
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2007; 70:812–839

Published online 2 November 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1910

A parallel fast multipole accelerated integral equation scheme for
3D Stokes equations

Haitao Wang1, Ting Lei2, Jin Li3, Jingfang Huang4,∗,† and Zhenhan Yao2

1Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, China
2Department of Engineering Mechanics, Tsinghua University, Beijing, China

3Department of Mathematics, Tsinghua University, Beijing, China
4Department of Mathematics, University of North Carolina, Chapel Hill, NC, U.S.A.

SUMMARY

In this paper, we discuss a numerical scheme for the Stokes equations in three dimensions. It uses
an integral equation formulation and is accelerated by the new version of fast multipole method first
introduced by Greengard and Rokhlin in 1997 (Acta Numerica 1997; 6:229–269). The code is parallelized
to solve problems of extremely large size. The resulting numerical solver can be applied to Stokes flows
in complex geometry and also serves as a building block for solving the Navier–Stokes equations of low
to moderate Reynold’s numbers. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Stokes equations

−∇P + �∇2u= 0

∇ · u= 0

have been widely used to model incompressible ‘creeping flows’ where the fluid Reynold’s

number is very low. The corresponding numerical method also serves as a building block for the
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incompressible Navier–Stokes equations with low to moderate Reynold’s numbers. Applications

include the design of fluidic micromechanical systems (MEMS), the modelling of fluid in human

bodies, and the study of ground water in porous medium. The work in this paper is inspired by

a project related with biofluidic MEMS design where incompressible Stokes equations are used

to model fluid in a device with complicated geometric details and the goal is to optimize device

structure for desired performance.

Numerical methods for Stokes flows with complex geometry have been extensively studied in

the last 50 years. The finite element method describes the geometry using a set of ‘elements’ and

the solution is represented as a linear combination of basis functions defined on each element.

Because of the properties of these basis functions, the resulting linear system using the ‘variational

formulation’ is sparse and can be solved efficiently using specially designed fast solvers for sparse

linear systems, such as the multigrid method and domain decompositions. Another class of methods

is the Cartesian grid finite difference schemes including the immersed boundary and immersed

interface methods [1, 2]. The structured grids simplify the adaptive mesh refinement (AMR) [3–6],
algorithm implementation and parallelization. However, as problem size gets larger, it becomes

difficult for traditional methods to provide satisfactory simulation results: the condition numbers

(reflecting how error is magnified) of linear systems from finite difference and finite element

discretizations usually grow with the number of grid points, hence the numerical results quickly

loose accuracy unless appropriate preconditioners can be found; and for large-scale problems,

existing fast solvers for sparse systems may no longer be both efficient and stable, especially when

very high accuracy is required.

In this paper, we focus on a new class of numerical methods emerged in the last 20 years.

These methods use integral equation formulations based on potential theory (resulting in better

accuracy and stability properties) and are accelerated by fast algorithms for dense linear systems.

Potential theory has been extensively studied previously by mathematics community but mostly for

the analysis of existence and regularities of solutions to differential equations. It has traditionally

been neglected as a numerical scheme. The reason is that integral representations of solutions to

differential equations result in dense linear systems. Direct Gauss elimination for such a system

with N unknowns requires prohibitive O(N 3) operations. However, the situation is changing

rapidly due to the introduction of fast algorithms for dense convolution-type operators, including

the O(N log N ) fast Fourier transform (FFT)-based methods (e.g. particle in cell (PiC), particle–

particle particle–mesh (P3M), and precorrected FFT (pFFT) [7–9]) and multipole expansion-based

methods (e.g. O(N log N ) tree codes [10, 11], and O(N ) fast multipole method (FMM) [12, 13]).
When accelerated by these fast algorithms, integral equation methods (IEM) can be both efficient

and accurate even for very large-scale problems, and they have been successfully used in many

science and engineering fields including computational electromagnetics, molecular dynamics and

astrophysics [7–11, 14–22]. More recently, IEM and fast algorithms have also been introduced

to the field of computational solid and fluid mechanics. In [23–31], FMM accelerated IEM were

used to simulate elastic properties of composite material with millions of inclusions; in [32–42],
solutions to traditional Stokes and Navier–Stokes equations using integral equation representations

were studied. Parallel iterative methods accelerated by fast algorithms have also been extensively

studied in [43–49].
In this paper, we focus on an integral equation formulation for the Stokes equations in three

dimensions. It uses the Stokelet, stresslet, and a direct integral representation. The numerical scheme

is accelerated by the new version of FMM introduced by Greengard and Rokhlin in 1997 [13].
Compared with the original O(N ) FMM, the prefactor of the new version was dramatically reduced,
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especially in three dimensions. Main features of our software package include: (a) the geometry

is imported from available CAD software packages; (b) a direct integral formulation is used, with

a carefully designed preconditioner; (c) the new version of FMM is implemented for efficient

matrix vector multiplications and (d) the code is parallelized in distributed memory architectures

for large-scale problems. This numerical package is being used to study fluids in bioMEMS, it

also reflects our first step in developing general-purpose numerical simulation toolboxes for the

Navier–Stokes equations of low to moderate Reynold’s numbers.

The structure of the paper is organized as follows: in Section 2, we briefly discuss integral

equation formulation for the Stokes equations. Currently a direct formulation is used, and so in

Section 3, we discuss how a traditional preconditioner can be designed to improve the convergence

of Krylov subspace-based iterative methods. In Section 4, we generalize the new version of FMM to

Stokes equations. In Section 5, we discuss how our simulation toolbox is parallelized. In Section

6, we present several numerical results to show the accuracy and efficiency of our solver, and

finally in Section 7, we provide concluding remarks and discuss current research efforts for the

optimization of the numerical package.

