Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

Pierre Carpentier and Jean-Philippe Chancelier ¹

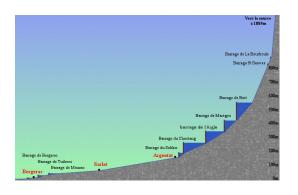
ENSTA ParisTech and ENPC ParisTech

PGMO Days 2015

¹Joint work with J.-C. ALAIS and C. OUSRI, supported by the FMJH Program Gaspard Monge for Optimization.

Motivation

Electricity production management for hydro valleys



- 1 year time horizon: compute each month the Bellman functions ("water values")
- stochastic framework: rain, market prices
- large-scale valley:5 dams and more

We wish to remain within the scope of Dynamic Programming.

How to avoid the curse of dimensionality?

Aggregation methods

- fast to run method
- require some homogeneity between units

Stochastic Dual Dynamic Programming (SDDP)

- efficient method for this kind of problems
- strong assumptions (convexity, linearity)

Dual Approximate Dynamic Programming (DADP)

- spatial decomposition method
- complexity almost linear in the number of dams
- approximation methods in the stochastic framework

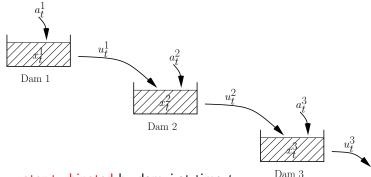
This talk: present numerical results for large-scale hydro valleys using DADP.

Lecture outline

- Dams management problem
 - Hydro valley modeling
 - Optimization problem
- 2 DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation
- Numerical experiments
 - Academic examples
 - More realistic examples

- Dams management problem
 - Hydro valley modeling
 - Optimization problem
- DADP in a nutshel
 - Spatial decomposition
 - Constraint relaxation
- 3 Numerical experiments
 - Academic examples
 - More realistic examples

Operating scheme



 u_t^i : water turbinated by dam i at time t,

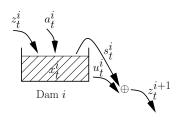
 x_t^i : water volume of dam i at time t,

 a_t^i : water inflow at dam i at time t,

 p_t^i : water price at dam i at time t,

Randomness: $w_t^i = (a_t^i, p_t^i)$, $w_t = (w_t^1, \dots, w_t^N)$.

Dynamics and cost functions



Dam dynamics:

$$= x_t^i - u_t^i + a_t^i + z_t^i - s_t^i ,$$

$$z_t^{i+1} \text{ being the outflow of dam } i:$$

$$z_t^{i+1} = g_t^i (x_t^i, u_t^i, w_t^i, z_t^i) ,$$

$$= u_t^i + \max \left\{ 0, x_t^i - u_t^i + a_t^i + z_t^i - \overline{x}^i \right\} .$$

 $x_{t+1}^i = f_t^i(x_t^i, u_t^i, w_t^i, z_t^i)$

We assume the Hazard-Decision information structure $(u_t^i \text{ is chosen})$ once w_t^i is observed), so that $\underline{u}^i \leq u_t^i \leq \min \{\overline{u}^i, x_t^i + a_t^i + z_t^i - \underline{x}^i\}$.

Gain at time t < T: $L_t^i(x_t^i, u_t^i, w_t^i, z_t^i) = \rho_t^i u_t^i - \epsilon(u_t^i)^2$.

Final gain at time T: $K^i(x_T^i) = -a^i \min\{0, x_T^i - \hat{x}^i\}^2$.

- Dams management problem
 - Hydro valley modeling
 - Optimization problem
- 2 DADP in a nutshel
 - Spatial decomposition
 - Constraint relaxation
- 3 Numerical experiments
 - Academic examples
 - More realistic examples

Stochastic optimization problem

The global optimization problem reads:

$$\max_{(\boldsymbol{X},\boldsymbol{U},\boldsymbol{Z})} \mathbb{E}\bigg(\sum_{i=1}^{N} \bigg(\sum_{t=0}^{T-1} L_t^i \big(\boldsymbol{X}_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^i\big) + K^i \big(\boldsymbol{X}_T^i\big)\bigg)\bigg),$$

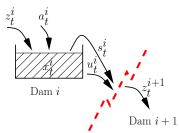
subject to:

Assumption. Noises W_0, \ldots, W_{T-1} are independent over time.

