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a b s t r a c t

In this work the numerical simulation of nonlinear electro-elastostatics is considered with a special focus

on the influence of the free space surrounding an electro-sensitive body. The influence of the free space

on the electric field and on the deformation field inside an electro-sensitive body can become highly

important for many materials and can change profoundly the simulation results. In order to take into

account this influence, the free space must be simulated by using, for example, the finite element method

(FEM) or the boundary element method (BEM). A coupled BEM–FEM approach is employed here to

exploit the advantage of the finite element method in solving nonlinear problems and the advantage

of the boundary element method in dealing with infinite domains. Numerical studies using this approach

show that for materials with low electric permittivity, the free space can have a huge impact on the sim-

ulated electric and deformation fields. The same observation is expected for the general case of nonlinear

electro-elasticity and nonlinear electro-viscoelasticity and constitutes the direction for future works.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of the interaction between electric

fields and matter is of special interest in developing artificial mus-

cles that are made of emerging materials like electronic electroac-

tive polymers (EEAPs) [1–8]. Unlike the simulation of piezoelectric

materials under electric stimulations, in which the electric field in

the free space surrounding a material body can be in many cases

considered as of minor importance and can be conveniently

ignored, in dealing with EEAPs, besides the nonlinear electro-

mechanical coupling [9], the contribution of the free space may

become significant and should be taken into account [10]. This is

mainly because the electric polarization of most EEAPs is quite

weak. The electric permittivity of many EEAPs is approximately

of one order higher than that of vacuum, see e.g. [11,12], whereas

for piezoelectric materials this number is three orders higher.

When the contribution of the free space is important, the simula-

tion of EEAPs using the finite element method becomes quite cum-

bersome. A large finite element mesh is normally required to

capture the correct response of the system (deformable body and

free space). Besides, for the case of large deformation, this mesh

must be updated after every few iterations. In order to overcome

this difficulty, we use here the finite element method in combina-

tion with the boundary element method. The finite element meth-

od is used to model the nonlinear electroelastic body and the

boundary element method is used to model the surrounding finite

or infinite free space. In what follows we consider the problem of

finding the deformed state of a polarizable elastic body subjected

to an external electric field. We restrict ourself to the case where

the electric field is static with no current and no magnetic field.

The material behavior is assumed to be hyperelastic and the defor-

mation process is assumed to be static. With these restrictions, our

problem can be formulated using the theories of nonlinear elasto-

statics and nonlinear electrostatics. In the next sections, a brief re-

view of nonlinear elastostatics and nonlinear electro-elastostatics

is presented. For detailed formulations of nonlinear electro-elastic-

ity, see for example [13–16].

2. Governing equations of nonlinear elastostatics

Let us consider a body made of elastic material. The original or

undeformed configuration of the body is denoted by B0. In this

configuration the position of a point P is denoted by X. Under the

application of external forces (surface and volume forces), the body

deforms and its deformed configuration is denoted by Bt . The posi-

tion of the point P in the deformed configuration Bt is now denoted

by x, which is a function of X in the format x = u(X). Here the defor-

mation map u maps the point P from the undeformed configura-

tion B0 to the deformed configuration Bt . The deformation of the

body at every point inside the body is characterized by the defor-

mation gradient F, which is defined as F =rXu. In reference to the

deformed configuration Bt , the Cauchy stress tensor is denoted by

r and the equilibrium equation or quasi-static version of the bal-

ance equation of linear momentum is

rx � r
t þ bt ¼ 0; ð1Þ
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where rt is the transpose of r and bt is used to denote the mechan-

ical body force (gravitational force, for example). The balance equa-

tion of linear momentummust be satisfied for all points inside Bt . In

addition to the balance equation of linear momentum, the Cauchy

stress tensor r must also satisfy the balance equation of angular

momentum, which turns out to be fulfilled if r is symmetric

r ¼ rt: ð2Þ

Across the boundary @Bt of the body, the Cauchy stress tensor must

satisfied the jump condition

srt � n ¼ tmt ; ð3Þ

where tmt is the mechanical traction on @Bt; n is the outward point-

ing unit normal to the boundary Bt and s�t = [�]inside � [�]outside. Note

that under a normal mechanical loading this jump condition re-

duces to

r � n ¼ tmt ; ð4Þ

since the Cauchy stress tensor vanishes identically outside the

material body.