2. INTEGRAL EQUATION FORMULATION FOR 3D STOKES EQUATIONS

Consider a physical domain V with boundary S. An interior problem refers to the case when

fluid flows inside V with velocity or pressure specified along S. Assume that there are no external

forces, the governing equations in V are given by the Stokes equations

−∇P + �∇2u= 0

∇ · u= 0
(1)

where P denotes the pressure, u= (u1, u2, u3) is the velocity and � is the viscosity coefficient.

For cavity-driven flows, the velocity field is specified along portions of the boundary, and no slip

boundary conditions are specified on the rest. In the bioMEMS system we are studying, usually

no slip boundary conditions are used except on terminals where either pressure is specified or

velocity field is given. For an exterior problem, velocity field is specified at infinity, and boundary

conditions on S usually depend on physical properties of V and whether V is moving in fluid.

In this section, we briefly study the potential theory for the Stokes equations in three dimensions.

This has been extensively studied previously and interested readers are referred to [50] for detailed
discussions.

The fundamental solutions of the 3D Stokes equations are given by

T ∗
i j (x, y) = −

3

4�

rir jrknk

r5

U∗
i j (x, y) =

1

8��

(

�i j

r
+

rir j

r3

) (2)

The first tensor is usually referred to as the stresslet, and the second the Stokeslet. Using the funda-

mental solutions in Equation (2), the velocity field u= (u1, u2, u3) and traction tensor t= (t1, t2, t3)

satisfy the boundary integral equation (BIE)

Ci j (x)u j (x) +
∮

S

T ∗
i j (x, y)u j (y) dS(y)=

∮

S

U∗
i j (x, y)t j (y) dS(y) (3)
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where x= (x1, x2, x3) and y= (y1, y2, y3) are on the boundary S representing the target and source

points, respectively. In the formula, the index i, j = 1, 2, 3, Ci j (x) is determined by the geometry

of S at x: if the outward normal vector at x is continuous, then ci j (x) = �i j/2, and r is the distance

between x and y given by r = √
riri where ri = yi − xi . Once u and t are derived on S by solving

Equation (3) using prescribed boundary conditions, fluid velocity and traction at any point can be

obtained using Green’s second identity.

To discretize Equation (3), we first let the boundary S be divided into N boundary elements

S =
N
∑

k=1

Sk (4)

and assume that element Sk has m nodes y
(k)
l each associated with a basis function N

(k)
l (�1, �2)

for l = 1, . . . ,m where (�1, �2) are the new co-ordinates on Sk . Then the velocity and traction

tensors on Sk can be approximated by

u
(k)
i (�1, �2) =

m
∑

l=1

N
(k)
l (�1, �2)ui (y

(k)
l )

t
(k)
i (�1, �2) =

m
∑

l=1

N
(k)
l (�1, �2)ti (y

(k)
l )

(5)

The discretized Equation (3) is then given by

Ci j (x)u j (x) +
N
∑

k=1

m
∑

l=1

[∫

Sk

T ∗
i j (x, y(�1, �2))N

(k)
l (�1, �2) dS(�1, �2)

]

u j (y
(k)
l )

=
N
∑

k=1

m
∑

l=1

[∫

Sk

U∗
i j (x, y(�1, �2))N

(m)
l (�1, �2) dS(�1, �2)

]

t j (y
(k)
l ) (6)

where u j (y
(k)
l ) and t j (y

(k)
l ) are the velocity and traction values on node y

(k)
l , respectively. Setting

x to be one of the element nodes, the collocation formulation gives the matrix form of Equation (6)

H ·U =G · F (7)

whereU and F are discretized boundary velocity and traction vectors, and entries of matrices H and

G are formed by integrals of the fundamental solutions and basis functions. Letting SU ∪ SF = S,

U 1 and F1 be the given velocity and unknown traction on boundarySU , and U2 and F2 the

unknown velocity and given traction on boundary SF , Equation (7) can be rewritten as

[

H11 H12

H21 H22

]{

U 1

U2

}

=
[

G11 G12

G21 G22

] {

F1

F2

}

⇒
[

−G11 H12

−G21 H22

]{

F1

U2

}

=
[

−H11 G12

−H21 G22

]{

U 1

F2

}

⇒ AX = B (8)

where

A=
[

−G11 H12

−G21 H22

]

, X =
{

F1

U2

}

, B =
[

−H11 G12

−H21 G22

] {

U1

F2

}
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3. PRECONDITIONERS

In engineering community, formulation (3) is often referred to as a ‘direct’ formulation. For most

problems with mixed boundary conditions, the resulting integral equation for the unknowns is

not a Fredholm equation of second kind and the condition number of the resulting coefficient

matrix A in Equation (8) grows as the number of discretization points increases. When Krylov

subspace-based iterative methods are applied to such a system, the number of required iterations

increases very quickly as problem size gets larger.

For a general ill-conditioned linear system, many ‘preconditioning’ techniques have been

developed to improve the system’s condition number and reduce the iteration number when solved

by Krylov subspace-based methods [51]. In this paper, we consider a left preconditioner denoted

by M , and the preconditioned form of Equation (8) becomes

(MA)X = (MB) (9)

Generally speaking, M should be chosen so that (a) the matrix MA is close to identity matrix and

(b) the matrix vector product (MA)v can be easily carried out for any given vector v. For our

fast multipole accelerated BIE method, as the matrix A is not explicitly formed (so the storage

can be reduced to asymptotically optimal O(N )), we adapt a block diagonal matrix preconditioner

M based on the FMM tree structure as in [52–54, 31]. It is constructed as follows and interested

readers are referred to [54] for more detailed discussions.