- Dams management problem
 - Hydro valley modeling
 - Optimization problem
- DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation
- 3 Numerical experiments
 - Academic examples
 - More realistic examples

Price decomposition

- Dualize the coupling constraints $Z_t^{i+1} = g_t^i(X_t^i, U_t^i, W_t^i, Z_t^i)$. Note that the associated multiplier Λ_t^{i+1} is a random variable.
- Solve the dual problem using a gradient-like algorithm.



• At iteration k, the duality term:

$$\boldsymbol{\Lambda}_t^{i+1,(k)} \cdot \left(\boldsymbol{Z}_t^{i+1} - g_t^i(\boldsymbol{X}_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^i) \right) ,$$

is the difference of two terms:

•
$$\Lambda_t^{i+1,(k)} \cdot Z_t^{i+1} \longrightarrow \text{dam } i+1$$
,
• $\Lambda_t^{i+1,(k)} \cdot g_t^{i}(\cdots) \longrightarrow \text{dam } i$.

 Dam by dam decomposition for the maximization in (X, U, Z) at \(\Lambda_t^{i+1,(k)}\) fixed.

- Dams management problem
 - Hydro valley modeling
 - Optimization problem
- 2 DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation
- 3 Numerical experiments
 - Academic examples
 - More realistic examples

DADP core idea

The *i*-th subproblem writes:

$$\begin{aligned} \max_{\boldsymbol{U}^{i},\boldsymbol{Z}^{i},\boldsymbol{X}^{i}} \mathbb{E} \bigg(\sum_{t=0}^{t-1} \Big(L_{t}^{i} \big(\boldsymbol{X}_{t}^{i},\boldsymbol{U}_{t}^{i},\boldsymbol{W}_{t}^{i},\boldsymbol{Z}_{t}^{i} \big) + \boldsymbol{\Lambda}_{t}^{i,(k)} \cdot \boldsymbol{Z}_{t}^{i} \\ & - \boldsymbol{\Lambda}_{t}^{i+1,(k)} \cdot g_{t}^{i} \big(\boldsymbol{X}_{t}^{i},\boldsymbol{U}_{t}^{i},\boldsymbol{W}_{t}^{i},\boldsymbol{Z}_{t}^{i} \big) \Big) + \boldsymbol{K}^{i} \big(\boldsymbol{X}_{T}^{i} \big) \bigg) , \end{aligned}$$

but $\Lambda_t^{i,(k)}$ depends on the whole past of noises $(\boldsymbol{W}_0,\ldots,\boldsymbol{W}_t)$...

The core idea of DADP is

• to replace the constraint $Z_t^{i+1} - g_t^i(X_t^i, U_t^i, W_t^i, Z_t^i) = 0$ by its conditional expectation with respect to Y_t^i :

$$\mathbb{E}(\boldsymbol{Z}_{t}^{i+1} - \boldsymbol{g}_{t}^{i}(\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i}) \mid \boldsymbol{Y}_{t}^{i}) = 0$$

• where $(Y_0^i, \dots, Y_{T-1}^i)$ is a "well-chosen" information process.

DADP core idea

The *i*-th subproblem writes:

$$\begin{aligned} \max_{\boldsymbol{U}^{i},\boldsymbol{Z}^{i},\boldsymbol{X}^{i}} \mathbb{E} \left(\sum_{t=0}^{i-1} \left(L_{t}^{i} (\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i}) + \boldsymbol{\Lambda}_{t}^{i,(k)} \cdot \boldsymbol{Z}_{t}^{i} \right. \\ \left. - \boldsymbol{\Lambda}_{t}^{i+1,(k)} \cdot g_{t}^{i} (\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i}) \right) + K^{i} (\boldsymbol{X}_{T}^{i}) \right), \end{aligned}$$

but $\mathbf{\Lambda}_t^{i,(k)}$ depends on the whole past of noises $(\mathbf{W}_0,\ldots,\mathbf{W}_t)$...

