Applications of the Stochastic Gradient Method
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Two Exercices about Stochastic Gradient TomSisme Reemss B

Trade-off Between Investment and Operation

A Basic Two-Stage Recourse Problem

We consider the management of a water reservoir. Water is drawn
from the reservoir by way of random consumers. In order to ensure
the water supply, 2 decisions are taken at 2 successive time steps.
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Trade-off Between Investment and Operation

A Basic Two-Stage Recourse Problem

We consider the management of a water reservoir. Water is drawn
from the reservoir by way of random consumers. In order to ensure
the water supply, 2 decisions are taken at 2 successive time steps.

@ A first supply decision g1 is taken without any knowledge of
the effective consumption, the associated cost being equal
to cl(ql)z, with ¢; > 0.
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A Basic Two-Stage Recourse Problem

We consider the management of a water reservoir. Water is drawn
from the reservoir by way of random consumers. In order to ensure
the water supply, 2 decisions are taken at 2 successive time steps.

@ A first supply decision g1 is taken without any knowledge of
the effective consumption, the associated cost being equal
to cl(ql)z, with ¢; > 0.

@ Once the consumption d (realization of a random variable D)
has been observed, a second supply decision g3 is taken in
order to maintain the reservoir at its initial level, that is,

G=d—q1.

The associated cost is equal to cz(q2)2, with ¢ > 0.
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Two Exercices about Stochastic Gradient TomSisme Reemss B

Trade-off Between Investment and Operation

A Basic Two-Stage Recourse Problem

We consider the management of a water reservoir. Water is drawn
from the reservoir by way of random consumers. In order to ensure
the water supply, 2 decisions are taken at 2 successive time steps.

@ A first supply decision g1 is taken without any knowledge of
the effective consumption, the associated cost being equal
to cl(ql)z, with ¢; > 0.

@ Once the consumption d (realization of a random variable D)
has been observed, a second supply decision g3 is taken in
order to maintain the reservoir at its initial level, that is,

G=d—q1.

The associated cost is equal to cz(q2)2, with ¢ > 0.

The problem is to minimize the expected overall cost of operation.
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Trade-off Between Investment and Operation

Mathematical Formulation and Solution

Problem Formulation

@ g; is a deterministic decision variable,

@ whereas g is the realization of a random variable Q,.

(ng;) a (CI1)2 +E<C2(Qz)2) st. q1+Q,=D P-as..
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Mathematical Formulation and Solution

Problem Formulation

@ g; is a deterministic decision variable,

@ whereas g is the realization of a random variable Q,.

(ng;) a (CI1)2 +E<62(02)2> st. q1+Q,=D P-as..

v

Equivalent Problem

: 2 2
Cr,?é%E(cl(ql) +c(D - q) )
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Two Exercices about Stochastic Gradient

Two-Stage Recourse Problem
Trade-off Between Investment and Operation

Mathematical Formulation and Solution

Problem Formulation

@ g; is a deterministic decision variable,

@ whereas g is the realization of a random variable Q,.

(ng;) a (CI1)2 +E<62(02)2> st. q1+Q,=D P-as..

| \

Equivalent Problem

: 2 2
Cr,?é%E(cl(ql) +c(D - q) )

Analytical solution: ¢ = LE(D)
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Trade-off Between Investment and Operation

Stochastic Gradient Algorithm

Q) = QP - 2 (2c1 + ) QLY — 2,041}
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Two Exercices about Stochastic Gradient

Two-Stage Recourse Problem
Trade-off Between Investment and Operation

Stochastic Gradient Algorithm

Q; 7)) Q ﬁ (2(C1 + Cz)QY() - 2C20(k+1)>

Algorithm (initialization) Algorithm (iterations)
// //
// Random generator // Algorithm
// //
rand(’normal’); rand(’seed’,123); qlk = 10.;
// for k = 1:100
// Random consumption dk = m + (sd*rand(1));
// gk = 2%((c1+c2)*qlk) - 2*(c2*dk);
m = 10.; sd = 5.; epsk = 1/(k+10);
// qlk = qlk - (epsk*gk);
// Criterion x=1[x; kl; y= L[y ; qikl;
// end
cl =3.; c2=1.; //
// // Trajectory plot
// Initialization //
// plot2d(x,y);
x=[1;y=101; xtitle(’Stochastic Gradient ’,’Iter.’,’ql’);
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Two Exercices about Stochastic Gradient TomSisme Reemss B