Suppose that the whole boundary is discretized into N boundary elements. In our algorithm,

an octal-tree structure is constructed such that each tree leaf has at most a prescribed number of

elements (see [55, 56] for a discussion of the adaptive tree structures in the FMM methods). Using

this tree structure, the matrix A is first approximated by a block diagonal matrix A in which the

number n of the block sub-matrices equals to the number of tree leaves and entries in the kth

block sub-matrix A(k) are formed by integrating mk elements contained in the kth tree leaf using

conventional BIE (or boundary element) methods. This idea coincides with the fast multipole BIE

method in which elements in one leaf are calculated directly. The form of A is

A=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A
(1)
m1×m1

0

A
(2)
m2×m2

. . .

A
(k)
mk×mk

. . .

0 A
(n)
mn×mn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10)

After A is constructed, we define M = (A)−1 which is block diagonal.

We want to mention that instead of sparse matrix-based preconditioning techniques, methods

using convolution-type integral operators as preconditioners are also being actively studied. In

[57–60], it was shown that hypersingular integral operators can be used as preconditioners for

Fredholm first kind integral equations, and the resulting equations become Fredholm integral
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equations of second kind. Currently, instead of direct formulation (3), we are working on deriving

better integral equation formulations and possible integral operator-based preconditioners. Results

along these directions will be reported in the future.

4. NEW VERSION FAST MULTIPOLE METHOD FOR 3D STOKES FLOWS

In traditional boundary element methods (BEM), the dense matrix from numerical discretization is

usually calculated and stored explicitly. Solving such a system with N unknowns requires O(N 2)

memory and O(N 3) operations using Gauss elimination. An alternative is to use Krylov subspace-

based iterative schemes such as the GMRES or BiCGSTAB [61–65]. As the iteration number is

bounded by a constant for a well conditioned linear system (e.g. system (9) with properly chosen

preconditioners), the amount of work is dominated by the matrix vector product which requires

O(N 2) operations using a direct method. In the last 20 years, thanks to the introduction of fast

algorithms such as the FMM [12], the amount of work for convolution-type dense matrix vector

products can be reduced to O(N ) and explicit storage of the matrix is no longer necessary. The

resulting integral equation schemes are asymptotically optimal in memory and efficiency.

In this paper, we focus on the new version of FMM introduced by Greengard and Rokhlin

in 1997 [13]. This technique was later generalized to the Helmholtz and linearized Poisson–

Boltzmann equations in [66, 67]. Compared with the original FMM, by introducing a diagonal

translation operator based on exponential expansions, the prefactor in the new version O(N ) FMM

was greatly reduced, especially in three dimensions. In this section, we give a brief introduction

of basic ideas and formulations of the new version of FMM for 3D steady Stokes equations.

Interested readers are referred to [13, 68] where the new version of FMM was discussed under the

circumstance of the Laplace equation. In the following discussions, to avoid notation clutter, we

simply denote (x, y) as (x, y), and the vector pointing from x to y as xy.

4.1. Multipole expansions

The boundary integrals containing fundamental solutions U∗
i j (x, y),T

∗
i j (x, y) in Equation (2) rep-

resent the contribution of field (source) point y to target point x . Consider a point y in a cubic

box A with centre y0 as shown in Figure 1, assume that the following threshold is satisfied:

|y0y|� 1
2
|y0x| ∀y ∈A (11)

The fundamental solutions U∗
i j (x, y) and T∗

i j (x, y) can be expanded succinctly with respect to the

centre y0 using the separation of variables technique as

∑

n

∑

m

fnm(x, y0)gnm(y, y0) (12)

More specifically for U∗
i j (x, y)

U∗
i j (x, y)=

1

8��

∞
∑

n=0

n
∑

m=−n

(

F1S
i j,n,m(y0x)Rn,m(y0y) + F2S

i,n,m(y0x)(y0y) j Rn,m(y0y)
)

(13)
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Figure 1. Four steps of FMM.

where

F1S
i j,n,m(Ox) = �i j Sn,m(Ox) − (Ox) j

�

�xi
Sn,m(Ox)

F2S
i,n,m(Ox) =

�

�xi
Sn,m(Ox)

(14)

Rn,m and Sn,m are the solid spherical harmonic functions defined as

Rn,m(Ox) =
1

(n + m)!
Pm
n (cos �)eim�rn

Sn,m(Ox) = (n − m)!Pm
n (cos �)eim� 1

rn+1

{r, �, �} are the spherical co-ordinates of vector Ox, Pm
n is the associated Legendre function and

( ) stands for the complex conjugate (see also [69, 30]). Substituting Equation (12) or (13) into

the boundary integral
∫

S
U∗
i j (x, y)t j (y) dS(y), one obtains

∫

S

U∗
i j (x, y)t j (y) dS(y) =

∫

S

[

∑

n

∑

m

fnm(x, y0)gnm(y, y0)

]

t j (y) dS(y)

=
1

8��

∞
∑

n=0

n
∑

m=−n

(

F1S
i j,n,m(y0x)c

U1
j,n,m(y0) + F2S

i,n,m(y0x)c
U2
n,m(y0)

)

(15)

which is referred to as the multipole expansion of
∫

S
U∗
i j (x, y)t j (y) dS(y) centred at y0, and the

multipole moments cU1
j,n,m(y0) and cU2

n,m(y0) are given by

cU1
j,n,m(y0) =

∫

S

Rn,m(y0y)t j (y) dS(y)

cU2
n,m(y0) =

∫

S

(y0y) j Rn,m(y0y)t j (y) dS(y)

