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a b s t r a c t

In this work, point-wise discretization error is bounded via interval approach for the elasticity problem

using interval boundary element formulation. The formulation allows for computation of the worst case

bounds on the boundary values for the elasticity problem. From these bounds the worst case bounds on

the true solution at any point in the domain of the system can be computed. Examples are presented to

demonstrate the effectiveness of the treatment of local discretization error in elasticity problem via inter-

val methods.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Most of the problems in engineering mechanics are governed by

partial differential equations, to which exact solutions, in general,

cannot be obtained due to complexities in the geometry of the sys-

tem for which the applied boundary conditions must be satisfied.

Therefore, numerical methods have been developed to approxi-

mate the true solution by a polynomial interpolation between dis-

crete values. The foremost method that emerged is the finite

element method (FEM), in which the domain of the system is dis-

cretized into elements. These elements consist of polynomial inter-

polation functions between a finite set of points at which a solution

is either known or is to be computed. Another numerical method

used to approximate the solutions to partial differential equations

is the boundary element method (BEM). In boundary element anal-

ysis (BEA), the domain variables are transformed to the boundary

variables, thus decreasing the dimension of the problem by one.

This allows, in general, decreasing the time necessary for mesh

generation or mesh refinement. The domain transformation is per-

formed by the use of fundamental solutions, or Green’s functions,

to the linear partial differential equations, thus restricting classical

BEM to problems for which the fundamental solution is known.

The boundary integral equations, resulting from weighted residual

formulation, are solved using point collocation methods, in which

the residual is set to zero in the domain and exists only on the

boundary of the system. To achieve such residual, the weighted

residual function in a weak formulation of the partial differential

equation takes the form of the fundamental solution. The trans-

formed boundary integral equations are then solved by approxi-

mating the true solution over discrete boundaries, thus

introducing the discretization error. Although discretization error

estimates have been made for BEM [1,2] the worst case bounds

on the local discretization error have been computed only for the

Laplace problem [3].

In this work, point-wise discretization error is studied for Na-

vier’s equation which describes the elasticity problem. The bound-

ary integral equations, resulting from BEM formulation, are

enclosed by interval boundary integral equations, which eventu-

ally result in interval linear system of equations. A parametric sol-

ver is reviewed that enables the computation of non-naive bounds

on the boundary values. Example problems are presented to illus-

trate the behavior of the discretization error bounds on the

solution.

2. Boundary element formulation for navier’s equation

The boundary element formulation for the behavior of an iso-

tropic and homogeneous body is discussed in the literature [4–

6]. The following section reviews the two dimensional boundary

element formulation of Navier’s equation. Navier’s equation de-

scribes the behavior of an elastic solid body, undergoing small

deformation, which is subjected to either displacements, forces,

or both. The most common situation in practice is for the solid to

be subjected to both displacements and forces and it is of interest

to the engineers to obtain the solution for the displacement field in
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the entire body. From the obtained displacements other quantities

of interest, such as stress, can be derived. Small deformation stress

tensor can be defined as:

rij ¼
@F i

@Aj

; ð1Þ

where F is a force in direction i and A is the area in direction j, both

in the undeformed configuration. The Navier’s equation is:

rij;j þ bi ¼ 0 in X;

ui ¼ ûi on C1; ti ¼ t̂i on C2;

S2
i¼1Ci ¼ C and

T

2

i¼1

Ci ¼ 0;

9

>

>

>

=

>

>

>

;

ð2Þ

where X is the domain of the system, C is the boundary of the sys-

tem, rij is the stress tensor, bi is the vector of body force, ui is the

displacement vector with a forced boundary condition ûi on C1,

and ti is the traction vector with a natural boundary condition t̂i
on C2. The traction vector is related to the stress tensor as:

rijnj ¼ ti; ð3Þ

where nj is an outward normal vector to the boundary of the sys-

tem. For every part of the boundary, either a displacement field or

a traction field must be known. Although, for most practical cases,

the quantities of interest in solving the Navier’s equation are the

stress tensor and the displacement field in the domain of the sys-

tem, for BEA, traction and displacement fields are obtained on the

boundary of the system. In the following, Betti’s reciprocal theorem

is used as a starting point of the boundary element formulation for

the elasticity problem. The details on obtaining Betti’s reciprocal

theorem can be found in [6] and are not of essence to the presented

work. Betti’s reciprocal theorem is stated as:
Z

C

tiu
�
i dCþ

Z

C

biu
�
i dC ¼

Z

C

t�i uidCþ

Z

C

b
�
i uidC; ð4Þ

where the superscript � denotes a weighted residual function either

for the displacement, traction, or body force. Equilibrium condition

r�
ij;j ¼ �b

�
i is substituted into Eq. (4) resulting in:

�

Z

C

r�
ij;juidCþ

Z

C

t�i uidC ¼

Z

C

u�
i bidCþ

Z

C

u�
i tidC; ð5Þ

In order to decrease the dimension of the integral equation, Eq. (5),

such that all terms exist on the boundary of the system, the

weighted residual function is set to be the Green’s function, which

is obtained by applying a point force in direction ai. This is analo-

gous to applying a concentrated charge or a heat source. The above

consideration can be expressed as:

r�
ij;j ¼ �dðx� nÞai; ð6Þ

where n is a source point at which a concentrated force is applied, x

is a field point at which a response to the concentrated force is ob-

served, and dðx� nÞ is the Dirac delta function. Applying the con-

centrated force results in the fundamental solution:

u�
i ¼ u�

jiaj; ð7Þ

t�i ¼ t�jiaj; ð8Þ

where u�
ji and t�ji are i components of the displacements and trac-

tions, respectively, due to a concentrated force in the j direction,

and aj is a unit vector in the direction of the applied concentrated

force and it is the same direction as in Eq. (6). The kernel functions

u�
ji and t�ji are given as:

u�
ij ¼

1

8pð1� mÞG
ð4m� 3Þ lnðrÞdij þ

ð~x�~nÞ �~i

r
�
ð~x�~nÞ �~j

r

" #

; ð9Þ

q�
ij ¼

�1

4pð1� mÞr
ð1� 2mÞdij þ 2

ð~x�~nÞ �~i

r
�
ð~x�~nÞ �~j

r

" #

�
ð~x�~nÞ �~n

r

(

�ð1� 2mÞ
ð~x�~nÞ �~i

r
ny �

ð~x�~nÞ �~j

r
nx

" #)

; ð10Þ

where the operator � denotes a dot product and vectors i and j are

unit vectors in directions x and y, respectively. Substituting Eqs.

(6)–(8) into Eq. (5) yields:

uiðnÞai þ

Z

C

t�jiajuidC ¼

Z

C

u�
jiajbidCþ

Z

C

u�
jiajtidC; n 2 X: ð11Þ

The indices are exchanged in all the integral terms in Eq. (11)

as:

uiðnÞai þ

Z

C

t�ijaiujdC ¼

Z

C

u�
ijaibjdCþ

Z

C

u�
ijaitjdC; n 2 X: ð12Þ

The ai coefficients are constant and can be canceled out from Eq.

(12):

uiðnÞ þ

Z

C

t�ijujdC ¼

Z

C

u�
ijbjdCþ

Z

C

u�
ijtjdC; n 2 X: ð13Þ

For convenience the body force is assumed to be zero simplify-

ing Eq. (13) to:

uiðnÞ þ

Z

C

t�ijujdC ¼

Z

C

u�
ijtjdC; n 2 X: ð14Þ

Since the only entity in Eq. (14) that appears in the domain of the

system is a source point n, Eq. (14) is integrated such that n is en-

closed by the circular boundary of radius e, as e ! 0. This results

in the right side integral vanishing. For constant elements, the left

side integral of Eq. (14) results in �1=2uiðnÞ. Thus on the boundary

of the system and for constant elements, Eq. (14) can be rewritten

as:

1

2
uiðnÞ þ

Z

C

t�ijðx; nÞujðxÞdx ¼

Z

C

u�
ijðx; nÞtjðxÞdx; n 2 C: ð15Þ

In most cases, the exact solution to Eq. (15) cannot be found. There-

fore, Eq. (15) can be approximately solved using numerical methods

such as BEM.

