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Deterministic Constrained Optimization Problem

General optimization problem (P)

min
u∈Uad⊂U

J(u)

Uad closed convex subset of an Hilbert space U,

J cost function U −→ R, satisfying some assumptions

convexity,
coercivity,
continuity,
differentiability.
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Extension of Problem (P) — Open-Loop Case (1)

Consider Problem (P) and suppose that J is the expectation
of a function j , depending on a random variable W defined
on a probability space (Ω,A,P) and valued on (W,W):

J(u) = E
(
j(u,W )

)
.

Then the optimization problem writes

min
u∈Uad

E
(
j(u,W )

)
.

Decision u is a deterministic variable. The available information is
the probability law of W (no on-line observation of W ), that is,
an open-loop situation. The information structure is trivial, but. . .

 main difficulty: calculation of the expectation.
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Extension of Problem (P) — Open-Loop Case (2)

Solution using Exact Quadrature

J(u) = E
(
j(u,W )

)
, ∇J(u) = E

(
∇u j(u,W )

)
.

Projected gradient algorithm:

u(k+1) = projUad

(
u(k) − ε∇J(u(k))

)
.

Sample Average Approximation (SAA)

Obtain a realization (w (1), . . . ,w (k)) of a k-sample of W
and minimize the Monte Carlo approximation of J:

u(k) ∈ arg min
u∈Uad

1

k

k∑
l=1

j(u,w (l)) .

Note that u(k) depends on the realization (w (1), . . . ,w (k))!
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Extension of Problem (P) — Open-Loop Case (3)

Stochastic Gradient Method

Underlying ideas:

incorporate the realizations (w (1), . . . ,w (k), . . .) of samples
of W one by one into the algorithm.

use an easily computable approximation of the gradient ∇J,
e.g. replace ∇J(u(k)) by ∇u j(u(k),w (k+1)),

These considerations lead to the following algorithm:

u(k+1) = projUad

(
u(k) − ε(k)∇u j(u(k),w (k+1))

)
.

Iterations of the gradient algorithm are used a) to move towards
the solution and b) to refine the Monte-Carlo sampling process.
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Stochastic Gradient (SG) algorithm

Standard Stochastic Gradient Algorithm

min
u∈Uad⊂U

E
(
j(u,W )

)
. (Pol)

1 Let u(0) ∈ Uad and choose a positive real sequence {ε(k)}k∈N.

2 At iteration (k + 1), draw a realization w (k+1) of the r.v. W .

3 Compute the gradient of j and update u(k+1) by the formula:

u(k+1) = projUad

(
u(k) − ε(k)∇u j(u(k),w (k+1))

)
.

4 Set k = k + 1 and go to step 2.

Note that (w (1), . . . ,w (k), . . .) is a realization of a ∞-sample of W

 numerical implementation of the stochastic gradient method.
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Probabilistic Considerations (1)

In order to study the convergence of the algorithm, it is necessary
to cast it in the adequate probabilistic framework:

U(k+1) = projUad

(
U(k) − ε(k)∇u j(U(k),W (k+1))

)
.

where {W (k)}k∈N is a infinite-dimensional sample of W .3

 Iterative relation involving random variables.

Convergence in law.

Convergence in probability.

Convergence in Lp norm.

Almost sure convergence (the “intuitive” one).

3Note that (Ω,A,P) has to be “big enough” to support such a sample.
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Probabilistic Considerations (2)

An iteration of the algorithm is represented by the general relation:

U(k+1) = R(k)
(
U(k),W (k+1)

)
.

Let F(k) be the σ-field generated by (W (1), . . . ,W (k)).

Since U(k) is F(k)-mesurable for all k, we have

E
(
U(k)

∣∣ F(k)
)

= U(k) .

Since W (k+1) is independent of F(k), we have (disintegration)
that the conditional expectation of U(k+1) w.r.t. F(k) merely
consists of a standard expectation:

E
(
U(k+1)

∣∣ F(k)
)
(ω) =

∫
Ω
R(k)

(
U(k)(ω),W (ω′)

)
dP(ω′) .
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Example: Estimation of an Expectation (1)

Let W be a real-valued random variable defined on (Ω,A,P).
We want to compute an estimate of its expectation

E(W ) =

∫
Ω

W (ω)dP(ω) .