Trade-off Between Investment and Operation

Slight Modification of the Problem

As in the basic two-stage recourse problem,

@ a first supply decision g; is taken without any knowledge of
the effgctive consumption, the associated cost being equal to
a (Q1) '

@ a second supply decision g is taken once the consumption d
has been observed (realization of a r.v. D), the cost of this

. . 2
second decision being equal to ¢2(q»)
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Two Exercices about Stochastic Gradient
S Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Slight Modification of the Problem

As in the basic two-stage recourse problem,

@ a first supply decision g; is taken without any knowledge of
the effective consumption, the associated cost being equal to
a (Q1)2,

@ a second supply decision g is taken once the consumption d
has been observed (realization of a r.v. D), the cost of this

second decision being equal to C2(C]2)2.

The difference between supply and demand is penalized thanks to
an additional cost term c3(q1 + g2 — d)2. The new problem is :

(QTiQr]2)E(C1 (q1)2 + C2(Q2)2 + C3 (ql + 02 o D)2> .
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Two Exercices about Stochastic Gradient
S Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Slight Modification of the Problem

As in the basic two-stage recourse problem,

@ a first supply decision g; is taken without any knowledge of
the effective consumption, the associated cost being equal to
a (Q1)2,

@ a second supply decision g is taken once the consumption d
has been observed (realization of a r.v. D), the cost of this

second decision being equal to C2(C]2)2.

The difference between supply and demand is penalized thanks to
an additional cost term c3(q1 + g2 — d)2. The new problem is :

(QTiQr]2)E(C1 (q1)2 + C2(Q2)2 + C3 (ql + 02 o D)2> .

Question: how to solve it using a stochastic gradient algorithm?
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158 / 328



Two Exercices about Stochastic Gradient Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Resolution of the Modified Problem

Idea: use the interchange theorem to solve the problem w.r.t. Q,.

min E(c(q)’ +c2(Qy)° + cs(q1 + @, - D)’)
(q1»02)

<— min (cl(q1)2 + minE(C2(02)2 + C3(q1 +Q, - D)2)>
q1 Q,

= rr;iln (c( ) +]E(m|nC2(q2) +C3(q1+Q2—D)2))~
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Trade-off Between Investment and Operation

Resolution of the Modified Problem

Idea: use the interchange theorem to solve the problem w.r.t. Q,.

min E(c(q)’ +c2(Qy)° + cs(q1 + @, - D)’)
(q1»02)

<— min (cl(q1)2 + minE(C2(02)2 + C3(q1 +Q, - D)2)>
q1 Q,

. 2
— rglln (Cl(ql) —HE(mln C2(q2) +C3(q1+Q2—D) )) .
The optimal solution of the minimization problem w.r.t. g, is

f— D —
@, o + 3 ( @)
so that the problem is equivalent to the open-loop problem

. 2 ocC 2
rr;;nE(cl(ql) + = 13(:3 (ql _ D) > .
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Two Exercices about Stochastic Gradient Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Resolution of the Modified Problem

Idea: use the interchange theorem to solve the problem w.r.t. Q,.

(91,Q,)

<— min (cl(q1)2 + minE(C2(02)2 + C3(q1 +Q, - D)2)>
q1 Q,

min E(ci(q1)’ + (@)% + as(q1 + @, — D)?)
2

. 2
— rglln (Cl(ql) —HE(mln C2(q2) +C3(q1+Q2—D) )) .
The optimal solution of the minimization problem w.r.t. g, is

f— D —
@, o + 3 ( @)
so that the problem is equivalent to the open-loop problem

rr;ilnE(cl (Q1)2 b 2s (g1 — D)2> .

Cr +C3

The stochastic gradient algorithm applies!
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S Two-Stage Recourse Problem

Trade-off Between Investment and Operation

@ Two Exercices about Stochastic Gradient

@ Trade-off Between Investment and Operation
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Two Exercices about Stochastic Gradient 2
S Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Trade-off Investment/Operation — Problem Statement

A company owns N production units and has to meet a given
non stochastic demand d € R.

@ For each unit /, the decision maker first takes an investment
decision u; € R, the associated cost being Z;(u;).

@ Then a discrete disturbance w; € {w; , w; », w;j ¢} occurs.

