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A Basic Two-Stage Recourse Problem

We consider the management of a water reservoir. Water is drawn
from the reservoir by way of random consumers. In order to ensure
the water supply, 2 decisions are taken at 2 successive time steps.

A first supply decision q1 is taken without any knowledge of
the effective consumption, the associated cost being equal
to c1

(
q1

)2
, with c1 > 0.

Once the consumption d (realization of a random variable D )
has been observed, a second supply decision q2 is taken in
order to maintain the reservoir at its initial level, that is,

q2 = d − q1 .

The associated cost is equal to c2

(
q2

)2
, with c2 > 0.

The problem is to minimize the expected overall cost of operation.
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Mathematical Formulation and Solution

Problem Formulation

q1 is a deterministic decision variable,

whereas q2 is the realization of a random variable Q2.

min
(q1,Q2)

c1

(
q1

)2
+ E

(
c2

(
Q2

)2
)

s.t. q1 + Q2 = D P-a.s. .

Equivalent Problem

min
q1∈R

E
(
c1

(
q1

)2
+ c2

(
D − q1

)2
)

Analytical solution: q]1 =
c2

c1 + c2
E
(
D
)
.
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Stochastic Gradient Algorithm

Q(k+1)
1 = Q(k)

1 − α

k + β

(
2(c1 + c2)Q(k)

1 − 2c2D(k+1)
)
.

Algorithm (initialization)
//

// Random generator

//

rand(’normal’); rand(’seed’,123);

//

// Random consumption

//

m = 10.; sd = 5.;

//

// Criterion

//

c1 = 3.; c2 = 1.;

//

// Initialization

//

x = [ ]; y = [ ];

Algorithm (iterations)
//

// Algorithm

//

q1k = 10.;

for k = 1:100

dk = m + (sd*rand(1));

gk = 2*((c1+c2)*q1k) - 2*(c2*dk);

epsk = 1/(k+10);

q1k = q1k - (epsk*gk);

x = [x ; k]; y = [y ; q1k];

end

//

// Trajectory plot

//

plot2d(x,y);

xtitle(’Stochastic Gradient ’,’Iter.’,’q1’);
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Slight Modification of the Problem

As in the basic two-stage recourse problem,

a first supply decision q1 is taken without any knowledge of
the effective consumption, the associated cost being equal to
c1

(
q1

)2
,

a second supply decision q2 is taken once the consumption d
has been observed (realization of a r.v. D ), the cost of this

second decision being equal to c2

(
q2

)2
.

The difference between supply and demand is penalized thanks to
an additional cost term c3

(
q1 + q2 − d

)2
. The new problem is :

min
(q1,Q2)

E
(
c1

(
q1

)2
+ c2

(
Q2

)2
+ c3

(
q1 + Q2 −D

)2
)
.

Question: how to solve it using a stochastic gradient algorithm?
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Resolution of the Modified Problem
Idea: use the interchange theorem to solve the problem w.r.t. Q2.

min
(q1,Q2)

E
(
c1

(
q1

)2
+ c2

(
Q2

)2
+ c3

(
q1 + Q2 −D

)2)
⇐⇒ min

q1

(
c1

(
q1

)2
+ min

Q2

E
(
c2

(
Q2

)2
+ c3

(
q1 + Q2 −D

)2))
⇐⇒ min

q1

(
c1

(
q1

)2
+ E

(
min
q2

c2

(
q2

)2
+ c3

(
q1 + q2 −D

)2))
.

The optimal solution of the minimization problem w.r.t. q2 is

Q2
] =

c3

c2 + c3

(
D − q1

)
so that the problem is equivalent to the open-loop problem

min
q1

E
(
c1

(
q1

)2
+

c2c3

c2 + c3

(
q1 −D

)2
)
.

The stochastic gradient algorithm applies!
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Trade-off Investment/Operation – Problem Statement

A company owns N production units and has to meet a given
non stochastic demand d ∈ R.

For each unit i , the decision maker first takes an investment
decision ui ∈ R, the associated cost being Ii (ui ).

Then a discrete disturbance wi ∈ {wi ,a,wi ,b,wi ,c} occurs.

Knowing all noises, the decision maker selects for each unit i
an operating point vi ∈ R, which leads to a cost Ci (ui , vi ,wi )
and a production Pi (vi ,wi ).