(16)
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Similarly for T ∗
i j (x, y), notice the relation between T ∗

i j and U∗
i j

T ∗
i j (x, y)= �

{

�U∗
i j (x, y)

�yk
nk +

�U∗
ik(x, y)

�y j
nk +

1

2

�U∗
kk(x, y)

�yi
n j

}

(17)

T ∗
i j (x, y) can then be expanded using Equation (13), and straightforward algebraic manipulations

for
∫

S
T ∗
i j (x, y)u j (y) dS(y) give

∫

S

T ∗
i j (x, y)u j (y) dS(y)=

1

8��

∞
∑

n=0

n
∑

m=−n

(

F1S
i j,n,m(y0x)c

T1
j,n,m(y0) + F2S

i,n,m(y0x)c
T2
n,m(y0)

)

where

cT 1j,n,m(y0) = �

∫

S

{

�Rn,m(y0y)

�yk
nku j (y) +

�Rn,m(y0y)

�yk
n juk(y)

}

dS(y)

cT 2n,m(y0) = �

∫

S

{

(y0y)k
�Rn,m(y0y)

�y j
n juk(y) + (y0y) j

�Rn,m(y0y)

�yk
n juk(y)

}

dS(y)

Once the coefficients cU1
j,n,m(y0), c

U2
n,m(y0), c

T 1
j,n,m(y0), c

T 2
n,m(y0) are calculated, the integrals

∫

S
U∗
i j

(x, y)t j (y) dS(y) and
∫

S
T ∗
i j (x, y)u j (y) dS(y) at different target point x can be evaluated using

the multipole expansions. Notice that except for the upper index (T or U ) for the coefficients, the

multipole expansion formulas for both integrals are identical. This implies that other expansion

and translation operator formulas are also identical for both integrals if they are derived using the

multipole expansions. Hence to simplify the discussion, in the following, we omit the details for the

second integral
∫

S
T ∗
i j (x, y)u j (y) dS(y), and neglect the upper index T orU for different expansion

coefficients (e.g. using c1j,n,m(y0), c
2
n,m(y0) instead of c

U1
j,n,m(y0), c

U2
n,m(y0), so the formulas are also

applicable to cT 1j,n,m(y0), c
T 2
n,m(y0)). Further, as the multipole expansions are formulated in the same

form as those in [29] for 3D elastostatic problems, the translation operators to be discussed below

also can be found in [29] and references therein.

4.2. Multipole to multipole translation (M2M)

Let B denote the parent cube of A as shown in Figure 1. Assume y1 is B’s centre and the following

threshold is satisfied:

|y1y|� 1
2
|y1x| ∀y ∈B (18)

Using the multipole expansion ofU∗
i j (x, y)with respect to y around y1, one can obtain an expansion

similar to Equation (15) but centred at y1 as

∫

S

U∗
i j (x, y)t j (y) dS(y)=

1

8��

∞
∑

n=0

n
∑

m=−n

(

F1S
i j,n,m(y1x)c

1
j,n,m(y1) + F2S

i,n,m(y1x)c
2
n,m(y1)

)

(19)

Notice that instead of evaluating the integrals in Equation (16) directly, the new multipole moments

c1j,n,m(y1), c
2
n,m(y1) can be obtained by introducing a linear mapping acting on the old moments
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c1j,n,m(y0), c
2
n,m(y0) as given by (see also [29])

c1j,n,m(y1) =
n
∑

n′=0

n′
∑

m′=−n′
Rn′,m′(y1y0)c

1
j,n−n′,m−m′(y0)

c2n,m(y1) =
n
∑

n′=0

n′
∑

m′=−n′
Rn′,m′(y1y0)

(

c2n−n′,m−m′(y0) − (y0y1) jc
1
j,n−n′,m−m′(y0)

)

This linear mapping can be precomputed and is referred to as the ‘multipole to multipole (M2M)

translation operator’ in the FMM literature.

4.3. Multipole to local translation (M2L)

Let C denote a cube of the same size as B as shown in Figure 1. Assume x1 is C’s centre and the

following threshold is satisfied:

|x1x|� 1
2
|x1y1| ∀x ∈C (20)

As the functions fnm(x, y1) (representing F1S
i j,n,m(y1x) and F2S

i,n,m(y1x)) in Equation (12) are smooth

for x close to x1, they can be Taylor expanded succinctly as

fnm(x, y1) =
∑

n′

∑

m′
pn′m′(x, x1)q

nm
n′m′(y1, x1) (21)

Substituting Equation (21) into the multipole expansion in Equation (15) or (19), one can obtain

a ‘local expansion’ centred at x1 as

∫

S

U∗
i j (x, y)t j (y) dS(y)

=
1

8��

∞
∑

n′=0

n′
∑

m′=−n′

(

P1R
i j,n′,m′(x1x)d

1
j,n′,m′(x1) + P2R

i,n′,m′(x1x)d
2
n′,m′(x1)

)

(22)

where P1R
i j,n′,m′(x1x) and P2R

i,n′,m′(x1x) are detailed expressions for pn′m′(x, x1) given by

P1R
i j,n′,m′(x1x) = �i j Rn′,m′(x1x) − (x1x) j

�

�xi
Rn′,m′(x1x)

P2R
i,n′,m′(x1x) =

�

�xi
Rn′,m′(x1x)

The local moments d1
j,n′,m′(x1) and d2

n′,m′(x1) can be derived by a linear mapping acting on the

multipole moments c1j,n,m(y1), c
2
n,m(y1) (see [29])

d1j,n′,m′(x1) =
∞
∑

n=0

n
∑

m=−n

(−1)n
′
Sn+n′,m+m′(y1x1)c

1
j,n,m(y1)

d2n′,m′(x1) =
∞
∑

n=0

n
∑

m=−n

(−1)n
′
Sn+n′,m+m′(y1x1)

(

c2n,m(y1) − (y1x1) jc
1
j,n,m(y1)

)

(23)
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This operator is referred to as the ‘multipole to local (M2L) translation operator’. Notice that in

the original FMM, direct calculation of d1
j,n′,m′(x1), d

2
n′,m′(x1) using c1j,n,m(y1), c

2
n,m(y1) requires

O(P4) work where terms with n>P or m>P in Equation (23) are truncated. Furthermore, in

three dimensions, as many as 189 such translations may be required for each multipole expansion.