@ Knowing all noises, the decision maker selects for each unit /
an operating point v; € R, which leads to a cost C;(uj, vi, w;)
and a production P;(v;, w;).
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Trade-off Investment/Operation — Problem Statement

A company owns N production units and has to meet a given
non stochastic demand d € R.

@ For each unit /, the decision maker first takes an investment
decision u; € R, the associated cost being Z;(u;).

@ Then a discrete disturbance w; € {w; , w; », w;j ¢} occurs.

@ Knowing all noises, the decision maker selects for each unit /
an operating point v; € R, which leads to a cost C;(uj, vi, w;)
and a production P;(v;, w;).

The goal is to minimize the expected overall cost, subject to the
following constraints:

@ investment limitation: ©(uy,...,uy) <0,
@ operation limitation: v; < ¢;(u;), i=1...,N,
o demand satisfaction: SN, Pi(vj, w;) — d = 0.

P. Carpentier

Master Optimization — Stochastic Optimization July 6, 2021

161 / 328



Two Exercices about Stochastic Gradient 2
S Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Trade-off Investment/Operation — Questions

@ Write down the global optimization problem.

e Is it possible to solve directly the problem with N large?
e Is it possible to apply the stochastic gradient algorithm?

@ Extract the optimization subproblem obtained when both the
investment u = (u1, ..., uy) and the noise w = (wi, ..., wy)
are fixed. The value of this subproblem is denoted f*(u, w).

o Give assumptions for the resolution of this subproblem.
o Give assumptions for ¥ to be a smooth convex function.
o Compute the partial derivatives of f# w.r.t. v.

© Reformulate the optimization problem using function f* and

apply the stochastic gradient algorithm in the following cases:
o the investment limitation is decoupled: Vi, u; € [u;, Tj],
e the investment limitation is linear: uy + ...+ uy < T,
o the investment limitation is convex: ©(uy,...,uy) < 0.

@ What if decision v; is based on the knowledge of w; only?
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Two Exercices about Stochastic Gradient 3
S Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Trade-off Investment/Operation — Answer to Q1

We denote by W = (W, ..., W,) the global noise variable.

N
(u;E]RrT]\i/?jW)E<§ (Ii(ui) + C,’(U,-7 v, VV’))) ’
st. O(uy,...,uy) <0,
N
ZP(V/” W)—-d=0 Pas.,
i=1

V.—pi(u) <0 Pas., i=1,...,N.
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Trade-off Investment/Operation — Answer to Q1

We denote by W = (W, ..., W,) the global noise variable.

N
(u;eRT\i/hjw)E<Z (I,-(u,-) + C,’(u,-., V., VV’))) ’

i=1
st. O(uy,...,uy) <0,

N
ZP(\/H VV,) —d=0 P-as. s

i=1

V,—oi(u) <0 Pas., i=1,...,N.

@ For N = 21, the sizes of the problem are huge:

o card(W) = 3?! a2 10'° possible noise values,
o N+ N x card(W) decision variables,
o 1+ card(W)+ N x card(W) constraints.

@ The SG algorithm does not apply: decisions V; are random variables.
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Trade-off Between Investment and Operation

Trade-off Investment/Operation — Answer to Q2

Thanks to the interchange theorem, the minimization w.r.t. V; can be
formulated independently for each realization of W. For a realization
w of W, the inner minimization subproblem w.r.t. v is

N

fA(u,w) = min Zci(UhViaWi) )

(Vi) ERN A

N

st. » P(viow)—d=0,

i=1
vi—i(u) <0, i=1,...,N.

Let A and (p1,. .., pn) be the associated multipliers.
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Trade-off Investment/Operation — Answer to Q2

Thanks to the interchange theorem, the minimization w.r.t. V; can be
formulated independently for each realization of W. For a realization
w of W, the inner minimization subproblem w.r.t. v is

N
fluw)=  mi e (urviow) .
(U W) (V17,,T\):)ERN§ I(U, V; W,)

N

st. » P(viow)—d=0,

i=1
vi—pi(u) <0, i=1,...,N.
Let A and (p1,. .., pun) be the associated multipliers. Assuming that
@ the functions C; are convex continuous coercive w.r.t. v;,

@ the functions P; are linear w.r.t. v;,

the above problem admits a non empty set of saddle points.
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Trade-off Investment/Operation — Answer to Q2 (end)

If we moreover assume that
@ the functions C; are jointly convex w.r.t. (u;, v;),
@ the functions C; are differentiable w.r.t. v;,
@ the functions ; are concave differentiable,

then the function 7% is convex subdifferentiable w.r.t. u and

VUV.C,'(U,', V-ﬁ7 W,') — M?VLP,’(U,’) S 8ul.fﬁ(u., W) .