The goal is to minimize the expected overall cost, subject to the
following constraints:

investment limitation: Θ(u1, . . . , uN) ≤ 0,

operation limitation: vi ≤ ϕi (ui ) , i = 1 . . . ,N,

demand satisfaction:
∑N

i=1 Pi (vi ,wi )− d = 0.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 161 / 328



Two Exercices about Stochastic Gradient
Option Pricing Problem and Variance Reduction

Spatial Rendez-vous Under Probability Constraint

Two-Stage Recourse Problem
Trade-off Between Investment and Operation

Trade-off Investment/Operation – Problem Statement

A company owns N production units and has to meet a given
non stochastic demand d ∈ R.

For each unit i , the decision maker first takes an investment
decision ui ∈ R, the associated cost being Ii (ui ).

Then a discrete disturbance wi ∈ {wi ,a,wi ,b,wi ,c} occurs.

Knowing all noises, the decision maker selects for each unit i
an operating point vi ∈ R, which leads to a cost Ci (ui , vi ,wi )
and a production Pi (vi ,wi ).

The goal is to minimize the expected overall cost, subject to the
following constraints:

investment limitation: Θ(u1, . . . , uN) ≤ 0,

operation limitation: vi ≤ ϕi (ui ) , i = 1 . . . ,N,

demand satisfaction:
∑N

i=1 Pi (vi ,wi )− d = 0.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 161 / 328



Two Exercices about Stochastic Gradient
Option Pricing Problem and Variance Reduction

Spatial Rendez-vous Under Probability Constraint

Two-Stage Recourse Problem
Trade-off Between Investment and Operation

Trade-off Investment/Operation – Questions

1 Write down the global optimization problem.
Is it possible to solve directly the problem with N large?
Is it possible to apply the stochastic gradient algorithm?

2 Extract the optimization subproblem obtained when both the
investment u = (u1, . . . , uN) and the noise w = (w1, . . . ,wN)
are fixed. The value of this subproblem is denoted f ](u,w).

Give assumptions for the resolution of this subproblem.
Give assumptions for f ] to be a smooth convex function.
Compute the partial derivatives of f ] w.r.t. u.

3 Reformulate the optimization problem using function f ] and
apply the stochastic gradient algorithm in the following cases:

the investment limitation is decoupled: ∀i , ui ∈ [ui , ui ],

the investment limitation is linear: u1 + . . .+ uN ≤ u,

the investment limitation is convex: Θ(u1, . . . , uN) ≤ 0.

4 What if decision vi is based on the knowledge of wi only?
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Trade-off Investment/Operation — Answer to Q1

We denote by W = (W1, . . . ,WN) the global noise variable.

min
(ui∈R,Vi�W )

E
( N∑

i=1

(
Ii (ui ) + Ci

(
ui ,Vi ,Wi

)))
,

s.t. Θ(u1, . . . , uN) ≤ 0 ,

N∑
i=1

P
(
Vi ,Wi

)
− d = 0 P-a.s. ,

Vi − ϕi (ui ) ≤ 0 P-a.s. , i = 1, . . . ,N .

For N = 21, the sizes of the problem are huge:

card(W) = 321 ≈ 1010 possible noise values,
N + N × card(W) decision variables,
1 + card(W) + N × card(W) constraints.

The SG algorithm does not apply: decisions Vi are random variables.
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Trade-off Investment/Operation — Answer to Q2

Thanks to the interchange theorem, the minimization w.r.t. Vi can be
formulated independently for each realization of W . For a realization
w of W , the inner minimization subproblem w.r.t. v is

f ](u,w) = min
(v1,...,vN )∈RN

N∑
i=1

Ci
(
ui , vi ,wi

)
,

s.t.
N∑
i=1

P
(
vi ,wi

)
− d = 0 ,

vi − ϕi (ui ) ≤ 0 , i = 1, . . . ,N .

Let λ and (µ1, . . . , µN) be the associated multipliers. Assuming that

the functions Ci are convex continuous coercive w.r.t. vi ,

the functions Pi are linear w.r.t. vi ,

the above problem admits a non empty set of saddle points.
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Using the function f ] obtained when minimizing w.r.t. the variables vi ,
the global optimization problem is reformulated as

min
(u1,...,uN )∈RN

N∑
i=1

Ii (ui ) + E
(
f ](u1, . . . , uN ,W )

)
,

s.t. Θ(u1, . . . , uN) ≤ 0 .

