric pancake case of

Section 4.1. In the case of an asymmetric w the convergence rate

clearly does not attain this optimal value of 2, although it is steeper

than 1.

4.2. Folded configuration

Next, a folded configuration (see Fig. 7) including contact forces

is considered. Parameters are set to f ¼ 1:0, d ¼ 2:0. The contact

force parameters have been chosen to ensure no self-contact oc-

curs throughout the simulations. Fig. 8 illustrates that the mem-

brane exhibits significant wrinkling. These wrinkles are caused

by the contact force. The contact force plays a dominant role in

the structural response, on account of the so-called Venturi effect.

This Venturi effect pertains to the phenomenon that the pressure

decreases in narrow sections of the fluid domain with nonzero

flow. This effect is to be compared to the pressure drop in a con-

verging–diverging channel. The pressure drop causes the mem-

brane on the two opposite sides of the converging section to

approach, which in turn causes a local narrowing of the fluid do-

main, and a corresponding strengthening of the pressure drop. In1 It holds that jXð0Þj ¼ 2wr � r2 þ pr2=2.

Fig. 4. Convergence behavior in the space–time norm with symbols fM;�;
;	;}g representing time levels t ¼ f0:750;3:00;12:0;192;400g, respectively.
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the absence of contact forces, this process would ultimately lead to

a local collapse of the membrane. The aforementioned Venturi ef-

fect in fact results in a singular attractive force between sections of

the membrane. This singular attractive force must be counteracted

by a sufficiently strong singular contact force to avoid collapse of

the structure. It is to be noted that the Venturi effect is particular

for the considered potential-flow model and that, in contrast,

Stokes flow displays a repulsive lubrication effect [37].

Fig. 9 displays the error in the displacement for time step

6:621 � 10�2 and mesh widths h in L=f160;280;320;400;480;640g
with the last of these the resolution for the reference solution. A fine

h is observed tobenecessary to be in the asymptotic convergence re-

gime. The error convergence as h ! 0 is shown in Fig. 9. It is ob-

served that optimal convergence rates in the norm jjj � jjj are also

recovered in the case of contact forces.

Finally, the computation times are investigated.2 It is immedi-

ately noted, however, that the numbers given are only indicative,

as the program has not been optimized. The computations break

down as shown in Table 2. Cases I and II correspond to §4.1.

The assembly of the full boundary element method (BEM) matrix

dominates the simulation time. For these relatively small prob-

lems, the solution of linear systems are cheap. Also, the relative

contribution of overhead decreases with problem size. For case

III we see similar trends as in the first two cases, except a consid-

erably contribution of the contact force assembly, it is more

expensive than the remainder of the structure assembly. This is

because the non-optimized computation of the contact forces is

based on data from the fluid at the quadrature point level, which,

Fig. 9. Convergence behavior for the folded configuration in the space–time norm

jjj � jjj with symbols f�;M;�;
;	;}g representing time levels t 2 f0:26;
1:06;4:24;16:95;67:80;135:59g, respectively.

Fig. 6. Convergence of the pressure in the L2ð0; LÞ norm (�), and corresponding

loads tested against symmetric (�) and asymmetric (þ) functions.

Fig. 5. Snapshots of the pancake response, for w ¼ 4, colors indicate the static

pressure.
Fig. 8. Snapshots of the response for the folded domain.

Fig. 7. Initial configuration of folded domain test case.

2 Experiments were conducted on an Intel� Xeon� 2.00 GHz processor.
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at the high quadrature orders used here, incur significant burden

in the element integration.

5. Conclusions

A model was presented for the interaction of a membrane with

an enclosed fluid described by potential flow. The linearity of the

fluid response allows discretization with the boundary element

method (BEM). Despite its simplicity, the model poses some theo-

retical and numerical challenges. Uniqueness results are not avail-

able and are not easily acquired. A regularization of the membrane

equation is needed for stability. In this work flexural rigidity is

introduced for that purpose. As the fluid is enclosed and incom-

pressible, the volume needs to be constrained explicitly. A physical

interpretation was derived for the Lagrange multiplier enforcing

this constraint, the total internal excess pressure p0.

The numerical tests show the capabilities of the presented fi-

nite-element/boundary-element (FE/BE) coupling scheme. The dis-

cretization of the fluid with the boundary element method (BEM),

allows for very large deformations without evolving or recreating

volumetric meshes. In this sense, it extends the type of problems

that can be treated using an ALE-approach.

To counteract self-crossing of the membrane, ubiquitous in the

simulation folded inflatable structures, an efficient contact force is

introduced. The potential contact force is passive and its computa-

tion is feasible because of reuse of components generated in the

boundary element method (BEM) formulation of the fluid. An

inherent feature of potential flow is the Venturi effect, where pres-

sure forces cause a narrow section in the flow field to contract fur-

ther. Contraction would lead to collapse and self crossing, which

has to be prevented by the contact force. Numerical experiments

for a folded configuration revealed that owing to the Venturi

effect, the contact forces play a dominant role in the structural

response.
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Appendix A. Nondimensionalization

The membrane motion is given as s; t# z : ½0; L� � ½0; T� ! R
2

and governed by

.0hz
00 ¼ EhDðDzð1� jDzj�1ÞÞ þ p0 �

1

2
qjr/j2

� �

rotDz; ðA:1Þ

with appropriate initial- and boundary conditions. In this equation

.0, h and E are the membrane density, thickness and stiffness, resp.

Furthermore, q and / the are the fluid density and potential, resp.

For nondimensionalization, two characteristic quantities of the

problem are chosen, namely the wave propagation speed in the

membrane c0 ¼ ðE=.0Þ
1=2; and a length ‘, then

z ¼ ‘fzg; / ¼ ‘c0f/g; ð�Þ0 ¼ c0‘
�1fð�Þ0g; D ¼ ‘�1fDg;

r ¼ ‘�1frg:

In the following, the nondimensionalization braces f�g have

immediately been dropped. Substitution yields a one-parameter

wave equation

z00 � DðDzð1� jDzj�1ÞÞ � p0 �
1

2
#jr/j2

� �

rotDz ¼ 0; ðA:2Þ

with # :¼ q‘=.0h the mass ratio. The dimensionless total pressure

fp0g ¼ p0‘=ð.0c
2
0hÞ ¼ p0‘=Eh. Thus, effectively, time derivatives have

been scaled by c0 w.r.t. spatial derivatives, i.e., choosing ‘ ¼ 1 yields

h=1 ¼ fhg and s � c0=1 ¼ fsg. Secondly, the influence of stiffness is

through (i) this scaling of derivatives; and (ii) the total pressure.

For the fluid, the original relation is retrieved,

1

2
/ðxÞ þ 1

2p

I

@X

ðx� yÞ � nðyÞ
jx� yj2

/ðyÞdrðyÞ

¼ � 1

2p

I

@X

ðlog ‘þ log jx� yjÞhðyÞdrðyÞ

¼ � 1

2p

I

@X

ðlog jx� yjÞhðyÞdrðyÞ; ðA:3Þ

where the last equality follows from the compatibility conditiononh.
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