In order to formulate a variational equation for the problem we

assume that there exists a stored energy density function

W0F =W0F(F) per unit volume of the undeformed configuration B0

so that the Cauchy stress tensor r can be computed by

r ¼ J�1F � @FW
t
0F ; ð5Þ

where J = detF. In this case in reference to the deformed configura-

tion Bt the problem of nonlinear elastostatics can be formulated in

the variational format

d

Z

Bt

W tFdv �

Z

Bt

bt � dudv �

Z

@Bt

tmt � duds ¼ 0; ð6Þ

where WtF = J�1W0F is the stored energy density per unit volume of

the deformed configuration Bt .

3. Governing equations of nonlinear electro-elastostatics

When a polarizable body is immersed in an electric field, the

body deforms because of the electric body force that the electric

field exerts on the material. At every point inside the body, this

electric body force depends on the electric field and the polariza-

tion. The electric field is governed by the four Maxwell’s equations.

In reference to the deformed configuration Bt , the first Maxwell’s

equation, i.e. the Gauss’ law, is written in terms of free charges as

rx � d ¼ .f
t ; ð7Þ

where d is the electric displacement and .f
t is the density of free

charges. For the sake of simplicity we will assume that free charges

exist only on the boundary surface @Bt of the body so that in the

above equation .f
t ¼ 0. We bypass the second and the fourth Max-

well’s equations (Gauss’ law for magnetism and Ampere’s law) be-

cause of the assumption that there exist no magnetic field and no

electric current. The third Maxwell’s equation or the Faraday’s law

of induction is written here in the format

rx � e ¼ 0; ð8Þ

where e is the electric field. Across the boundary @Bt , the electric

field e and the electric displacement d must satisfy the jump

conditions

n� set ¼ 0 and n � sdt ¼ �.̂f
t ; ð9Þ

where .̂f
t is the surface free charge density on @Bt . More details

about governing equations of electric fields can be found, for exam-

ple, in [17–20].

Also in reference to the deformed configuration Bt , the electric

body force can be computed as

b
e
t ¼ ½rxe� � p; ð10Þ

where p is the electric polarization

p ¼ d� �0e: ð11Þ

With the help of Eqs. (7) and (8) the electric body force can be refor-

mulated in the format

b
e
t ¼ rx � e� d�

1

2
�0½e � e�I

� �
; ð12Þ

where I is the second order identity tensor and � represents the

dyadic product.

With the electric body force b
e
t , the balance equation of linear

momentum reads

rx � r
t þ bt þ b

e
t ¼ 0: ð13Þ

By using the balance equation of angular momentum it can be

shown that because of the electric body force, the Cauchy stress

tensor r is not symmetric in this case. However, if by using Eq.

(12) we define a total stress tensor r̂ as

r̂ ¼ rþ d� e�
1

2
�0½e � e�I; ð14Þ

then this total stress tensor turns out to be symmetric.

Across the boundary @Bt , the jump condition for the stress can

be written in terms of the total stress tensor r̂ as

sr̂t � n ¼ tmt ; ð15Þ

where tmt is again the mechanical surface traction in (3). For further

discussions about the jump condition for the total stress tensor, see

for example [21].

In summary, the governing equations above can be rewritten as

rx � r̂t þ bt ¼ 0 and rx � d ¼ 0 in Bt;

r̂ � n ¼ �tt and d � n ¼ ��qt on @Bt

�
ð16Þ

in reference to the deformed configuration Bt . In the above system,

the stress tensor r̂ and the electric displacement vector d are com-

puted inside the body, whereas the traction �tt and the electric sur-

face flux �qt are computed by taking into account the contribution of

the free space

�tt ¼ tmt þ r̂�0 � n; ð17Þ

�qt ¼ �d�0 � nþ .̂f
t ; ð18Þ

where we denote the quantities in the free space outside the body

using the superscript �0 .