1
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Trade-off Investment/Operation — Answer to Q2 (end)

If we moreover assume that
@ the functions C; are jointly convex w.r.t. (u;, v;),
@ the functions C; are differentiable w.r.t. v;,
@ the functions ; are concave differentiable,

then the function 7% is convex subdifferentiable w.r.t. u and

Vo Ciui, v w) — 1V oi(u;) € 8, FF (u, w) .

Finally, if we assume that
@ the subproblem admits an unique saddle point (v#, A%, 1if),

then the function ¥ is differentiable w.r.t. u, and

Vi F(u,w) = Vi, Ci (uj, v wi) — b Vii(u;) -
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Trade-off Between Investment and Operation

Trade-off Investment/Operation — Answer to Q3

Using the function f* obtained when minimizing w.r.t. the variables v;,
the global optimization problem is reformulated as

min ZI +E(fﬁ(u1,...,uN,W)) ,

(u1s.- 7UN)€RN

s.t. @(ul,...,uN) <0.
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Trade-off Investment/Operation — Answer to Q3

Using the function f* obtained when minimizing w.r.t. the variables v;,
the global optimization problem is reformulated as

TJE)ERNZI +E(fﬁ(u1,...,uN,W)) ,

s.t. @(ul,...,uN) <0.

We assume that
@ the function ¥ is convex differentiable,
@ the functions Z; are convex coercive differentiable,
@ the function © is convex differentiable,

and we denote the gradient w.r.t. u; of the cost under the expectation by

Vi (u,w) = VI (1) + Vi Ci(ui, v, wi) — 1 Vi) .
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Trade-off Investment/Operation — Answer to Q3 (end)

The stochastic gradient method applies to the reformulated problem.

@ Decoupled investment limitation.
© Draw a realization w(k+1) of W.
@ Solve the inner minimization subproblem at (u(K), w(k+1))
and denote by v(**1) and p(**t1) its solution.
© Update u using the standard stochastic gradient formula

ukarl) = proj@;@] (u:(k) - 6(k)ij(u(k)’ W(k+1))) :

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 167 / 328



Two Exercices about Stochastic Gradient 2
S Two-Stage Recourse Problem

Trade-off Between Investment and Operation

Trade-off Investment/Operation — Answer to Q3 (end)

The stochastic gradient method applies to the reformulated problem.
@ Decoupled investment limitation.
© Draw a realization w(k+1) of W.
@ Solve the inner minimization subproblem at (u(K), w(k+1))
and denote by v(**1) and p(**t1) its solution.
© Update u using the standard stochastic gradient formula

ukarl) = proj@;@] (u:(k) - 6(k)ij(u(k)’ W(k+1))) :
@ Linear investment /i{nitation.
© Compute ufk+§) = ufk) — eV, j(u®), wk+1) for all j and

project the point u(**2) on the half-space u; + ...+ uy < T.
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Trade-off Investment/Operation — Answer to Q3 (end)

The stochastic gradient method applies to the reformulated problem.

@ Decoupled investment limitation.
© Draw a realization w(k+1) of W.
@ Solve the inner minimization subproblem at (u(K), w(k+1))
and denote by v(**1) and p(**t1) its solution.
© Update u using the standard stochastic gradient formula

ukarl) = proj@;,ﬂf] (u:(k) - €(k)ij(u(k)’ W(k+1))) :
@ Linear investment limitation.
© Compute ufk+%) =4 — v, j(u®), WD) for all i and
project the point u(**2) on the half-space u; + ...+ uy < T.
@ Convex investment limitation.
Apply the stochastic Arrow-Hurwicz algorithm (with multiplier p).

@ 4"V = 4" — (7, j(u®, wlkD) 4 (@, (u®)) " - k).

i i

Q pt1) = max (o,p(k) + 6(/<)@(u(k+1)))_
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Trade-off Investment/Operation — Answer to Q4

We assume that the random variables (W, ..., W, ) are independent.
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Trade-off Investment/Operation — Answer to Q4

We assume that the random variables (W, ..., W, ) are independent.