The new version of FMM, on the other hand, reduces the number of operations from 189P4 to

approximately 40P2 + 2P3. This technique is discussed in Section 4.5.

4.4. Local to local translation (L2L)

Let D denote a child cube of C as shown in Figure 1, and x0 be D’s centre. Using expansion of

fnm(x, y1) with respect to x around x0, one can obtain an expansion similar to Equation (22)

∫

S

U∗
i j (x, y)t j (y) dS(y)

=
1

8��

∞
∑

n′=0

n′
∑

m′=−n′

(

P1R
i j,n′,m′(x0x)d

1
j,n′,m′(x0) + P2R

i,n′,m′(x0x)d
2
n′,m′(x0)

)

(24)

where new local moments can be calculated, instead of using the M2L operator, by a linear mapping

acting on old ones as given by (see [29])

d1j,n,m(x0) =
∞
∑

n′=n

n′
∑

m′=−n′
Rn′−n,m′−m(x1x0)d

1
j,n′,m′(x1)

d2n,m(x0) =
∞
∑

n′=n

n′
∑

m′=−n′
Rn′−n,m′−m(x1x0)

(

d2n′,m′(x1) − (x1x0) jd
1
j,n′,m′(x1)

)

This mapping from local moments d1
j,n′,m′(x1), d

2
n′,m′(x1) to d1j,n,m(x0), d

2
n,m(x0) can be precom-

puted and is referred to as the ‘local to local (L2L) translation operator’.

4.5. Exponential expansion

In the new version of FMM, it is noticed that instead of the multipole and local expansions,
∫

S
U∗
i j (x, y)t j (y) dS(y) can be approximated by an ‘exponential’ expansion as

∫

S

U∗
i j (x, y)t j (y) dS(y) =

1

8��

s(�)
∑

n=1

Mn
∑

m=1

[

X1
j,n,m(y0)

(

�i j − (y0x) j
�

�xi

)

+ X2
n,m(y0)

�

�xi

]

×e−(�n/ lt)(y0x)3+i(�n/ l)[(y0x)1 cos 	mn+(y0x)2 sin 	mn]

where s(�), Mn, �n, 	mn are some constants determined by prescribed accuracy requirement (cal-

culating these constants is non-trivial and interested readers are referred to [15] for details), l is

the edge length of the cube related to an octal-tree node, and X1
j,n,m(y0) and X2

n,m(y0) are the

exponential moments.
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Using exponential expansions, the dense translation operator from multipole moments to local

ones (M2L) in Equation (23) can be replaced by three steps:

(1) The multipole to exponential shift (M2E) from c1j,n,m(y0), c
2
n,m(y0) to X1

j,n,m(y0), X
2
n,m(y0),

in order to derive the exponential moments from multipole ones for the same cube. Note

that an exponential expansion carries the same information (up to a prescribed precision

depending on the number of terms used) for each box in which the original multipole

expansion is to be shifted. This M2E translation is given by

X1
j,n,m(y0) =

wn

Mnl

∞
∑

m′=−∞
(−i)m

′
e−im′	nm

∞
∑

n′=|m′|

(

�n

l

)n′

c1j,n′,m′(y0)

X2
n,m(y0) =

wn

Mnl

∞
∑

m′=−∞
(−i)m

′
e−im′	nm

∞
∑

n′=|m′|

(

�n

l

)n′

c2n′,m′(y0)

where the constant wn can be found in [13] (see [70] for its calculation).
(2) The exponential to exponential shift (E2E) from X1

j,n,m(y0), X
2
n,m(y0) to X1

j,n,m(x0), X
2
n,m

(x0), in order to transfer exponential moments from one cube containing source points to

another cube containing target points. The latter cube is referred to as a member of the

‘interaction list’ [12]. E2E is referred to as a diagonal translation operator because it only

requires one multiplication for each moment, or in matrix form, the translation matrix is

diagonal, as given by

X1
j,n,m(x0) = X1

j,n,m(y0)e
−

(

�n
l

)

(y0x0)3+i
(

�n
l

)

[(y0x0)1 cos 	nm+(y0x0)2 sin 	nm ]

X2
n,m(x0) = [X2

n,m(y0) − (y0x0)kX
1
k,n,m(y0)]e

−
(

�n
l

)

(y0x0)3+i
(

�n
l

)

[(y0x0)1 cos 	nm+(y0x0)2 sin 	nm ]

(3) The exponential to local shift (E2L) from X1
j,n,m(x0), X

2
n,m(x0) to d1j,n,m(x0), d

2
n,m(x0), in

order to obtain local moments from exponential ones in the same cube. The local expan-

sions are derived by Taylor expanding the exponential expansions, and the coefficients are

given by

d1j,n,m(x0) =
s(�)
∑

n′=1

Mn′
∑

m′=1

X1
j,n′,m′(x0)(−i)m

(

−�n′

l

)n

e−im	n′m′

d2n,m(x0) =
s(�)
∑

n′=1

Mn′
∑

m′=1

X2
n′,m′(x0)(−i)m

(

−�n′

l

)n

e−im	n′m′

Figure 2 shows these three steps which diagonalize the original M2L operator. Since M2L

operator in FMM dominates in computer resources usage for 3D problems, its diagonalization

makes the new version of FMM more efficient.