Monte Carlo method: obtain a k-sample (W (1), . . . ,W (k)) of W
and compute the associated arithmetic mean:

U(k) =
1

k

k∑
l=1

W (l) .

By the Strong Law of Large Numbers (SLLN), the sequence of
random variables {U(k)}k∈N almost surely converges to E(W ).
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Example: Estimation of an Expectation (2)

A straightforward computation leads to

U(k+1) = U(k) − 1

k + 1

(
U(k) −W (k+1)

)
.

Using the notations ε(k) = 1/(k + 1) and j(u,w) =
(
u − w

)2
/2,

the last expression of U(k+1) writes

U(k+1) = U(k) − ε(k)∇u j(U(k),W (k+1)) ,

which corresponds to the stochastic gradient algorithm applied to:4

min
u∈R

1

2
E
(
(u −W )2

)
.

4Recall that E
(
W

)
is the point which minimizes the dispersion of W .
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Example: Estimation of an Expectation (3)

This example makes it possible to enlighten some features of the
stochastic gradient method.

The step size ε(k) = 1/(k + 1) goes to zero as k goes to +∞.
Note however that ε(k) goes to zero “not too fast”, that is,∑

k∈N
ε(k) = +∞ .

It is reasonable to expect an almost sure convergence result for
the stochastic gradient algorithm (rather than a weaker notion
as convergence in distribution or convergence in probability).

As the Central Limit Theorem (CLT) applies to this case, we
may expect a similar result for the rate of convergence of the
stochastic gradient algorithm.
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Stochastic Approximation (SA) Framework

A classical problem in Stochastic Approximation is to determine
the zero of a function h : U→ U, with U = Rn, in case that the
observation of h(u) is perturbed by an additive random variable ξ.

Given a random process {ξ(k)}k∈N and a filtration {F(k)}k∈N,
the standard SA algorithm consists in the following iteration:

U(k+1) = U(k) + ε(k)
(
h(U(k)) + ξ(k+1)

)
,

Link with the stochastic gradient algorithm:

h(u) = −∇J(u) ,

ξ(k+1) = ∇J(U(k))−∇u j(U(k),W (k+1)) .

 Finding u] s.t. h(u]) = 0 is equivalent to solving ∇J(u]) = 0.
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Convergence Theorem (SA) (1)

Assumptions

1 The random variable U(0) is F(0)-mesurable.
2 The mapping h : U −→ U is continuous, such that

∃ u] ∈ Rn, h(u]) = 0 and
〈
h(u) , u − u]

〉
< 0, ∀u 6= u];

∃ a > 0, ∀u ∈ Rn, ‖h(u)‖2 ≤ a
(
1 + ‖u‖2 ).

3 The random variable ξ(k) is F(k)-mesurable for all k , and

E
(
ξ(k+1)

∣∣ F (k)
)

= 0,

∃ d > 0, E
(
‖ξ(k+1)‖2

∣∣ F (k)
)
≤ d

(
1 + ‖U(k)‖2

)
.

4 The sequence {ε(k)}k∈N is a σ-sequence, that is,∑
k∈N

ε(k) = +∞ ,
∑
k∈N

(
ε(k)
)2
< +∞ .
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Convergence Theorem (SA) (2)

Robbins-Monro Theorem

Under the previous assumptions, the sequence {U(k)}k∈N of
random variables generated by the Stochastic Approximation
algorithm almost surely converges to the solution u] of h(u) = 0.

For a proof, see [Duflo, 1997, §1.4].

This theorem can be extended to more general situations.

A projection operator can be added:

U(k+1) = projUad

(
U(k) + ε(k)

(
h(U(k)) + ξ(k+1)

))
.

A “small” additional term R(k+1) can be added:5

U(k+1) = U(k) + ε(k)
(
h(U(k)) + ξ(k+1) + R(k+1)

)
.

5for example a bias on h(u), as considered in the Kiefer-Wolfowitz algorithm
P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 64 / 328
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Rate of Convergence (SA) (1)

We recall a result about the asymptotic normality of the sequence
{U(k)} generated by the SA algorithm, that is, an estimation of its
rate of convergence.
We first need to be more specific about the notion of σ-sequence.