From the independence assumption, and since V; < W,, we have
N N
S P(VuW,) =d < 3(dr,....dn) st. P(V,W,) =di, Y di=d.

i=1 i=1
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Trade-off Investment/Operation — Answer to Q4

We assume that the random variables (W, ..., W, ) are independent.

From the independence assumption, and since V; < W,, we have
N

N
SP(ViW) =d <= J(d,....dy) st. P(V;, W) =di, > di=d.

-1 i=1
The inner minimization subproblem w.r.t. v can be decomposed i by i:

gl,u(u,-, d;, W,-) = TGI% C,‘(U,‘, Vi, W,‘) s.t. P(V,‘, W,') —di=0, vi— SOi(Ui) <0.
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Trade-off Investment/Operation — Answer to Q4

We assume that the random variables (W, ..., W, ) are independent.

From the independence assumption, and since V; < W,, we have
N

N
SP(ViW) =d <= J(d,....dy) st. P(V;, W) =di, > di=d.

i=1 i=1
The inner minimization subproblem w.r.t. v can be decomposed i by i:
Sodow) — mi A1 v ows ) o — _olu) <
gi (ui, di, wi) TEIE Ci(ui,vi,wi) st. P(viwi) —di =0, v; —pi(u;) <0.

The global optimization problem is then reformulated as

N
min Zi(ui) + E ,-u ui,, di, W; )7
(u1,.A.,uN)eIRN,(dl,.A.,dN)eIRNiz:;( ( ) (g( ))
sit. O(ur,...,un) <0,

N
> di-d=0,
i=1

and thus can be solved by the stochastic Arrow-Hurwicz algorithm.
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@ Option Pricing Problem and Variance Reduction
@ Pricing Problem Modeling
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Pricing Problem Modeling

Option Pricing Problem and Variance Reduction Cornsittili ity fe i

Option Pricing Problem — Modeling

The price of an option with payoff ¢)(S5,,0 < t < T) is given by
P = E(e—fW(st,o <t<T)),

where the dynamics of the underlying n-dimensional asset S is
described by the following stochastic differential equation

ds, = St(r dt +o(t,S,) th) . Sy =x,

r being the interest rate and o(t, S) being the volatility function.
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Option Pricing Problem — Discretization

Most of the time, the exact value of price P is not available. To
overcome the difficulty, one considers a discretized approximation
(in time) of S, so that the price P is approximated by

P=E(eTu(S,....5,)).

In such cases, the discretized function can be expressed in terms of
the Brownian increments, or equivalently using a random normal
vector. A compact form for the discretized price is

P =E(s(¢)) ,

where £ is a large n x d-dimensional Gaussian vector with identity
covariance matrix and zero-mean.
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Option Pricing Problem — Questions

Problem: compute P= IE(QZ)(E)) by Monte Carlo simulations.

@ Obtain the expression of P when applying, for any given
parameter § € R"*9 the change of variables G = & — 6.

@ Obtain the expression of the variance V/(6) associated to
the previously obtained parameterized expression of P.

© Apply a change of variables in \7(9) so that parameter 0
no longer appears as an argument of ¢.

© Prove that, without any assumption on ¢, V is a convex
differentiable function of 6.

@ Obtain the expression of the gradient V V().
@ Implement a stochastic gradient algorithm to minimize \7(9)
@ Compute the price P by Monte Carlo.
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Option Pricing Problem — Answers to Q1-Q4

With the change of variables G = £ — 0, we obtain
e 2
P=E(4(G+0)e "5 ),

V(9) = E(¢(G 1 )220 7G>*”9”2) “E (¢(G))2

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 175 /



Pricing Problem Modeling

Option Pricing Problem and Variance Reduction Campuiiinz By dhe i

Option Pricing Problem — Answers to Q1-Q4

With the change of variables G = £ — 0, we obtain
P=E(s(G +0)e 1)
~ 2
V(9) = E(gf)(G + )22 ’G>*”9”2) ~E (¢(G)) .

From this expression, using & = G + 6, we obtain

V(0) = E(a(e)2e ) “E(0(e))”.
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Option Pricing Problem — Answers to Q1-Q4

With the change of variables G = £ — 0, we obtain

~ 2
p— IE((;S(G + e)e*<9’G>*@> 7
2

V(0) =E(8(G + )220 €)71F) — B ((G))

From this expression, using & = G + 6, we obtain

V(0) = E(a(e)2e ) “E(0(e))”.