We assume that

the function f ] is convex differentiable,

the functions Ii are convex coercive differentiable,

the function Θ is convex differentiable,

and we denote the gradient w.r.t. ui of the cost under the expectation by

∇ui j(u,w) = ∇Ii
(
ui
)

+∇uiCi
(
ui , v

]
i ,wi

)
− µ]

i∇ϕi (ui ) .
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The stochastic gradient method applies to the reformulated problem.

Decoupled investment limitation.
1 Draw a realization w (k+1) of W .
2 Solve the inner minimization subproblem at (u(k),w (k+1))

and denote by v (k+1) and µ(k+1) its solution.
3 Update u using the standard stochastic gradient formula

u
(k+1)
i = proj[ui ,ui ]

(
u

(k)
i − ε

(k)∇ui j(u
(k),w (k+1))

)
.

Linear investment limitation.
3 Compute u

(k+ 1
2 )

i = u
(k)
i − ε(k)∇ui j(u

(k),w (k+1)) for all i and

project the point u(k+ 1
2 ) on the half-space u1 + . . .+ uN ≤ u.

Convex investment limitation.
Apply the stochastic Arrow-Hurwicz algorithm (with multiplier p).

3 u
(k+1)
i = u

(k)
i − ε(k)

(
∇ui j(u

(k),w (k+1)) +
(
Θ′ui (u

(k))
)> · p(k)

)
.

4 p(k+1) = max
(
0, p(k) + ε(k)Θ(u(k+1))

)
.
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Trade-off Investment/Operation — Answer to Q4

We assume that the random variables (W1, . . . ,WN) are independent.

From the independence assumption, and since Vi �Wi , we have
N∑
i=1

P
(
Vi ,Wi

)
= d ⇐⇒ ∃ (d1, . . . , dN) s.t. P

(
Vi ,Wi

)
= di ,

N∑
i=1

di = d .

The inner minimization subproblem w.r.t. v can be decomposed i by i :

g ]i (ui , di ,wi ) = min
vi∈R

Ci
(
ui , vi ,wi

)
s.t. P

(
vi ,wi

)
− di = 0 , vi − ϕi (ui ) ≤ 0 .

The global optimization problem is then reformulated as

min
(u1,...,uN )∈RN ,(d1,...,dN )∈RN

N∑
i=1

(
Ii (ui ) + E

(
g ]i (ui , , di ,Wi )

))
,

s.t. Θ(u1, . . . , uN) ≤ 0 ,

N∑
i=1

di − d = 0 ,

and thus can be solved by the stochastic Arrow-Hurwicz algorithm.
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Option Pricing Problem — Modeling

The price of an option with payoff ψ(St , 0 ≤ t ≤ T ) is given by

P = E
(
e−rTψ(St , 0 ≤ t ≤ T )

)
,

where the dynamics of the underlying n-dimensional asset S is
described by the following stochastic differential equation

dSt = St

(
r dt + σ(t,St) dWt

)
, S0 = x ,

r being the interest rate and σ(t,S) being the volatility function.
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Option Pricing Problem — Discretization

Most of the time, the exact value of price P is not available. To
overcome the difficulty, one considers a discretized approximation
(in time) of S , so that the price P is approximated by

P̂ = E
(
e−rTψ(Ŝ t1

, . . . , Ŝ td
)
)
.

In such cases, the discretized function can be expressed in terms of
the Brownian increments, or equivalently using a random normal
vector. A compact form for the discretized price is

P̂ = E
(
φ(ξ)

)
,

where ξ is a large n × d-dimensional Gaussian vector with identity
covariance matrix and zero-mean.
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Option Pricing Problem — Questions

Problem: compute P̂ = E
(
φ(ξ)

)
by Monte Carlo simulations.