In general, boundary integral equations, such as Eq. (15), cannot

be solved analytically. To obtain approximate solutions, the bound-

ary integral equation is discretized into boundary elements for

which the true solution is approximated by a polynomial interpo-

lation between known values of either u or t. In this work, only

boundary elements with constant shape functions are used to gen-

erate significant discretization errors. Higher order polynomial

approximation is assumed to approximate the true solutions better

thus decreasing the discretization error. Constant elements contain

one node per element, leading to the following discretization:

uðxÞ ¼ Uui; ð16Þ

tðxÞ ¼ Uti; ð17Þ

where ui and ti are the vectors of nodal values of u or t, respectively,

at node i, and U is the vector of constant shape functions. The dis-

cretized Eq. (15) can be written as:

1

2
ui þ

X

Elements

Z

C

t�ijðx; nÞUdxuj ¼
X

Elements

Z

C

u�
ijðx; nÞUdxtj: ð18Þ

Eq. (18) can be written in a matrix form:

Hu ¼ Gt; ð19Þ

where matrix H is singular and therefore satisfies the rigid body

motion. To obtain a unique solution to Eq. (19) at least one bound-

ary condition in each direction of the problem must be specified for
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the displacement. Eq. (19) is then rearranged according to the

appropriate boundary conditions and solved as a linear algebra

problem:

Ax ¼ f : ð20Þ

The terms of H and Gmatrices can either be determined explicitly or

are computed numerically using numerical integration schemes.

The effects of the integration error and truncation error have been

studied [7] and can be implemented to enclose the true solution

of Eq. (20). In this work the impact of the discretization error on

the solution to Eq. (20) is studied, following the boundary element

formulation, using interval methods.

3. Interval analysis

In this paper the discretization error is treated using an interval

approach. The following section reviews some of the interval oper-

ations. An interval number x ¼ ½a; b� [8,9] is a set of real numbers

such that:

½a; b� ¼ fxja 6 x 6 bg; ð21Þ

where ða; bÞ 2 R. Interval variables x ¼ ½a; b� and y ¼ ½c;d� behave

according to the following operations:

Addition:

xþ y ¼ ½aþ c; bþ d�: ð22Þ

Subtraction:

x� y ¼ ½a� d; b� c�: ð23Þ

Multiplication:

x � y ¼ ½minfac; ad; bc; bdg;maxfac; ad; bc; bdg� ð24Þ

Division:

x

y
¼ ½a; b� �

1

d
;
1

c

� �

; 0 R y: ð25Þ

Integration of interval-valued function f ðx; nÞ, which is a class of all

possible functions bounded by a given interval is performed as:

Z

C

f ðx; nÞdx ¼

Z

C

f ðx; nÞdx;

Z

C

f ðx; nÞdx

� �

; n 2 ½n; �n�: ð26Þ

Subdistributive property:

x � ðy þ zÞ#x � y þ x � z: ð27Þ

One of the major sources of overestimation or underestimation in

interval solutions is the subdistributive property of interval num-

bers. Great emphasis should be made to the correct order of opera-

tions in interval analysis. If the correct representation is given by

the left term in Eq. (27), expressing the operation by the right term

may cause overestimation. If the correct representation is expressed

as the right term in Eq. (27), expressing it as the left termmay result

in inner bounds and the enclosure of the solution may not be guar-

anteed. This issue will be farther referred to in considering interval

kernel functions.

Another source of overestimation occurs due to the dependency

of interval numbers, either linear or nonlinear. Linear dependency

of interval numbers for x ¼ ½�1;1� and y ¼ ½�1;1� can be illustrated

as:

x � y ¼ ½�1;1�; ð28Þ

x � x ¼ ½0;1�: ð29Þ

Eq. (28) considers all combinations of the product of x and y while

Eq. (29) considers that every number within the set x is multiplied

by itself. For engineering problems, this dependency occurs mostly

due to the physics of the problem and needs to be considered for

sharp solutions. Naive interval application may results in wide

and unrealistic bounds. For example if:

y ¼ 6 � x � xþ 3 � x;x ¼ ½�1;1�

then the naive bounds for the solution are y ¼ ½�9;9�. However,

considering nonlinear interval dependency, the bounds on the

solution result in exact bounds y ¼ ½�0:375;9�. Another source of

overestimation is the order of operations in interval linear algebra

[10–12]. To obtain sharp results, interval operations should be

performed last to reduce the overestimation due to the dependency

of interval matrix coefficients. The following example demonstrates

this consideration.

y1 ¼ A � ðB � xÞ; y2 ¼ ðA � BÞ � x;

where

A ¼
a11 a12

a21 a22

� �

; B ¼
b11 b12

b21 b22

� �

; x ¼
x1

x2

� �

:

Performing matrix multiplications results in:

y1 ¼
a11ðb11x1 þ b12x2Þ þ a12ðb21x1 þ b22x2Þ

a21ðb11x1 þ b12x2Þ þ a22ðb21x1 þ b22x2Þ

� �

;

y2 ¼
ða11b11 þ a12b21Þx1 þ ða11b12 þ a12b22Þx2

ða21b11 þ a22b21Þx1 þ ða21b12 þ a22b22Þx2

� �

:

It can be clearly seen that y2 is sharper then y1 due to the con-

sidered dependency of x1 and x2 throughout the rows of y2. There-

fore special care should be given to the order of interval operations

to obtain sharp bounds on the solution.

4. Iterative scheme for interval linear system of equations

The following section reviews an iterative method which is

used to solve the interval linear system of equations:

Ax ¼ b: ð30Þ

The interval linear system of equations Eq. (30) is solved using Kra-

wczyk iteration [13] based on Brouwer’s fixed point theorem [10–

12]. One approach of self-validating (SV) methods to find the zero

of the function f ðxÞ ¼ 0;Rn ! R
n is to consider a fixed point func-

tion gðxÞ ¼ x. The transformation between f ðxÞ and gðxÞ for a non-

singular preconditioning matrix C is:

f ðxÞ ¼ 0 () gðxÞ ¼ x; ð31Þ

gðxÞ ¼ x� C � f ðxÞ; ð32Þ

where the function gðxÞ is considered as a Newton operator. From

Brouwer’s fixed point theorem and from:

gðxÞ#x for some x 2 Rn ð33Þ

the following is true:

9x 2 x : f ðxÞ ¼ 0: ð34Þ

This method is used to solve linear system of equations, Eq. (30).

The preconditioning matrix C is chosen as C ¼ A�1. From Eq. (32)

and Eq. (33) it follows that:

Cbþ ðI � CAÞx#x: ð35Þ

The left hand side of Eq. (35) is the Krawczyk operator. For the iter-

ation to provide finite solution, the preconditioning matrix needs to

be proven regular [9,14]. The following proves this condition.
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Theorem 1 [14]. LetA;R 2 Rn�n; b 2 Rn; andx 2 Rnbe given. If

Cbþ ðI � CAÞx# intðxÞ ð36Þ

then C and A are regular and the unique solution of Ax ¼ b satisfies

A�1b 2 x. int(x) refers to the interior of x. However, all terms in Eq.

(30) are interval terms, thus the following is a proof for the guarantee

of the solution for this equation.

Theorem 2 [14]. LetA 2 Rn�n;R 2 Rn�n;b 2 Rn; andx 2 Rnbe given.

If

Cbþ ðI � CAÞx# intðxÞ ð37Þ

then C and every matrix A 2 A is regular and

X

ðA;bÞ ¼ x 2 Rnj9A 2 A9b 2 b : Ax ¼ bf g#x: ð38Þ

Eq. (38) guarantees the solution to the interval linear system of

equations, Eq. (30). The residual form of Eq. (38) is [9]:

Cb� CAx0 þ ðI � CAÞd# intðdÞ; ð39Þ

where x ¼ x0 þ d. A good initial guess is x0 ¼ CmidðbÞ, where

C ¼ midðAÞ�1.

5. Interval boundary element method

Interval Boundary Element Method (IBEM) has been developed

to address the impact of the uncertainty in boundary conditions,

integration error, and truncation error on the solutions [7]. The

IBEM formulation results in the interval linear system of

equations:

Hu ¼ Gq; ð40Þ

which is rearranged according to the boundary conditions yielding:

Ax ¼ b: ð41Þ

Considering a local discretization error in IBEM for Laplace

equation [3] results in the interval linear system of equations:

H1uþH2u ¼ G1qþ G2q; ð42Þ

which is rearranged according to the boundary conditions yielding:

A1xþ A2x ¼ b: ð43Þ

The treatment of the discetization error in IBEM for elasticity prob-

lem is described in the following sections.