We deduce that, without any specific assumption on ¢, function %
is strictly convex and differentiable.
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Option Pricing Problem — Answers to Q5-Q6

Our goal is to obtain a value of 6 such that the variance V/(6)
associated to P is as small as possible:

min E <¢(£)2e_<9 ’5>+%> .

feRnxd
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Option Pricing Problem — Answers to Q5-Q6

Our goal is to obtain a value of 6 such that the variance V/(6)
associated to P is as small as possible:

min E <¢(£)2e_<9 ’5>+%> .

feRnxd

A straightforward calculation gives the gradient of Vv, namely,

VU(O) = B((6 - )o(ere 9T,
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Option Pricing Problem — Answers to Q5-Q6

Our goal is to obtain a value of 6 such that the variance \7(9)
associated to P is as small as possible:

min E <¢(£)2e_<9 ’€>+%) .

feRnxd

A straightforward calculation gives the gradient of Vv, namely,

~ 2
VV(6) =E((6 - €)o(g)Pe 00+
so that the stochastic gradient algorithm applies to the problem

g+ — gUk) _ (k) (g(K) _ gkt D)) s (g(k+1))2~(6(K) Gl 1o

)

and converges to the unique solution denoted 6*.
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Option Pricing Problem — Answer to Q7

Finally, the computation of price P is done in two steps.

@ Using a N-sample of £, obtain an approximation (V) of ¢
by N iterations of the stochastic gradient algorithm.

@ Once 8N) has been obtained, use the standard Monte Carlo
method to compute an approximation of the price P based
on another N-sample of &:

N N),2
sV 1 Nk MYy —(0(N)  G(N+kK) 1My
P = k§1¢>(£( )+ 6M))e—( )

The computation requires 2/ evaluations of ¢, whereas a crude
Monte Carlo method evaluates ¢ only N times. This method will
be efficient if V(6%) < V(0)/2.
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Algorithm Improvement

It is possible to compute Monte Carlo approximations of both 6"
and P by using the same N-sample of £&. The algorithm is

glk+1) — (k) _ (k) (B(k)— £(k+1))¢(£(k+1)) —(o(k) 5(k+1)>+\\e( )2

)

S(k1) (k) 1 /=K (kt1) L a(k) 7<H(k)’£(k+1)>7&
P =P (P ae 4 09y )

Note that the last relation is just the recursive form of
k)Hz

u (
N Z G+ ¢ H(k)) e_(g(k) 7G(k+1)>_”9f
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Algorithm Improvement

It is possible to compute Monte Carlo approximations of both 6"
and P by using the same N-sample of £&. The algorithm is

9U+D = k) _ (0 (glk) £<k+1>>¢(£<k+1))2e—<e(k> lhrn)y 100012

)

S(k1) (k) 1 /=K (kt1) L a(k) 7<H(k)’£(k+1)>7&
P =P (P ae 4 09y )

Note that the last relation is just the recursive form of
N k)2
5N _ 1 Z (k1) k) (o) glkr1)y 102
P - N k=1 ¢(G +6 ) € ’ 2 .

A Central Limit Theorem is available for this algorithm:

\W(ﬁ(m - P) N (0, V(8)) .
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Mission to Mars

Launch= 11/26/2011
Arrival= 08/06/2012

Mars at Launch

Earth at Launch
26 Mow

TCM-2
Launch + 121 days,
26 Mar

TCM-3
Enitry - 41 days

26 Jun Earth at Arrival

TCM-4

29 Jul Mars at Arrival

TCM-6
Entry - 5 hours
5 Aug

Tick Marks Every 20 Days
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Satellite Model

dr dv r F

a= @ PE e (62)
dm T

=0 b
dt gOIsp (6 )

(6a) is 6-dimensional state vector (position r and velocity v).
(6b) is 1-dimensional state vector (mass m including fuel).

k involves the direction cosines of the thrust, J is the on-off switch
of the engine (3 controls at all), and p, F, T, go, kp, are constants.
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Satellite Model

dr dv r F

a= @ PE e (62)
dm T

=0 b
dt gOIsp (6 )

(6a) is 6-dimensional state vector (position r and velocity v).
(6b) is 1-dimensional state vector (mass m including fuel).

k involves the direction cosines of the thrust, J is the on-off switch
of the engine (3 controls at all), and p, F, T, go, kp, are constants.