1 Obtain the expression of P̂ when applying, for any given
parameter θ ∈ Rn×d , the change of variables G = ξ − θ.

2 Obtain the expression of the variance V̂ (θ) associated to
the previously obtained parameterized expression of P̂.

3 Apply a change of variables in V̂ (θ) so that parameter θ
no longer appears as an argument of φ.

4 Prove that, without any assumption on φ, V̂ is a convex
differentiable function of θ.

5 Obtain the expression of the gradient ∇V̂ (θ).

6 Implement a stochastic gradient algorithm to minimize V̂ (θ).

7 Compute the price P̂ by Monte Carlo.
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Option Pricing Problem — Answers to Q1-Q4

With the change of variables G = ξ − θ, we obtain

P̂ = E
(
φ(G + θ)e−〈θ ,G 〉−

‖θ‖2

2

)
,

V̂ (θ) = E
(
φ(G + θ)2e−2〈θ ,G 〉−‖θ‖2

)
− E

(
φ(G )

)2
.

From this expression, using ξ = G + θ, we obtain

V̂ (θ) = E
(
φ(ξ)2e−〈θ ,ξ〉+

‖θ‖2

2

)
− E

(
φ(ξ)

)2
.

We deduce that, without any specific assumption on φ, function V̂
is strictly convex and differentiable.
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Option Pricing Problem — Answers to Q5-Q6

Our goal is to obtain a value of θ such that the variance V̂ (θ)
associated to P̂ is as small as possible:

min
θ∈Rn×d

E
(
φ(ξ)2e−〈θ ,ξ〉+

‖θ‖2

2

)
.

A straightforward calculation gives the gradient of V̂ , namely,

∇V̂ (θ) = E
(

(θ − ξ)φ(ξ)2e−〈θ ,ξ〉+
‖θ‖2

2

)
,

so that the stochastic gradient algorithm applies to the problem

θ(k+1) = θ(k)−ε(k)
(
θ(k)−ξ(k+1)

)
φ
(
ξ(k+1)

)2
e−〈θ

(k) ,G(k+1)〉+ ‖θ
(k)‖2

2 ,

and converges to the unique solution denoted θ].
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Option Pricing Problem — Answer to Q7

Finally, the computation of price P̂ is done in two steps.

Using a N-sample of ξ, obtain an approximation θ(N) of θ]

by N iterations of the stochastic gradient algorithm.

Once θ(N) has been obtained, use the standard Monte Carlo

method to compute an approximation of the price P̂ based
on another N-sample of ξ:

P̂
(N)

=
1

N

N∑
k=1

φ(ξ(N+k) + θ(N))e−〈θ
(N) ,G(N+k)〉− ‖θ

(N)‖2

2 .

The computation requires 2N evaluations of φ, whereas a crude
Monte Carlo method evaluates φ only N times. This method will
be efficient if V̂ (θ])� V̂ (0)/2.
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Algorithm Improvement

It is possible to compute Monte Carlo approximations of both θ]

and P̂ by using the same N-sample of ξ. The algorithm is

θ(k+1) = θ(k)− ε(k)
(
θ(k)− ξ(k+1)

)
φ
(
ξ(k+1)

)2
e−〈θ

(k) ,ξ(k+1)〉+ ‖θ(k)‖2

2 ,

P̂
(k+1)

= P̂
(k)
− 1

k + 1

(
P̂

(k)
− φ(ξ(k+1) + θ(k)) e−〈θ

(k) ,ξ(k+1)〉− ‖θ(k)‖2

2

)
.

Note that the last relation is just the recursive form of

P̂
(N)

=
1

N

N∑
k=1

φ(G (k+1) + θ(k)) e−〈θ
(k) ,G(k+1)〉− ‖θ(k)‖2

2 .

A Central Limit Theorem is available for this algorithm:

√
N
(
P̂

(N)
− P̂

)
D−→ N

(
0, V̂ (θ])

)
.
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Mission to Mars
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Satellite Model

dr

dt
= v ,

dv

dt
= −µ r

‖r‖3
+

F

m
κ , (6a)

dm

dt
= − T

g0Isp
δ . (6b)

(6a) is 6-dimensional state vector (position r and velocity v).
(6b) is 1-dimensional state vector (mass m including fuel).

κ involves the direction cosines of the thrust, δ is the on-off switch
of the engine (3 controls at all), and µ,F ,T , g0, Isp are constants.