The core idea of DADP is

• to replace the constraint $Z_t^{i+1} - g_t^i(X_t^i, U_t^i, W_t^i, Z_t^i) = 0$ by its conditional expectation with respect to Y_t^i :

$$\mathbb{E} \big(\boldsymbol{Z}_t^{i+1} - g_t^i(\boldsymbol{X}_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^i) \ \big| \ \boldsymbol{Y}_t^i \big) = 0 \ ,$$

• where $(\mathbf{Y}_0^i, \dots, \mathbf{Y}_{T-1}^i)$ is a "well-chosen" information process.

Subproblems in DADP

DADP thus consists of a constraint relaxation.

It is easy to see that such a relaxation is equivalent to replace the multiplier $\mathbf{\Lambda}_t^{i,(k)}$ by its conditional expectation $\mathbb{E}(\mathbf{\Lambda}_t^{i,(k)} \mid \mathbf{Y}_t^{i-1})$. The expression of the *i*-th subproblem becomes:

$$\begin{aligned} \max_{\boldsymbol{U}^{i},\boldsymbol{Z}^{i},\boldsymbol{X}^{i}} \mathbb{E} \left(\sum_{t=0}^{T-1} \left(L_{t}^{i} (\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i}) + \mathbb{E} (\boldsymbol{\Lambda}_{t}^{i,(k)} \mid \boldsymbol{Y}_{t}^{i-1}) \cdot \boldsymbol{Z}_{t}^{i} \right. \\ \left. - \mathbb{E} (\boldsymbol{\Lambda}_{t}^{i+1,(k)} \mid \boldsymbol{Y}_{t}^{i}) \cdot g_{t}^{i} (\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i}) \right) \\ \left. + \mathcal{K}^{i} (\boldsymbol{X}_{T}^{i}) \right). \end{aligned}$$

If the process \mathbf{Y}^{i-1} follows a dynamical equation, DP applies.

A crude relaxation: $\mathbf{Y}'_t \equiv \text{cste}$

- The multipliers $\Lambda_t^{i,(k)}$ appear only in the subproblems by means of their expectations $\mathbb{E}(\Lambda_t^{i,(k)})$, so that each subproblem involves a 1-dimensional state variable.
- 2 For the gradient algorithm, the coordination task reduces to:

$$\mathbb{E}(\boldsymbol{\Lambda}_{t}^{i,(k+1)}) = \mathbb{E}(\boldsymbol{\Lambda}_{t}^{i,(k)}) + \rho_{t}\mathbb{E}(\boldsymbol{Z}_{t}^{i+1,(k)} - g_{t}^{i}(\boldsymbol{X}_{t}^{i,(k)}, \boldsymbol{U}_{t}^{i,(k)}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i,(k)})).$$

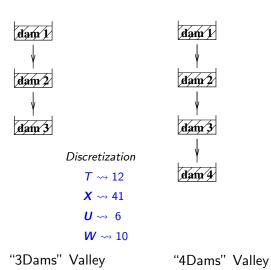
The constraints taken into account by DADP are in fact:

$$\mathbb{E}\Big(\boldsymbol{Z}_t^{i+1} - g_t^i\big(\boldsymbol{X}_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^i\big)\Big) = 0 \; .$$

The DADP solutions do not satisfy the initial constraints: need to use an heuristic method to regain admissibility.

- Dams management problem
 - Hydro valley modeling
 - Optimization problem
- DADP in a nutshel
 - Spatial decomposition
 - Constraint relaxation
- 3 Numerical experiments
 - Academic examples
 - More realistic examples

Three case studies



"5Dams" Valley

Valley	3Dams	4Dams	5Dams
DP CPU time	5'	1700'	677000'
DP value	2482.0	3742.7	4685.1

Table: Results obtained by DP²

²Results obtained using a 16 core 32 threads Intel®Core i7 based computer.

Valley	3Dams	4Dams	5Dams
DP CPU time	5'	1700'	677000'
DP value	2482.0	3742.7	4685.1
$\mathrm{SDDP}_{\!\mathrm{d}}$ value	2467.1	3730.7	4674.3
$\mathrm{SDDP}_{\!d}$ CPU time	<i>65</i> '	580'	4800'

Table: Results obtained by DP and $\mathrm{SDDP}_{\mathrm{d}}$

Results obtained using a 16 core 32 threads Intel®Core i7 based computer.