Definition

A positive real sequence {ε(k)}k∈N is a σ(α, β, γ)-sequence if it is
such that

ε(k) =
α

kγ + β
,

with α > 0, β ≥ 0 and 1/2 < γ ≤ 1.

A consequence of this definition is that a σ(α, β, γ)-sequence is
also a σ-sequence.
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Rate of Convergence (SA) (2)

Assumptions

1 h is continuously differentiable and, in a neighborhood of u],

h(u) = −H(u − u]) + O
(
‖u − u]‖2

)
,

where H is a symmetric positive-definite matrix.

2 The sequence
{
E
(
ξ(k+1)(ξ(k+1))>

∣∣ F(k)
)}

k∈N almost surely
converges to a symmetric positive-definite matrix Γ.

3 ∃ δ > 0 such that supk∈N E
(
‖ξ(k+1)‖2+δ

∣∣ F(k)
)
< +∞.

4 The sequence {ε(k)}k∈N is a σ(α, β, γ)-sequence.

5 The square matrix (H − λI ) is positive-definite, with

λ =

{
0 if γ < 1 ,
1

2α
if γ = 1 .
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Rate of Convergence (SA) (3)

We retain the assumptions ensuring the almost sure convergence.

Central Limit Theorem

Under all previous assumptions, the sequence of random variables{
(1/
√
ε(k))(U(k) − u])

}
k∈N converges in law towards a centered

gaussian distribution with covariance matrix Σ, that is,

1√
ε(k)

(
U(k) − u]

)
D−→ N

(
0,Σ

)
,

in which Σ is the solution of the so-called Lyapunov equation(
H − λI

)
Σ + Σ

(
H − λI

)
= Γ .

For a proof, see [Duflo, 1996, Chapter 4].
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Rate of Convergence (SA) (4)

The result is valid only for unconstrained problems: Uad = U.
The result can be rephrased as

k
γ
2

(
U(k) − u]

)
D−→ N

(
0, αΣ

)
,

so that β has in fact no influence on the convergence rate.

The choice γ = 1 achieves the greatest convergence rate. We
recover the rate 1/

√
k of a standard Monte Carlo estimator.

If we refer back to the optimization problem (Pol), that is,
h = −∇J, we notice that H is the Hessian matrix of J at u]:

H = ∇2J(u]) ,

and that Γ is the covariance matrix of ∇u j evaluated at u]:

Γ = E
(
∇u j(u],W )

(
∇u j(u],W )

)>)
.
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Stochastic Newton Algorithm (1)

Here, the step sizes ε(k) are built using the optimal choice γ = 1.
The scalar gain α is replaced by a matrix gain A, where A is a
symmetric positive-definite matrix. The SG algorithm becomes

U(k+1) = U(k) − 1

k + β
A∇u j(U(k),W (k+1)) ,

which in the Stochastic Approximation setting writes

U(k+1) = U(k) +
1

k + β

(
A h(U(k)) + A ξ(k+1)

)
.

The Central Limit Theorem is thus available, and we have
√
k
(
U(k) − u]

)
D−→ N

(
0,ΣA

)
,

where ΣA is the unique solution of(
AH − I

2

)
ΣA + ΣA

(
HA− I

2

)
= AΓA .
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Stochastic Newton Algorithm (2)

Let CH be the set of symmetric positive-definite matrices A, such
that AH − I/2 is a positive-definite matrix.

Theorem

The choice A] = H−1 for the matrix A minimizes the asymptotic
covariance matrix ΣA over the set CH . The expression of the
minimal asymptotic covariance matrix is

ΣA] = H−1ΓH−1 .

Sketch of proof. Rewrite the covariance matrix ΣA as ∆A + H−1ΓH−1.

Then the matrix ∆A satisfies a Lyapunov equation, whose solution is thus

semi-definite positive, hence the result. �
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Stochastic Newton Algorithm (3)

Definition

A stochastic gradient algorithm is Newton-efficient if the sequence
{U(k)}k∈N it generates has the same asymptotic convergence rate
as the optimal Newton algorithm, namely

√
k
(
U(k) − u]

)
D−→ N

(
0,H−1ΓH−1

)
.

Note that the improvement is on the covariance matrix of the Gaussian

distribution. The rate of convergence remains 1/
√
k .