The deterministic control problem is to drive the satellite from the
initial condition at ti to a known final position rf and velocity vf at
tf (given) while minimizing the fuel consumption m(ti)−m(tf).
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Deterministic Optimization Problem

Using equinoctial coordinates for the position and velocity
; state vector x ∈ R7,

and cartesian coordinates for the thrust of the engine
; control vector u ∈ R3,

the optimization problem has the following expression:

Deterministic optimization problem

min
u(·)

K
(
x(tf)

)
subject to:

x(ti) = xi ,
•
x (t) = f

(
x(t), u(t)

)
,

‖u(t)‖ ≤ 1 ∀t ∈ [ti, tf ] ,

C
(
x(tf)

)
= 0 .
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Engine Failure

Sometimes, the engine may fail to work when needed: the
satellite drifts away from the deterministic optimal trajectory.
After the engine control is recovered, it is not always possible
to drive the satellite to the final target at tf . . .

By anticipating such possible failures and by modifying the
trajectory followed before the failure occurs, one may increase
the possibility of eventually reaching the target.

But such a deviation from the deterministic optimal trajectory
results in a deterioration of the economic performance.

The problem is thus to balance the increased probability of
eventually reaching the target despite possible failures against
the expected economic performance, that is, to quantify the
price of safety one is ready to pay for.
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Stochastic Formulation (1)

A failure is modeled using two random variables:

tp : random initial time of the failure,
td : random duration of the failure.

For any realization (tξp, t
ξ
d) of a failure:

1 u(·) denotes the control used prior to the failure

; u is defined over [ti, tf ] but implemented over [ti, t
ξ
p]

and corresponds to an open-loop control,
2 the control is equal to 0 during the failure (over [tξp, t

ξ
p + tξd]),

3 v ξ(·) denotes the control used after the failure

; v ξ is defined over [tξp + tξd, tf ] (if nonempty) and
corresponds to a closed-loop strategy V depending on ξ.

The satellite dynamics in the stochastic formulation writes:

xξ(ti) = xi ,
•
x ξ(t) = f ξ

(
xξ(t), u(t), v ξ(t)

)
.
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Stochastic Formulation (2)

The problem is to minimize the expected cost (fuel consumption)

w.r.t. the open-loop control u and the closed-loop strategy V,

the probability to hit the target at tf being at least equal to p.

Robust stochastic optimization problem

subject to:

xξ(ti) = xi ,
•
x ξ(t) = f ξ

(
xξ(t), u(t), v ξ(t)

)
,

‖u(t)‖ ≤ 1 ∀t ∈ [ti, tf ] , ‖v ξ(t)‖ ≤ 1 ∀t ∈ [tξp + tξd, tf ] ,

P
(
C
(
xξ(tf)

)
= 0
)
≥ p .
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Indicator Function

Consider the real-valued indicator function:

1(y) =

{
1 if y = 0,

0 otherwise.

Then
P
(
C
(
xξ(tf)

)
= 0
)

= E
(
1
(∥∥C(xξ(tf))∥∥)) ,

and

E
(
K
(
xξ(tf)

) ∣∣∣ C(xξ(tf)) = 0
)

=
E
(
K
(
xξ(tf)

)
× 1
(∥∥C(xξ(tf))∥∥))

E
(
1
(∥∥C(xξ(tf))∥∥)) .
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Problem Reformulation

Then, the robust stochastic optimization problem can be (shortly)
reformulated as

min
u(·)

min
V(·)

E
(
K
(
xξ(tf)

)
× 1
(∥∥C(xξ(tf))∥∥))

E
(
1
(∥∥C(xξ(tf))∥∥))

s.t. E
(
1
(∥∥C(xξ(tf))∥∥)) ≥ p .

This formulation is not well-suited for a numerical implementation
(e.g. stochastic APP algorithm) for many reasons, and first of all
because

a ratio of expectations is not an expectation!
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An Useful Lemma

The previous problem falls in the class of problems formulated as

min
u

J(u)

Θ(u)
s.t. Θ(u) ≥ p , (7)

where J and Θ assume positive values.

Lemma

1 If u] is a solution of (7) and if Θ(u]) = p, then u] is also a solution of

min
u

J(u) s.t. Θ(u) ≥ p . (8)

2 Conversely, if u] is a solution of (8), and if an optimal Kuhn-Tucker
multiplier β] satisfies the condition

β] ≥ J(u])

Θ(u])
,

then u] is also a solution of (7).
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Back to a Cost in Expectation

Using this lemma, the robust stochastic optimization problem is
reformulated as a problem in which the cost and the constraint
functions correspond to expectations:

min
u(·)

min
V(·)

E
(
K
(
xξ(tf)

)
× 1
(∥∥C(xξ(tf))∥∥))

s.t. E
(
1
(∥∥C(xξ(tf))∥∥)) ≥ p .