In order to formulate a variational equation for the problem of

nonlinear electro-elastostatics, let us assume that there exist some

stored energy density functions W0e ¼ W0eðF; eÞ and W0E ¼ W0E

ðF; EÞ per unit volume of the undeformed configuration such that

W0ejF;e ¼ W0EjF;E 8F; E and that the Cauchy stress tensor r and

the electric polarization p can be computed by

r ¼ J�1F � ½@FW0e�
t and p ¼ �J�1@eW0e: ð19Þ

With this assumption in reference to the deformed configuration Bt ,

the electric displacement d and the total stress tensor can be calcu-

lated as

d ¼ �J�1F � @E
cW 0F ð20Þ

and

r̂ ¼ J�1F � ½@F
cW 0F �

t; ð21Þ

where the stored energy density function cW 0F is defined as the

combination of the contributions of matter and free space
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cW 0F ¼ W0EðF;EÞ �
1

2
�0JC

�1
: ½E� E�: ð22Þ

By using Eq. (19)–(22), the variational statement of the problem can

eventually be formulated as

d

Z

Bt

cW tFdv �

Z

Bt

bt � dudv �

Z

@Bt

�tt � dudsþ

Z

@Bt

dw�qtds ¼ 0 ð23Þ

in reference to Bt where w is some electric potential such that

e ¼ �
@w

@x
ð24Þ

besides cW tF ¼ J�1cW 0F .

4. Boundary integral equations for the free space

As mentioned above, the surface terms in the variational equa-

tion (23) are computed by using the contribution of the free space

surrounding the body of interest. When this contribution is small

and can be ignored, it is convenient to use the finite element meth-

od to discretize equation (23) and solve for the unknowns u and w.

In the case the contribution of the free space must be taken into ac-

count, the computation of the surface terms in (23) requires the

knowledge of the electric field in the free space. In the numerical

computation of the electric field in the free space surrounding a

body, a large finite element mesh can be used with the assumption

that at the boundary of this large mesh the electric flux is negligi-

ble. It is a rule of thumb that this finite element mesh should be

about five times the size of the body itself [22]. This requirement

seems to be not a serious obstacle given the power of computers

today. However, this is only true if on the boundary @Bt the dis-

placement is small. In the case of small displacements, the config-

uration of the free space can be considered as unchanged and no

remesh is needed. In other cases a remesh is required after every

few iterations, which becomes particularly costly in three dimen-

sional computations. In this work, we use the boundary element

method to treat the electric field in the free space. For this purpose,

the governing equations of the electric field outside Bt is written as

r2
xw

�0 ¼ 0 outside Bt;

w�0 ¼ �w on @Bw
t ;

d�0 � n ¼ �qt ¼ ��qt þ .̂f
t on @Bq

t ;

8
><

>:
ð25Þ

where w�0 is the electric potential in the free space, @Bt ¼ @Bw
t [

@Bq
t ; Ø ¼ @Bw

t \ @Bq
t ; @Bw

t is the part of @Bt on which the potential

w�0 is prescribed and @Bq
t is the part of @Bt on which the surface

charge .̂f
t is prescribed. Note that in the above system, the normal

vector n points from the inside to the outside of the domain Bt .

Let us suppose that the free space surrounding Bt has two

parts (Fig. 1), a finite part V f
t (cavity) and an infinite part V i

t such

that @Bt ¼ @V f
t [ @V i

t ; @Bw
t ¼ @V fw

t [ @V iw
t ; @Bq

t ¼ @V fq
t [ @V iq

t . With

the definitions of V f
t and V i

t as such, the system (25) can now be

transformed into the following system of two boundary integral

equations

Z

@V
f
t

½wðxÞ � wðnÞ�
@Gðn; xÞ

@n
ds�

Z

@V
f
t

qt

�0
Gðn; xÞds ¼ 0 ð26Þ

and

wðnÞ � w1 �

Z

@V i
t

½wðxÞ � wðnÞ�
@Gðn; xÞ

@n
dsþ

Z

@V i
t

qt

�0
Gðn; xÞds ¼ 0;