It should be mentioned that kernel functions for Stokes equations can be expanded in different

forms. Interested readers are referred to [71] for a summary of existing forms. As will be shown

in Figure 11, by introducing diagonal translation operator, a break-even point of approximately

2000 elements for 6 digits precision is numerically observed. Currently, a comparison of different

forms is being performed and results will be reported in the future.
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Figure 2. Procedures of the new version of FMM.

4.6. Major steps in FMM

As a summary, several major steps in the FMM are described below.

4.6.1. Upward stage. Assume an octal-tree is constructed, the upward stage first calculates the

multipole moments of a leaf by integrating the boundary elements it contains. Second, multipole

moments of each tree node are transferred to those of its parent by the multipole to multipole shift

(M2M).

4.6.2. Downward stage. After multipole moments are obtained for all nodes in the octal-tree

structure, a downward stage is performed in order to obtain local moments for each node. The

concepts of ‘neighbours’ and ‘interaction list’ are introduced. Two tree nodes are called ‘neighbours’

when they share at least one vertex, and the ‘interaction list’ of a node B contains a group of tree

nodes which are not neighbours of B but their parent nodes are neighbours of B’s parent. In the

downward stage, information is first transferred from local moments of B’s parent (representing

contributions from outside of B’s interaction list) by the local to local (L2L) translation operator.

Then contributions from cubes in the interaction list are collected. In the original FMM, multipole

moments of interaction list cubes are transferred to B using the multipole to local (M2L) translation

operator. In the new version, M2L operation is decomposed into three operations: M2E, E2E and

E2L, which significantly improves the efficiency of the algorithm.

4.6.3. Direct local interactions. Notice that by evaluating the local expansion in Equation (24)

for each point x in a leaf node, one only obtains contributions from far-field boundary integrals.

For the remaining a few ‘neighbouring’ boundary integrals, a numerical quadrature can be applied

to evaluate the contributions directly, which is referred to as the direct local interactions.

4.6.4. Iterative solutions. In order to solve Equation (8) where matrix A is in general non-

symmetric, we start from an initial guess X0, and then an iterative method (such as GMRES,

BiCGStab, or TFQMR) can be applied to the preconditioned system (9) to find the ‘optimal solution’
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in the Krylov subspace. In each iteration, the matrix vector product is performed using the new

version of FMM. The procedure continues until the solution converges within a given tolerance.

For existing Krylov subspace methods, interested readers are referred to [61, 63, 65] for a

summary. Notice that GMRES gives better convergence properties in theory, however, the required

storage increases linearly with the number of iterations k, and the number of multiplications scales

like O(k2). On the other hand, although the convergence properties are less well understood

compared with GMRES, for BiCGStab and TFQMR methods, the storage is independent of k

and the number of multiplications only increases linearly. Currently a detailed study of different

Krylov subspace methods is being pursued.

5. PARALLELIZATION

Compared with conventional matrix vector multiplication methods, the FMMs are more difficult

to parallelize efficiently due to two problems: (a) the elements are non-uniformly distributed and

hence the tree is imbalanced (adaptive) and difficult to decompose effectively; and (b) the tree

is a connected data structure which is difficult to traverse compared with simple arrays. In the

following, we briefly discuss several approaches we adopted.

5.1. Tree decomposition by cubes

Instead of the row, column and cyclic block partition schemes that are commonly used in conven-

tional matrix-based algorithms, the ‘tree decomposition by cubes’ technique is used in our FMM

solver as described in the following procedure.

Procedure 1

Tree decomposition by cubes.

Step 1: The cubes (nodes in the adaptive tree structure) and their associated elements are first

sorted using the ‘space filling curves’ algorithm [72] which has been studied previously by Singer

and Wang et al. [47, 54] (however in their work, elements were distributed among tasks, which

is not readily applicable to our leaf-based block-preconditioned method). The index k of a cube

satisfies the following property: if k1<k2<k3, and k1, k3 share the same parent cube (node), then

so does k2.

Step 2: The cubes are weighed by their predicted run-time costs in the algorithm, as calculated

by the following procedure: consider an element e in a leaf cube (node) located at level L(e), the

predicted run-time cost for e is then

T e =
(TL(e)−1/n

c
L(e)−1 + nE2EL(e) · T E2E + T E2L + T L2L + nN2RL(e) · TN2R)

neL(e)

(25)

where Tl(l = 0, . . . , L(e)−1) is the predicted run-time cost of the (grand) parent cube (containing

e) at level l computed hierarchically by traversing the tree structure using

T0 = 0

Tl =
Tl−1

ncl−1

+ nE2El · T E2E + T E2L + T L2L (l = 1, . . . , L(e) − 1)
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T E2E, T E2L and T L2L are costs for the E2E, E2L and L2L FMM operators which depend on

expansion orders of the multipole, local, and exponential expansions, respectively. TN2R represents

direct one pair element–element computation cost which can be measured before the FMM steps.

ncl−1 is the number of non-empty children cubes at level l for the parent cube (containing e) located

at level l − 1, nE2El is the number of E2E operations for the cube at level l, nN2RL(e) is the number

of direct computations for a total of neL(e) elements (including e) located in the leaf cube at level