Using the Interchange Theorem, this problem is equivalent to

min
u(·)

E
(

min
vξ(·)

K
(
xξ(tf)

)
× 1
(∥∥C(xξ(tf))∥∥))

s.t. E
(
1
(∥∥C(xξ(tf))∥∥)) ≥ p .
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Lagrangian Formulation

min
u(·)

E
(

min
vξ(·)

K
(
xξ(tf)

)
× 1
(∥∥C(xξ(tf))∥∥))

s.t. p − E
(
1
(∥∥C(xξ(tf))∥∥)) ≤ 0 ! µ

Assume there exists a saddle point for the associated Lagrangian.
In order to solve

max
µ≥0

min
u(·)

{
µ p + E

(
min
vξ(·)

(
K
(
xξ(tf)

)
− µ

)
× 1
(∥∥C(xξ(tf))∥∥)︸ ︷︷ ︸

W (u, µ, ξ)

)}
,

that is,

max
µ≥0

min
u(·)

{
µ p + E

(
W (u, µ, ξ)

)}
,

we use the stochastic APP algorithm with core K (·) = 1
2‖ · ‖

2.
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Algorithm Overview

Stochastic APP algorithm

At iteration k ,

1 draw a failure ξk = (tξ
k

p , t
ξk

d ) according to its probability law,

2 compute the gradient of W w.r.t. u and update u(·):

uk+1 = ΠB

(
uk − εk ∇uW (uk , µk , ξk)

)
,

3 compute the gradient of W w.r.t. µ and update µ:

µk+1 = max
(

0, µk + ρk
(
p + ∇µW (uk+1, µk , ξk)

))
.
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First Difficulty: 1 is not a Smooth Function

At every iteration k, we must evaluate function W as well as
its derivatives w.r.t. u(.) and µ. But W is not differentiable!
To overcome the difficulty, we implement a mollifier technique:

1(y) =

{
1 if y = 0,

0 otherwise,
 1r (y) =


(

1− y2

r2

)2
if y ∈ [−r , r ],

0 otherwise.

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

There are rules to drive r to 0 as the iteration number k → +∞
[Andrieu et al., 2007].
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Second Difficulty: Solving the Inner Problem

The mollified optimization problem to solve at each iteration is:

Wrk (uk , ξk , µk) = min
vξ(·)

{(
K
(
xξ(tf)

)
− µk

)
× 1rk

(∥∥C(xξ(tf))∥∥)} .
In this setting, we have to check if the target is reached up to rk .
Different cases have to be considered:

1 the target can be reached accurately,

2 the target can be reached up to rk only,

3 the target cannot be reached up to rk .

Note that if reaching the target is possible but too expensive (that
is, if K

(
xξ(tf)

)
≥ µk), the best thing to do is to stop the engine!

In practice, the solution of the approximated problem is derived
from the resolution of two standard optimal control problems. . .
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Parameters Tuning

Gradient step length:

εk =
a

b + k
, ρk =

c

d + k
,

 usual for a standard stochastic gradient algorithm.

Optimal choice of the smoothing parameter:

rk =
α

β + k
1
3

,

 the mollifier coefficient rk decreases slowly.
Stochastic APP algorithm will need a large number of iterations.
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Example: Interplanetary Mission

ti = 0.70 and tf = 8.70 (normalized units),

tp: exponential distribution: P
(
tp ≥ tf

)
≈ 0.58 = πf ,

td: exponential distribution: P
(
0.035 ≤ td ≤ 0.125

)
≈ 0.80.

The deterministic optimal control
has a “bang–off–bang” shape.

Along the optimal trajectory, the
probability to recover a failure is:
pdet ≈ 0.94.
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Figure: Probability level p = 0.750
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Figure: Probability level p = 0.960
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Figure: Probability level p = 0.990
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The Price of Safety. . .

Consommation sans panne / Probabilite
0.85 0.90 0.95 1.00

0.3204

0.3206

0.3208

0.3210

0.3212

0.3214

0.3216

0.3218

0.3220

0.3222

Figure: Fuel consumption versus probability level p
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