ð27Þ

where w1 is the electric potential at infinity, x is called the field

point, n is the source point, @½��
@n

is the directional derivative along

n, G(n,x) is the so-called fundamental solution and

qt ¼ �0
@wðxÞ

@n
¼ ��0e�0 � n ¼ �d�0 � n: ð28Þ

In the above equation, the notation w�0 is replaced by w due to the

fact that the electric potential must be continuous across the

boundary of the body. In addition, in three dimensional space the

fundamental solution to the Laplace operator reads

Gðn; xÞ ¼
1

4p
1

jn� xj
: ð29Þ

Besides equations (26) and (27), we assume that the total free

charge in the system is zero. This condition can be expressed as
Z

Bt

.f
tdv þ

Z

@Bt

.̂f
tds ¼

Z

@Bt

d � nþ .̂f
t

h i
ds ¼ �

Z

@Bt

qtds ¼ 0: ð30Þ

In what follows, we will use the boundary element method to dis-

cretize the boundary integral equations (26), (27) and (30). For

more details about boundary integral equations and the theory of

the boundary element method, see for example [23–25]. Note the

difficulty in solving equations (26)–(29) due to the nonlinearity

arising from the non constant integration domains resulting from

the coupling with the nonlinearly deforming electroelastic body.

Thus a Newton–Raphson scheme is needed even for the solution

of the boundary integral equations.

5. Coupled BEM–FEM discretization

By viewing the above formulation, the problemof nonlinear elec-

tro-elastostatics can nowbe represented by the system of equations

(23), (26), (27) and (30) with unknowns u, w and qt. Let us assume

that the body is divided into nel domains or solid elements. Inside

each solid element the displacement is approximated as

u ¼
Xnen

k¼1

Nkuk ð31Þ

and the electric potential is approximated as

w ¼
Xnen

k¼1

Nk
wk; ð32Þ

where Nk is the shape function at node k, nen is the number of nodes

per element, uk is the displacement vector at node k and wk is the

electric potential at node k.

By using the above approximations, the variational statement

(23) can be discretized in the format

Xnel

e¼1

Xnen

k¼1

duk �

Z

Be
t

r̂ �rxN
kdv þ dwk

Z

Be
t

d �rxN
kdv

" #

�
Xnel

e¼1

Xnen

k¼1

duk �

Z

Be
t

btN
kdv þ duk �

Z

@Be
t

�ttN
kds� dwk

Z

@Be
t

�qtN
kds

" #

¼ 0; ð33Þ

where Be
t is the space occupied by element e. Note that at the

boundary of the body besides the mechanical traction tmt , the elec-Fig. 1. Infinite ðV i
tÞ and finite ðVf

t Þ free space.
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tric contribution of the free space to the surface traction �tt is the

surface traction due to the Maxwell’s stress

tet ¼ �0½e� e� � n�
1

2
�0½e � e�n ð34Þ

and thus we have �tt ¼ tmt þ tet . In order to compute the traction tet ,

we rewrite the electric field vector in the format

e ¼ et þ en; ð35Þ

where en is the normal part of e

en ¼ ½e � n�n ð36Þ

and et is the tangential part of e. The normal part of e is computed

by using the electric flux on the boundary of the body. By using the

decomposition (35), the electric traction tet can now be written as

tet ¼
1

2�0
q2
t n� qtet �

1

2
�0½et � et�n: ð37Þ

In the above equation qt is the flux defined in (28) that will be com-

puted using the help of the boundary integral equations (26), (27),

and (30). In order to discretize these equations, let us assume that

the surface @Bt is discretized using surface elements whose nodes

coincide with that of solid elements used to discretized Bt . The dis-

placement over a particular surface element e is approximated as:

u ¼
Xnens

k¼1

Nk
suk; ð38Þ

where nens is the number of nodes of the surface element e that cov-

ers the surface @Be
t ; Nk

s is the shape function at node k of the surface

element e: Nk
s ¼ Nk

s ðn;gÞ. Also over this surface element, the electric

potential is approximated in the same way as the displacement

w ¼
Xnens

k¼1

Nk
swk: ð39Þ

At every point on @Be
t , the normal vector n is computed as

n ¼ ĝ1 � ĝ2; ð40Þ

where ĝ1 and ĝ2 are the two basis vectors defined by

ĝ1 ¼
g1

jg1j
; g1 ¼

Xnens

k¼1

uk

@Nk
s

@n
; ð41Þ

ĝ2 ¼
g2

jg2j
; g2 ¼

Xnens

k¼1

uk

@Nk
s

@g
: ð42Þ

By using (41) and (42) the tangential part et can be further decom-

posed into

et ¼ ½e � ĝ1�ĝ1 þ ½e � ĝ2�ĝ2 ð43Þ

or with the help of the approximations (38) and (39)

et ¼ �
Xnens

k¼1

wk

@Nk
s

@n

ĝ1

jg1j
�
Xnens

k¼1

wk

@Nk
s

@g
ĝ2

jg2j
: ð44Þ

Note that the decomposition of the electric vector as presented

above can be seen as a presentation of e in a coordinate system

whose basis vectors are ½ĝ1; ĝ2; ĝ3� with ĝ3 ¼ n and therefore

e ¼ e1ĝ1 þ e2ĝ2 þ e3ĝ3; ð45Þ

where e1 ¼ e � ĝ1; e2 ¼ e � ĝ2; e3 ¼ e � ĝ3.

For simplicity, let us assume that the discretization of the bound-

ary integral equations is realized using 4 node quadrilateral surface

elements. The flux over each element is assumed to be constant and

one source point is placed at the center of each surface element. Be-

cause the two boundary integral equations (26) and (27) are similar,

let us consider only the discretization of (27), which reads

Xnens

j¼1;j2i

Nj
swj � w1 þ

Xnels

e¼1

Z

@Be
t

1

4p
r � n

r � r½ �3=2

Xnens

k¼1;k2e

Nk
swk �

Xnens

j¼1;j2i

Nj
swj

" #
ds

þ
Xnels

e¼1

Z

@Be
t

1

4p�0
1

r � r½ �1=2
qe
tds ¼ 0 8i ¼ 1;nels; ð46Þ

where r ¼ x� n;
Pnens

j¼1;j2iN
j
swj is the approximation of the electric

potential at the source point n on the source element i, nels is the

number of surface elements,
Pnens

k¼1;k2eN
k
swkis the approximation of

the electric potential at the field point x on the field element e

and qe
t is the electric flux over @Be

t .

With the assumption that the electric flux over @Be
t is constant,

the total charge equation (30) is discretized as

Xnels

e¼1

Z

@Be
t

qe
tds ¼ 0: ð47Þ

Equations (33), (46) and (47) form a coupled BEM–FEMsystemof

equations with nodal unknowns of the motion map u, the electric

potentialw and the electric flux qt. This systemof equations is solved

in this work by using the Newton–Raphson scheme, in which the

very first step is to linearize equations (33), (46) and (47). In order

to save space, the details of the linearization will not be presented

there. For more details on linearization of the equation (33) using

the finite element method, the readers are referred to, for example,

thework ofWood and Bonet [26]. A framework for the linearization

of equations (46) and (47)using theboundaryelementmethod is de-

tailed in the work of Steinmann [16].

6. Numerical studies

The main objective of our numerical studies is to compute the

electric field and the deformation field inside a material body un-

Fig. 2. Geometry, coordinate system and boundary conditions of the material body.