6. Point-wise discretization error bounds for boundary element

method

The discretization error in the solutions to integral equations re-

sults from considering a finite number of collocation points, source

points, for which these solutions are computed. In general, the true

solutions to integral equations are functions, not discrete values,

and therefore the space of the approximate solutions does not cov-

er the space of the true solutions. Boundary integral equations can

be obtained by the use of collocation methods resulting in equation

of the form of Eq. (15). The boundary integral equations are satis-

fied exactly only if all the locations of the source point n on the

boundary are considered. However, to obtain a linear system of

equations, a finite number of source points is considered. More-

over, the location of each source points is unique and the solution

is considered as a polynomial interpolation between discrete val-

ues whose location corresponds to the location of the source point.

This allows for the solution of the linear system of equations to be

unique. It should be noted that if all non countable source points

are considered, the boundary values at all points can be computed,

resulting in the true solution. The boundary integral equation can

also be evaluated over n sub-domains as expressed by Eq. (18).

The unique location of the source point and its correspondence

to the point at which the approximate solution is computed must

be satisfied for all sub-domains. Eq. (18) is satisfied exactly only if

all the locations of the source point are considered. Thus, the dis-

cretization error in Eq. (18) is introduced in the same manner as

in Eq. (15). In this work the locations of the source point are treated

via interval approach. Considering interval bounds n on all the pos-

sible locations of the source points n, allows obtaining an interval

solution which encloses the true solution. From the interval

bounds on the boundary values for displacements and tractions,

the bounds on the true solution for displacements and stresses

for any point in the domain can be computed. Eq. (15) is enclosed

by an interval boundary integral equation in which the terms

u�
ijðx; nÞ and t�ijðx; nÞ are enclosed by known interval-valued

Fig. 1. Constant interval bounds on a function.

Fig. 2. Linear interval bounds on a function. Fig. 3. Integration over element B from point P on element A.

B.F. Zalewski, R.L. Mullen / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2996–3005 2999



functions. The unknown functions ujðxÞ and tjðxÞ in Eq. (15) are

then bounded by interval values enclosing the true solution.

The integral over the domain can be expressed as the sum of the

integrals over the elements, sub-domains, and thus the boundary

integral equation must be enclosed on each element for all the

locations of the source points. Hence, first boundary C is subdi-

vided into n boundary elements and then for each element k the

interval values u and t, that bound the functions uðxÞ and tðxÞ,

are found (Fig. 1). For higher order elements the interval-valued

function, of the order of the polynomial approximation, encloses

the true solution. The bounding of the function using linear ele-

ments is shown (Fig. 2). It is assumed that on all other elements,

except for the single element in consideration, the bounds on all

boundary values are known. Also either the bounds on the forced

or the natural boundary condition bounds are known for the ele-

ment in consideration. Then, the remaining boundary value for

the single element in consideration is enclosed. The process is re-

peated for the second element with the assumed bounds for all

the other elements, a computed bound for the previously consid-

ered element, and either the forced or the natural boundary condi-

tion bounds for the second element in consideration. This

procedure, known as the interval Gauss–Seidel iteration [9], is per-

formed for all elements until the true solution is enclosed. Mathe-

matically the above statement can be expressed as:

8k 2 1;2; . . . ;nf g Assume um 6 um 6 um; tm 6 tm 6 tm is known 8m– k:

Also known tk 6 tk 6 tk: Find uk 6 uk 6 uk

8nk

1
2
uikðnkÞ þ

R

Ck
t�ijðx;nkÞujkðxÞdx¼

P

n

m¼1

R

Cm
u�
ijðx;nkÞtjmðxÞdxþ

R

Ck
u�
ijðx;nkÞtjkðxÞdx�

P

n

m¼1

R

Cm
t�ijðx;nkÞujmðxÞdx

�

�

�

�

�

�

�

or

8k 2 1;2; . . . ;nf g Assume um 6 um 6 um; tm 6 tm 6 tm is known 8m– k:

Also known uk 6 uk 6 uk: Find tk 6 tk 6 tk

8nk

R

Ck
u�
ijðx;nkÞtjkðxÞdx¼

1
2
uikðnkÞ þ

R

Ck
t�ijðx;nkÞujkðxÞdxþ

P

n

m¼1

R

Cm
t�ijðx;nkÞujmðxÞdx�

P

n

m¼1

R

Cm
u�
ijðx;nkÞtjmðxÞdx:

�

�

�

�

�

�

�

ð44Þ

Each term of the summation in Eq. (44) is represented graphi-

cally (Fig. 3). If u or q are specified boundary conditions, the inter-

val integration can be performed explicitly as described in Section

3, Eq. (26). In this work, for computational efficiency purposes, the

underlying system of interval equations is solved using Krawczyk

iteration, rather than using the interval Gauss–Seidel iteration. This

substitution of the method for bounding the unknown boundary

Fig. 4. Uniform boundary discretization using constant boundary elements.