Valley	3Dams	4Dams	5Dams
DP CPU time	5'	1700'	677000'
DP value	2482.0	3742.7	4685.1
$\overline{\mathrm{SDDP}_{\mathrm{d}}}$ value	2467.1	3730.7	4674.3
$\mathrm{SDDP}_{\!d}$ CPU time	<i>65</i> '	580'	4800'

Table: Results obtained by DP and $\mathrm{SDDP}_{\mathrm{d}}$

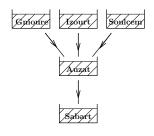
Valley	3Dams	4Dams	5Dams
DADP CPU time	3'	5'	6'
DADP value	2401.3	3667.0	4633.7
Gap with DP	−3.2 %	-2.0 %	-1.1%
Dual value	2687.5	3995.8	4885.9

Table: Results obtained by DADP "Expectation"

Results obtained using a 16 core 32 threads Intel®Core i7 based computer.

- Dams management problem
 - Hydro valley modeling
 - Optimization problem
- DADP in a nutshel
 - Spatial decomposition
 - Constraint relaxation
- 3 Numerical experiments
 - Academic examples
 - More realistic examples

Three valleys

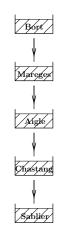


Discretization

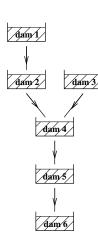
 $T \rightsquigarrow 12$. $W \rightsquigarrow 10$

fine grids for \boldsymbol{X} and \boldsymbol{U}

Vicdessos Valley







Stoopt Valley

Valley	Vicdessos	Dordogne	Stoopt
$\mathrm{SDDP}_{\!d}$ CPU time	29500'		106000'
$\mathrm{SDDP}_{\!\mathrm{d}}$ value	2228.5		7007.4

Table: Results obtained by $\mathrm{SDDP}_{\!d}$

Table: Results obtained by DADP "Expectation

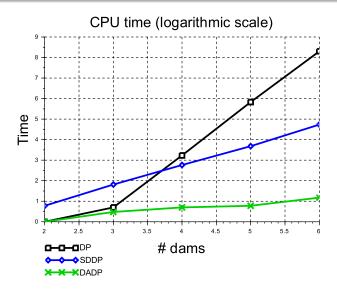
Valley	Vicdessos	Dordogne	Stoopt
$\mathrm{SDDP}_{\!d}$ CPU time	29500'		106000'
$\mathrm{SDDP}_{\!\mathrm{d}}$ value	2228.5		7007.4

Table: Results obtained by $\mathrm{SDDP}_{\mathrm{d}}$

Valley	Vicdessos	Dordogne	Stoopt
DADP CPU time	8'	150'	12'
DADP value	2237.7	21641.0	6812.6
Gap with SDDP_d	+0.4%		-2.8 %
Dual value	2285.6	22991.1	7521.9

Table: Results obtained by DADP "Expectation"

CPU time comparison



Conclusions and perspectives

Conclusions for DADP

- Fast numerical convergence of the method.
- Near-optimal results even when using a "crude" relaxation.
- Method that can be used for very large valleys

General perspectives

- Apply to more complex topologies (smart grids).
- Connection with other decomposition methods.
- Theoretical study.

P. Carpentier et G. Cohen.

Décomposition-coordination en optimisation déterministe et stochastique.

En préparation, Springer, 2016.

P. Girardeau.

Résolution de grands problèmes en optimisation stochastique dynamique.

Thèse de doctorat, Université Paris-Est, 2010.

J.-C. Alais.

Risque et optimisation pour le management d'énergies.

Thèse de doctorat, Université Paris-Est, 2013.

V. Leclère.

Contributions aux méthodes de décomposition en optimisation stochastique.

Thèse de doctorat, Université Paris-Est, 2014.

K. Barty, P. Carpentier, G. Cohen and P. Girardeau,

Price decomposition in large-scale stochastic optimal control.

arXiv, math.OC 1012.2092, 2010.