Question. How to obtain an implementable Newton-efficient
stochastic gradient algorithm?
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Stochastic Gradient Algorithm with Averaging (1)

[Polyak, 1992] proposed to implement a Newton-efficient algorithm
by incorporating a new averaging stage in the standard algorithm.
Assuming that the admissible set Uad is equal to the space U, the
standard stochastic gradient algorithm iteration

U(k+1) = U(k) − ε(k)∇u j(U(k),W (k+1)) ,

is replaced by

U(k+1) = U(k) − ε(k)∇u j(U(k),W (k+1)) ,

U(k+1)
M =

1

k + 1

k+1∑
l=1

U(l) .

Note that an equivalent recursive form for the averaging stage is

U(k+1)
M = U(k)

M +
1

k + 1

(
U(k+1) −U(k)

M

)
.
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Stochastic Gradient Algorithm with Averaging (2)

Theorem

Under the additional assumption that the σ(α, β, γ)-sequence
{ε(k)}k∈N is such that γ < 1, the averaged stochastic gradient
algorithm is Newton-efficient:

√
k
(
U(k)

M − u]
)

D−→ N
(
0,H−1ΓH−1

)
.

For a proof, see [Duflo, 1996, Chapter 4].

According to the standard theorem, the convergence rate achieved
by the sequence {U(k)}k∈N with γ < 1 is smaller than 1/

√
k and

hence not optimal. The “nice” convergence properties are obtained

regarding the averaged sequence {U(k)
M }k∈N.
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A Toy Problem

Let us consider the following optimization problem:

min
u∈R10

E
(1

2
u>Bu + W >u

)
,

B being a symmetric positive definite matrix, and W being
a R10-valued Gaussian random variable N (m, Γ).

The optimal solution of this problem is u] = −B−1m.

It can be estimated either by Monte Carlo

Û
(k+1)

= − 1

k + 1

k+1∑
l=1

B−1W (l) ,

or by the standard stochastic gradient algorithm

U(k+1) = U(k) − ε(k)
(
BU(k) + W (k+1)

)
.
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Tuning the Standard Algorithm (1)

Let {ε(k)}k∈N be a σ(α, β, γ)-sequence, that is, ε(k) =
α

kγ + β
.

The best convergence rate is reached for γ = 1.

The coefficient α influences the asymptotic behavior.
The covariance matrix αΣ grows as α goes to +∞,6 but
using too small values for α may generate very small gradient
steps. The choice of α corresponds to a trade-off between
stability and precision.

Ultimately, the coefficient β makes it possible to regulate the
transient behavior of the algorithm. During the first iterations,
the coefficient ε(k) is approximately equal to α/β. If α/β is
too small, the transient phase may be slow. On the contrary,
taking a too large ratio may lead to a numerical burst.

6remember that Σ depends on α. . .
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Tuning the Standard Algorithm (α/β = 0.1) (2)
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Tuning the Averaged Algorithm (1)

Here, {ε(k)}k∈N is a σ(α, β, γ)-sequence, with 1/2 < γ < 1.

The averaged stochastic gradient algorithm writes on our example

U(k+1) = U(k) − α

kγ + β

(
BU(k) + W (k+1)

)
, U(k+1)

M =
1

k + 1

k+1∑
l=1

U(l) .

The value γ = 2/3 is considered as a good choice.

The tuning of parameters α and β is much easier than for the
standard algorithm. Indeed, the problem of “too small” step
sizes arising from a bad choice of α is not so critical because
the term k−γ goes down more slowly towards zero. Of course,
the ratio α/β must be chosen in such a way that numerical
bursts do not occur during the first iterations of the algorithm.
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U(k+1) = U(k) − α

kγ + β

(
BU(k) + W (k+1)

)
, U(k+1)

M =
1

k + 1

k+1∑
l=1

U(l) .

The value γ = 2/3 is considered as a good choice.

The tuning of parameters α and β is much easier than for the
standard algorithm. Indeed, the problem of “too small” step
sizes arising from a bad choice of α is not so critical because
the term k−γ goes down more slowly towards zero. Of course,
the ratio α/β must be chosen in such a way that numerical
bursts do not occur during the first iterations of the algorithm.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 79 / 328



Stochastic Gradient Algorithm
Connexion with Stochastic Approximation

Asymptotic Efficiency and Averaging
Practical Considerations

Tuning the Averaged Algorithm (α/β = 0.1) (2)
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