Fig. 5. Behavior of the width of the interval solution with problem size.

Fig. 6. Behavior of the effectivity index with problem size.

Fig. 7. Behavior of the interval bounds with problem size.
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values is justifiable since both of these methods are iterative meth-

ods for solving interval linear systems of equations and both obtain

guaranteed bounds for the solution. Hence, in the following sec-

tions the interval boundary element method (IBEM) formulation

is performed such that the resulting interval linear system of equa-

tions is of the form of Eq. (30).

7. Interval kernel splitting technique

The analysis of the discretization error requires that the bound-

ary integral equations for each element be bounded for all the loca-

tions of the source point n. The integral equation in the boundary

element formulation has the form of the Fredholm equation of

the first kind. Kernel splitting techniques have been used to bound

the interval Fredholm equation of the first kind in which the right

side is deterministic [15] as:

Z

C

aðx; nÞuðxÞdx ¼ bðnÞ: ð45Þ

In Eq. (45) aðx; nÞ is the kernel function, uðxÞ is the unknown var-

iable, which is analogous to displacement and traction vectors, and

bðnÞ is the right hand side. However, the interval boundary integral

equations considered herein have an interval right hand side, due

to the interval valued location of the source point n, therefore an

interval kernel splitting technique (IKST) is developed [16]. The

integral of the product of two functions is bounded considering

interval bounds on the unknown value as:

Z

C

aðx; nÞudx �

Z

C

aðx; nÞuðxÞdx ¼ bðnÞ: ð46Þ

To separate the kernels such that the unknown u can be taken out of

the integral on C, the left side integral from Eq. (46) is expressed as

a sum of the integrals:

Z

C

aðx; nÞudx ¼

Z

C1

aðx; nÞudxþ

Z

C2

aðx; nÞudx ð47Þ

Fig. 8. Behavior of the interval bounds for the different meshes.

Fig. 9. Behavior of the width of the interval solution with parameterization for a 4

element mesh.
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where C1 [ C2 ¼ C; C1 \ C2 ¼ 0 and:

aðx; nÞ > 0 or aðx; nÞ < 0 onC1; ð48Þ

aðx; nÞ 2 0 on C2: ð49Þ

The interval kernel is of the same sign on C1, thus u can be directly

taken out of the integral on C1 as:
Z

C1

aðx; nÞudx ¼

Z

C1

aðx; nÞdxu: ð50Þ

Due to the subdistributive property of interval numbers, Eq. (27), u

cannot be taken out of the integral on C2. The direct application of

the subdistributive property may result in inner bounds on the

interval integral as:
Z

C2

aðx; nÞdxu#

Z

C2

aðx; nÞudx: ð51Þ

Hence the interval kernel is bounded by its limits on C2:
Z

C2

audx �

Z

C2

aðx; nÞudx; ð52Þ

where a is defined as:

a ¼ ½minfaðxþ e; nÞg; maxfaðxþ e; nÞg�; ð53Þ

e ¼ ½�e; e�; ð54Þ

e is the tolerance level of the nonlinear solver used to find the zero

location of aðx; nÞ. To show that by bounding the kernel on C2 allows

u to be taken out from the integral on C2, the integral on C2 is ex-

pressed as an infinite sum:
Z

C2

audx ¼ lim
Dx!0

X

n

i¼1

ðDxauÞ

�

�

�

�

�

C2

¼ lim
Dx!0

ðnDxauÞ

�

�

�

�

C2

¼ lim
Dx!0

ðnDxaÞu

�

�

�

�

C2

¼ lim
Dx!0

X

n

i¼1

ðDxaÞ

�

�

�

�

�

C2

u ¼

Z

C2

adxu: ð55Þ

Thus u can be taken out of both integrals on C1 and on C2 and the

split interval boundary integral equation becomes:

Z

C1

aðx; nÞdxuþ

Z

C2

adxu �

Z

C

aðx; nÞudx �

Z

C

aðx; nÞuðxÞdx ¼ bðnÞ:

ð56Þ

The kernels are bounded for all the elements resulting in interval

linear system of equations:

A1uþ A2u � b: ð57Þ

Therefore, the IKST bounds the continuous boundary integral

equation for all the locations of the source point n and Eq. (57) is

guaranteed to be satisfied for all the weighted residual functions.