Fig. 3. Geometry of the material body and bounding box.
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der electric loading and explore the influence of the surrounding

free space. For this purpose, we consider here the simulation of a

cube (the material body) with dimensions

60 lm � 60 lm � 60 lm (Fig. 2). The origin of the coordinate sys-

tem is assumed to be at the center of the cube. On the lower

(z = �30 lm) and upper (z = +30 lm) surfaces of the cube, the dis-

placement is prescribed as (Fig. 2):

ux ¼ uy ¼ uz ¼ 0 for � 30 lm 6 y

6 �24 lm and for 24 lm 6 y 6 30 lm: ð48Þ

The electric loading is applied on the body by mean of prescribed

electric potentials (wlower and wupper) given on the lower and upper

surfaces of the cube. For the purpose of demonstration, the material

properties are given through the stored energy density function
cW 0F defined here in the following format:

cW 0F ¼
l
2
½C : I � 3� � l ln J þ

k

2
½ln J�2 þ aI : ½E� E� þ bC

: ½E� E� �
1

2
�1JC�1

: ½E� E�; ð49Þ

where l = 0.05 MPa, k = 0.06 MPa, a = 0.2�0, b = 2�0, �1 = 5�0 and

�0 = 8.854 � 10�12 F/m.

In what follows, we consider three numerical studies: (1) mod-

erate electric loading, (2) high electric loading and (3) convergence

property. In the first study, the cube is loaded with relative small

values of wlower and wupper. In the second study, the cube is loaded

with some higher values of wlower and wupper. In the third study, we

examine the convergence property of the coupled BEM–FEM ap-

proach presented above.

6.1. Moderate electric loading

For this case, the electric loading is given by prescribing

wlower = �100 V and wupper = +100 V. Three different approaches

are used here to simulate the cube. The first approach is called

FEM with truncation of free space. In this approach only the finite

element method is used: both the cube and the free space sur-

rounding the cube are modeled by finite elements. The free space

is truncated by using a bounding box of the size

540 lm � 540 lm � 540 lm surrounding the cube (Fig. 3). Note

that the size of the bounding box is 9 times the size of the cube

in each direction. With this bounding box, the free space is now

understood as the space between the boundary of the cube and

the bounding box. On the boundary of this bounding box the elec-

tric flux can be considered to be negligible and the effect of the free

space is accounted for with high accuracy. As consequence, the

numerical solutions using this approach can be considered as accu-

rate and will be used here to verify other simulation results.

In our simulation, the cube is simulated using a mesh that has

1000 solid 8-node hexagonal elements (Fig. 4) and the truncated

free space is modeled using a mesh with 26,000 solid 8-node hex-

agonal elements (Fig. 5). For details of this approach see for exam-

ple [22]. In the free space, only the information about the electric

field is needed, therefore the nodal displacement of all finite ele-

ment nodes lying outside the material body is prescribed as zero.

Because the displacement of all nodes lying in the free space is pre-

scribed as zero, the numerical simulation is only possible as long as

elements lying next to the boundary of the cube remain not too

much distorted. This means that in order to simulate large defor-

mations, a remesh is required when distortion becomes a numeri-

cal problem. Despite the fact that a remesh is theoretically simple,

the numerical implementation is still a work in progress. Therefore

for the purpose of verifying other numerical results, the moderate

electric loading with wlower = �100 V and wupper = +100 V is chosen

Fig. 6. Electric potential inside/ outside the material body (left) and close-up (right).

Fig. 5. Finite element mesh for the free space.

Fig. 4. Finite element mesh for the material body.
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so that no remesh is needed. In the second approach the coupled

BEM–FEM presented above is employed. In this approach, we use

the same finite element mesh for the material body: the cube is

modeled by 1000 solid 8-node hexagonal elements. However, the

free space is taken into account with the help of 600 surface 4-node

quadrilateral boundary elements that are attached to the boundary

of the finite element mesh. In order to emphasize the effect of the

energy stored in the free space on the deformation of the material

body, the cube is simulated using a third approach in which only

the cube is modeled using 1000 solid 8-node hexagonal elements

and the free space is not taken into account. This approach is called

here FEM without free space.

As numerical result, the electric potential computed by using

the first approach is plotted in Fig. 6. A close-up is also presented

in Fig. 6 to demonstrate the electric field near the boundary of

the material body. It is easy to observe that the electric field out-

side the material body is considerably strong and therefore a con-

siderable part of the energy is stored in the free space.