L(e). Note that if two elements are in the same leaf cube, then they have the same predicted

run-time costs as the numbers ncl−1, n
E2E
l , nN2RL(e) and neL(e) are identical for both elements. The

predicted run-time cost for a given cube k at level l can be obtained by summing up the costs of

all the elements in k as

T k
l =

∑

e∈k
T e (26)

Step 3: To balance the costs in the parallel algorithm, the cubes at level dec level are distributed

among tasks where dec level is a prescribed level which cannot be lower than the finest level

of leaves in the tree structure. Suppose there are M cubes at this level, and their costs are

T 1
dec level, T 2

dec level, . . . , T
M
dec level. Let p be the number of tasks (or processors), we can determine

a series of indices k j ( j = 0, 1, . . . , p) by setting k0 = 0 and kp = M , and requiring

k j
∑

i=k j−1+1

T i
dec level�

T̃K

p

k j+1
∑

i=k j−1+1

T i
dec level >

T̃K

p

(27)

The cubes from k j−1 + 1 to k j are then assigned to task j . In the formula, T̃K represents the sum

of cube costs at dec level defined by

T̃K =
M
∑

k=1

T k
dec level (28)

The optimal choice of the parameter dec level depends on the adaptive tree structure as well as

computer architecture. In Figure 3(a), we present a global tree structure based on the model of a

square plate with an eccentered hole. The tree is decomposed into four tasks using dec level= 1 (b)

and 2 (c), respectively. It can be seen that the costs of the local tree in (c) is closer to a quarter of

the total costs compared with the case in (b). In general, lower dec level means more balanced de-

composition but more complicated communication pattern. In our current implementation, highest

possible dec level is chosen as long as the decomposition is reasonably balanced. Main advantages

of the tree decomposition by cubes scheme are that (a) the children of any cube at level below

dec level are in the same task, so the communication pattern in tree traversing becomes simpler than

other schemes; and (b) the block preconditioning matrices can be constructed as a straightforward

extension of the serial code and applied to a candidate vector without any communication in each

iteration. In general, the parameter dec level helps providing balanced communication overhead and

work load.
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(a) (b) (c)

Figure 3. Task decomposition by cubes at different tree levels: (a) tree structure; (b) decomposition
at dec level= 1; and (c) decomposition at dec level= 2.

5.2. Parallelization of tree traversing

For data-locality, the tree structure in each task is created based on the elements it contains.

As each task is unaware of other tasks’ tree structures, the tree traversing process becomes

different from its serial counterpart. In the following, we focus on the downward stage in the

FMM, which is the most time-consuming and complicated step in parallel formulations due to

interactions with the ‘interaction list’ and ‘neighbouring’ cubes that may not be in the same

task or even may not exist. Based on the decomposition scheme mentioned above, two necessary

procedures are performed to establish these required communication lists for cubes in other tasks as

described below.

Procedure 2

Set sending/receiving ‘interaction list’.

Step 1: For every task, traverse its tree structure recursively, and find all ‘possible’ ‘interaction

list’ cubes in other tasks from which it needs to receive information, as shown in Figure 4(a) for

a 3-level tree decomposed at dec level= 1.

Step 2: For every task, communicate with other tasks so that they know what they need to send.

All ‘possible’ sending cubes are then checked for existence. For example in Figure 4(b), shaded

cubes are those possible sending cubes. After checking, the cubes with dotted lines are those that

do not exist.

Step 3: The existing cubes are the real sending cubes and are recorded in receiver task’s real

receiving interaction list, as shown in Figure 4(d). For non-existing cubes, their parent cubes are

located instead and are saved to the possible neighbouring list for further processing in Procedure

3 ‘Set sending/receiving neighbouring list’, as they can only be neighbours (instead of interaction

list members) of cubes in receiver’s task.

Procedure 3

Set sending/receiving ‘neighbouring list’.

Step 1: For every task, traverse its tree structure recursively, and find all ‘possible’ neigh-

bour cubes in other tasks from which it needs to receive information, as shown in Figure 5(a).
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Figure 4. Set interaction list in parallel tree traversing.

Note that these possible cubes also include the parent cubes of non-existing cubes discussed in

step 3 of Procedure 2.

Step 2: For every task, communicate with other tasks so that they know what they need to send.

All ‘possible’ sending cubes are then checked for existence. For example in Figure 5(b), shaded

cubes are those possible sending cubes. After checking, the cubes with dotted lines are those that

do not exist. This step is similar to step 2 in Procedure 2.

Step 3: The existing cubes are the real sending neighbouring cubes and are recorded in receiver

task’s real receiving neighbouring list, as shown in Figure 5(d). For non-existing cubes, their parent

cubes are checked for existence recursively. For example in Figure 5(c), the shaded cubes in Task

2 and 3 are parent cubes of non-existing cubes.

For the new version of FMM, the sending/receiving interaction list is further divided into 4

(2-D) or 6 (3-D) sub-lists representing different directions in the E2E translation.

After the cubes’ relations between different tasks have been set up, exponential moments of the

interaction list cubes and element information in the neighbouring list can be packed and sent or

received using message passing interfaces (MPI). Other operations in the new version of FMM

(like vector operations) are conventionally parallelized.

Finally in this section, we want to mention that the overhead due to procedures 2 and 3

is negligible since such ‘possible’ cubes are only a small portion of the total cubes in each
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Figure 5. Set neighbouring list in parallel tree traversing.

task. Also, the resulting lists remain the same for each iteration in the Krylov subspace-based

methods.