8. Iterative solver for the interval linear system of equations

The bounding of the original boundary integral equation using

IKST results in the interval linear system of equations different

from that of Eq. (30). Hence, the algorithm to solve the interval lin-

ear system of equations, Eq. (57), must be developed. This section

describes the transformation of Eq. (57) to obtain it in the form of

Eq. (30). Then, Krawczyk iteration is performed to obtain the guar-

anteed bounds on the solution. Considering the linear system of

equations:

A1exe þ A2exe ¼ b; ð58Þ

where A1e 2 A1;A2e 2 A2;be 2 b;xe 2 x and A1e is regular 8A1ejA1e

2 A1e. Eq. (58) is pre-multiplied by A�1
1e as:

A�1
1e A1exe þ A�1

1e A2exe ¼ A�1
1e be: ð59Þ

By substituting A�1
1e A1e ¼ I;A�1

1e A2e ¼ A3e and A�1
1e be ¼ b1e, Eq. (59)

can be rewritten as:

xe þ A3exe ¼ b1e: ð60Þ

Since the first term in Eq. (60) is a deterministic identity matrix pre-

multiplying xe, the following substitution can be made directly. Let-

ting I þ A3e ¼ Ae results in:

Aexe ¼ b1e: ð61Þ

The transformed system of equations is subjected to Krawczyk

iteration as described in the previous section.

9. Interval boundary element method considering

discretization error

In the preceding formulation, the bounds on the unknown

boundary values are found using iterative techniques. The kernel

functions, Eqs. (9,10) are enclosed using IKST resulting in the inter-

val system of equations, Eq. (61), which is solved using Krawczyk

iteration. The obtained bounds, however, are greatly overestimated

since the dependency of interval values was not considered. One

reason for this overestimation is that the interval kernels are

bounded such that the source point n is allowed to vary along

the entire element. Thus, for two adjacent elements, two source

points are allowed to be at the connecting point between the ele-

ments and have the same location, resulting in the reduction of the

rank of the system of equations. The unique location of a single

source point is also not considered throughout the rows of H and

G matrices, which are in Rn�n, since each term in both H and G

matrices is computed independently due to the complexity of the

kernels. Thus, the parameterization of the interval location of the

source point, n, in the H and G matrices must be considered in

the solver to obtain n independent interval equations and to reduce

the overestimation which results from a non-unique location of the

source point on any individual element. For convenience, the sys-

tem is parameterized such that n ¼ 1
a
½0;1� þ b, where a is the length

of the element and b is the starting coordinate of that element. In

performing interval matrix products, the value of n is decomposed

into sub-intervals such that:

[

n

i¼1

ni ¼ n and
\

n

i¼1

ni ¼ 0: ð62Þ

The parameterized boundary integral equation is bounded by IKST

for each subinterval ni, resulting in the linear system of equations:

H1ðniÞuþH2ðniÞu ¼ G1ðniÞtþ G2ðniÞt; ð63Þ

where the kernel is of the same sign for H1ðniÞ and G1ðniÞ and in-

cludes zero for H2ðniÞ and G2ðniÞ. The system of equations is rear-

ranged according to the boundary conditions as:

A1ðniÞxþ A2ðniÞx ¼ bðniÞ: ð64Þ

Steps described in the previous section lead to the equation of the

form:

AðniÞx ¼ b1ðniÞ: ð65Þ

The initial interval guess is then considered as:

x0 ¼ A�1[n
i¼1b1ðniÞ; ð66Þ

where A is computed for n ¼ 1=2. The difference between I and the

preconditioning matrix A�1 post-multiplied by the interval matrix

AðniÞ is computed as:

Id ¼ I � [n
i¼1A

�1AðniÞ: ð67Þ
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The difference between the solution and the initial guess is com-

puted for each ni pre-multiplied by the preconditioning matrix I,

which numerically gave the sharpest results:

d ¼ [n
i¼1ðbðniÞ � A1ðniÞx0 � A2ðniÞx0Þ: ð68Þ

Also:

d1 ¼ d: ð69Þ

The iteration is performed as:

del ¼ d1; ð70Þ

d1 ¼ dþ Iddel; ð71Þ

if del � d1; ð72Þ

x ¼ x0 þ d1: ð73Þ

For any point n on element k the bounds on the discretization error

are found as:

EDiscretization
nk ¼ xk � xn ð74Þ

where xk are the solution bounds over an element k and xn is the

solution from a conventional boundary element analysis for point n.