The displacement of the cube’s edge with x = 30 lm, z = 30 lm

computed using the three approaches is plotted in Fig. 7. It is ob-

served that the result obtained by using the coupled BEM–FEM

agrees very well with the one using the FEMwith truncation of free

space and that the influence of the free space on the simulated

deformation is significant. For a better appreciation of this influ-

Fig. 8. Distribution of electric potential on undeformed configuration using: (a) FEM with truncation of free space, (b) coupled BEM–FEM and (c) FEM without free space.

Fig. 7. Displacement under electric loading wlower = �100 V and wupper = +100 V.
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ence, the distribution of the electric potential and the displacement

of the cube computed by using the three approaches are presented

in Figs. 8 and 9.

The numerical results show that the maximum displacement

computed by using the first approach is 0.343 lm and by using

the second approach is 0.337 lm. If the free space is not taken into

account (FEM without free space), the maximum displacement is

0.212 lm, which is about 30% less than the case when the free

space is taken into account.

6.2. High electric loading

For this case, the electric loading is given by prescribing

wlower = �500 V and wupper = +500 V. In this case, because of large

displacements at the boundary of the cube, the use of the FEMwith

truncation of free space will require a remesh of the free space.

This, as mentioned above, is still a work in progress. Therefore only

the coupled BEM–FEM and the FEM without free space are used to

simulate the cube. The simulation using the coupled BEM–FEM

Fig. 9. Distribution of displacement on undeformed configuration under electric loading wlower = �100 V and wupper = +100 V using: (a) FEM with truncation of free space, (b)

coupled BEM–FEM and (c) FEM without free space.

Fig. 10. Displacement under electric loading wlower = �500 V and wupper = +500 V.
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gives maximum displacements of 10.591 lm whereas the result

without the contribution of the free space is 6.209 lm. This differ-

ence can also be seen in Fig. 10 where the displacement of the line

y = 0 lm, z = 30 lm is plotted. In Fig. 11 the distributions of the

electric potential on the deformed configuration obtained by using

the coupled BEM–FEM and by using the FEMwithout free space are

presented where the difference in the distributions of the electric

potentials and in the deformations can be seen.

6.3. Convergence property

In order to investigate the convergence property of the New-

ton–Raphson scheme used in the coupled BEM–FEM simulation,

the loading wlower = �500 V and wupper = +500 V is applied in 10

steps. In each step the electric potential difference has an incre-

ment of 100 V and the numerical simulation is considered as con-

verged when the residual of the system of equations (33), (46) and

(47) is less than 1.0E�09. The residual after each iteration is pre-

sented in Fig. 12. It is observed that in each step only 4 or 5 itera-

tions are needed to reach convergence. Besides, a quadratic

convergence is also noted.

7. Conclusion

In this work the simulation of nonlinear electro-elastostatics is

addressed with the main emphasis on the influence of the free

space surrounding an electro-sensitive body. This influence be-

comes highly important, for example, in the case of EEAPs – the

materials that are used in developing artificial muscles. In order

to take into account the influence of the free space, we use a cou-

pled BEM–FEM approach, in which the BEM is used to simulate the

free space and the FEM is used to simulate the nonlinear body. The

use of the BEM is a user-friendly approach because the BEM mesh

needed in the simulation can be constructed automatically on the

existing FEM mesh. The accuracy of the simulation using the cou-

pled BEM–FEM is verified and its convergence rate is demonstrated

to be satisfactory. Numerical results using the coupled BEM–FEM

show that the contribution of the free space can alter profoundly

the electric field and the deformation field inside a body made of

materials with low electric permittivity like EEAPs. The use of

the coupled BEM–FEM can therefore help improve the design of

artificial muscles using EEAPs. Despite the fact that only the static

case of electro-elasticity is considered in this work, the use of the

coupled BEM–FEM is not limited to the simulation of nonlinear

electro-elastostatics but can be extended to the general case of

nonlinear electro-elasticity and nonlinear electro-viscoelasticity,

which constitutes the direction for future works.
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