6. NUMERICAL RESULTS

In this section, we give several numerical results to show the efficiency and accuracy of our

parallelized fast Stokes solver. In the simulation, a Pentium 4 XEON 2.8GHz 32-processor cluster

running Linux system is used. The fast multipole BIE code is written in C/C + +, and LAM-

MPI library is used for communication. Compared with the original FMM and conventional BIE

methods (where Lapack (serial) and ScaLAPACK (parallel) subroutines are used to solve the linear

equation using Gauss elimination), the new version of FMM accelerated solver is more efficient

and asymptotically optimal.

In the first set of simulations, we consider a translating sphere as shown in Figure 6 and set

the physical parameters to �= 1.0× 10−3 Pa s, R = 1.0 m and Ux = 1.0 m/s. For this simple

geometry, the normal surface stress defined in spherical co-ordinate system can be derived analyt-

ically and is given by

trr |r=R = −
3

2

�Ux

R
cos � − p∞ (29)
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Ux=1m/ s

Figure 6. A translating sphere discretized using 4232 elements.

The drag force in x direction on the sphere is

Tx =
∫

S

tx dA= − 6��UR (30)

6.1. FMM accelerated matrix-vector multiplications

We first compare the accuracy and efficiency of the original and new version of FMMs. Letting

FP represent a constant normal pressure p and considering the matrix G in the right hand side of

Eq. (7), we have the following equality:

GFP = 0 (31)

Hence, the relative error of the FMM accelerated matrix vector product can be measured by

er =
�‖GFP‖2

p
(32)

In Figure 7, we plot this relative error for the original and new version of FMMs with dif-

ferent multipole/local and exponential expansion orders (from 4 to 32). A sphere with 12 168

elements is used and numerical results are compared with results using analytically integration.

In Figures 8 and 9, the computation time and memory requirements are presented. From these

figures, it can be seen that the new version of FMM outperforms the original one when higher

accuracy is required (large multipole/local orders); however, it requires more storage due to

the introduction of exponential expansions. For 5–6 digits accuracy, the new version of FMM

with multipole/local/exponential order= 18 processes a matrix vector product in 25 s requesting

200 MB memory for a 36 504× 36 504 matrix. This setting is used in the following calculations.

6.2. Accuracy and performance of Stokes solvers

Our current numerical solver uses flat triangular discretization with constant basis functions. In

Figure 10 we compare the relative error in the total drag force as a function of the total number
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Figure 7. Multipole expansion order vs relative error.
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Figure 8. Multipole expansion order vs CPU time.

of elements. Clearly, the method is 1st order. Higher order basis functions are being considered

and results will be reported in the future.

The computation time and memory requirement comparisons between the new version of FMM

accelerated BIE and conventional BIE (using Lapack) on serial computer architecture are shown

in Figures 11 and 12, respectively. The computation and storage complexity can be seen from the

slope of each plotted line. Comparison of the parallelized FMM–BIE and conventional BIE (using
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Figure 10. Relative error in total drag force vs element number.

ScaLAPACK [73]) is given in Figure 13. The FMM–BIE method inherits the virtue of parallel

efficiency as an iterative solver.

6.3. Micro-fluidic device simulations

Our numerical solver is also being applied to the simulation of Stokes flow inside a micro-fluid

device with complex geometry as shown in Figures 14 (3D view) and 15 (2D view). This device
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Figure 12. Memory requirement vs element number.

consists of two parallel circular plates, with 81 spouts placed on the top. The bottom plate is

moving with axial symmetrical normal velocity as shown in Figure 16 with radius and surface

normal vector defined in Figures 15 and 16. The inlet and spouts are specified by traction boundary

conditions with Tn = 0.101 325N/mm2 as shown in Figure 14. Zero-velocity boundary conditions

are specified on other surfaces.

In our simulation, the micro-fluid device is discretized into 279 046 triangular elements.

A detailed view of the meshes is shown in Figure 17. The new version of FMM with 18 terms in
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Figure 17. Zoomed view of the BEM meshes.
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Figure 18. Surface normal stress of the micro-fluid device (unit: N/mm2): (a) normal stress distribution.;
and (b) zoomed view of the normal stress distribution.

the multipole, local and exponential expansions is adopted, and the convergence residual for the

GMRES is set to 1.0× 10−6. The CPU time for a problem with DOF= 1 000 000 is about 3 h on

our parallel cluster.

In Figures 18 and 19, the contour plots of the surface normal traction and velocity are

shown respectively. One can see that both the inlet and spouts have positive normal velocity,

which is approximately in agreement with observed experimental results. Currently, the de-

vice is being optimized by applying several other velocity boundary conditions using our fast

Stokes solver.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 70:812–839

DOI: 10.1002/nme



836 H. WANG ET AL.

Figure 19. Contour plot of the surface normal velocity (unit: mm/s): (a) normal velocity distribution; and
(b) zoomed view of the normal velocity distribution.

7. CONCLUSIONS

In this paper, we present an integral equation-based numerical method for the Stoke equations in

three dimensions. The method uses Stokeslet and stresslet, and the dense matrix vector multipli-

cations are calculated using the new version of FMM. The numerical solver allows for complex

geometry and is parallelized for large-scale problems. It is currently being applied to bioMEMS

design problems as well as simulation of fluids in porous medium.

Currently, the numerical method is being optimized for better performance. Efforts include

the design of Fredholm second kind integral equation formulations, the choice of Krylov sub-

space methods, and better graphic user interface (GUI). In addition, we are trying to generalize

the current code to the incompressible Navier–Stokes equations of low to moderate Reynold’s
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numbers as well as to incorporate moving interfaces in fluid. Results along these directions will be

reported later.
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