Fig. 10. Behavior of the width of the interval solution with parameterization for an

8 element mesh.

Fig. 11. Hexagonal plate subjected to a unit displacement.

Fig. 12. Symmetry model of the hexagonal plate.

Fig. 13. Uniform boundary discretization using constant boundary elements.

Fig. 14. Behavior of the width of the interval solution with problem size.

Fig. 15. Behavior of the effectivity index with problem size.
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10. Examples

The first example demonstrates the IBEM considering discreti-

zation error for the elasticity problem. A unit square domain of

the problem as well as the boundary element mesh is shown

(Fig. 4). The body has a unit elastic modulus and a zero Poisson ra-

tio. The left and right sides have a zero traction boundary condi-

tion; the bottom boundary has a zero displacement boundary

condition, while the top boundary has a zero traction condition

in the x direction and a unit displacement in the y direction. The

behavior of the y direction displacement bounds such as solution

width, effectivity index, and solution bounds is depicted (Figs. 5–7)

for nodes 2, 3, 4, and 5 on the four respective meshes. The interval

bounds, depicted by a solid line enclosing the dashed true solution,

for the right edge displacement in the y direction are shown

(Fig. 8). The effect of the parameterization for the traction in the

x direction on element 1 for the 4 and 8 element meshes is also

shown (Figs. 9 and 10).

The second example obtains bounds on the solution, consider-

ing the discretization error, of a hexagonal plate subjected to a unit

displacement in the y direction at the top and a unit displacement

in the �y direction on the bottom (Fig. 11). The body has a unit

Fig. 16. Behavior of the interval bounds with problem size.

Fig. 17. Behavior of the interval bounds for the different meshes.

Fig. 18. Interval bounds on the solution.
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elastic modulus and a zero Poisson ratio. A symmetry model is con-

sidered, to decrease the computational time, with a unit displace-

ment at the top and is uniformly discretized using constant

boundary elements (Figs. 12 and 13). The behavior of the solution

width, effectivity index, and solution bounds is depicted (Figs. 14–

16) for the displacement in the y direction for nodes 4, 8, 12, and 16

on the four respective meshes. The interval bounds, depicted by a

solid line enclosing the dashed true solution, for the left edge dis-

placement in the y direction are shown (Fig. 17).

11. Conclusion

In this work the discretization error for the elasticity problem is

enclosed using interval boundary element method. The interval

bounds on the true solution are shown to converge for the meshes

considered despite the increase in the effectivity index. The in-

crease in the effectivity index is attributed to the slower conver-

gence of the interval bounds than the true solution. The

overestimation in the interval bounds is due to the overestimation

of the terms in the interval boundary integral equation using IKST,

imperfect parameterization of the location of the source point

throughout the rows of the matrices H and G, and the overestima-

tion in the iterative interval solver. There are two sources of over-

estimation in the iterative scheme solving the interval system of

linear equations. The first one is due to the inherent overestimation

when Krawczyk iteration is used to solve interval linear system of

equations. This source of overestimation occurs due to the orthog-

onal multidimensional interval bounds enclosing a true solution

which may not be, and in most cases is not, orthogonal and/or ori-

ented in the same direction as the interval bounds (Fig. 18). The

second source of overestimation of the interval solver comes from

incomplete consideration of the interval parameterization in Eq.

(71). Each term in Eq. (71) is parameterized; however, each of

these terms must be dealt with in its entirety when operated with.

The solution of the linear system of equations must be satisfied for

the entire system and thus the interval residual has to be calcu-

lated for the entire interval width, not for the length of the subin-

terval. If the interval residual is computed for the portion of the

interval, for instance an interval width corresponding to a subin-

terval such that a complete interval parameterization can be uti-

lized in Eq. (71), the enclosure in no longer guaranteed.
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