The deterministic control problem is to drive the satellite from the
initial condition at t; to a known final position ry and velocity v at
t¢ (given) while minimizing the fuel consumption m(t;) — m(t).
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Deterministic Optimization Problem

Using equinoctial coordinates for the position and velocity
~> state vector x € R7,

and cartesian coordinates for the thrust of the engine
~> control vector u € R3,

the optimization problem has the following expression:

Deterministic optimization problem

rp(i.? K(x(tf))
subject to:
x(6) =, x(t)=f(x(t), u()),

lu(t)[| <1 Vte[t,b],
C(X(tf)) =0.
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Engine Failure

@ Sometimes, the engine may fail to work when needed: the
satellite drifts away from the deterministic optimal trajectory.
After the engine control is recovered, it is not always possible
to drive the satellite to the final target at t;. ..
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Engine Failure

@ Sometimes, the engine may fail to work when needed: the
satellite drifts away from the deterministic optimal trajectory.
After the engine control is recovered, it is not always possible
to drive the satellite to the final target at t;. ..

@ By anticipating such possible failures and by modifying the

trajectory followed before the failure occurs, one may increase
the possibility of eventually reaching the target.
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Engine Failure

@ Sometimes, the engine may fail to work when needed: the
satellite drifts away from the deterministic optimal trajectory.
After the engine control is recovered, it is not always possible
to drive the satellite to the final target at t;. ..

@ By anticipating such possible failures and by modifying the
trajectory followed before the failure occurs, one may increase
the possibility of eventually reaching the target.

@ But such a deviation from the deterministic optimal trajectory
results in a deterioration of the economic performance.
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Engine Failure

@ Sometimes, the engine may fail to work when needed: the
satellite drifts away from the deterministic optimal trajectory.
After the engine control is recovered, it is not always possible
to drive the satellite to the final target at t;. ..

@ By anticipating such possible failures and by modifying the
trajectory followed before the failure occurs, one may increase
the possibility of eventually reaching the target.

@ But such a deviation from the deterministic optimal trajectory
results in a deterioration of the economic performance.

@ The problem is thus to balance the increased probability of
eventually reaching the target despite possible failures against
the expected economic performance, that is, to quantify the
price of safety one is ready to pay for.
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Stochastic Formulation

A failure is modeled using two random variables:
@ t, : random initial time of the failure,
@ tg : random duration of the failure.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 185 / 328



Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
Stochastic APP Algorithm

atial Rendez-vous Under Probability Constraint .
Sp v 4 Numerical Results

Stochastic Formulation

A failure is modeled using two random variables:
@ t, : random initial time of the failure,
@ tg : random duration of the failure.

For any realization (tg, tfl) of a failure:
@ u(-) denotes the control used prior to the failure
~> u is defined over [t;, tf] but implemented over [t;, tg]
and corresponds to an open-loop control,
@ the control is equal to 0 during the failure (over [t“f)7 tg + tfl])
© v(-) denotes the control used after the failure
~+ V& is defined over [tg + tg, t¢] (if nonempty) and
corresponds to a closed-loop strategy V depending on &.
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Stochastic Formulation

A failure is modeled using two random variables:
@ t, : random initial time of the failure,
@ tg : random duration of the failure.

For any realization (tg, tfl) of a failure:
@ u(-) denotes the control used prior to the failure
~> u is defined over [t;, tf] but implemented over [t;, tg]
and corresponds to an open-loop control,
@ the control is equal to 0 during the failure (over [t“f)7 tg + tfl])
© v(-) denotes the control used after the failure
~+ V& is defined over [tg + tg, t¢] (if nonempty) and
corresponds to a closed-loop strategy V depending on &.

The satellite dynamics in the stochastic formulation writes:

XE(t) =x, x(t) = FE(xE(e), u(t), v&(t)) .
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Stochastic Formulation

The problem is to minimize the expected cost (fuel consumption)
@ w.r.t. the open-loop control u and the closed-loop strategy V,

@ the probability to hit the target at t; being at least equal to p.
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Stochastic Formulation (2)

The problem is to minimize the expected cost (fuel consumption)
@ w.r.t. the open-loop control u and the closed-loop strategy V,

@ the probability to hit the target at t; being at least equal to p.

Robust stochastic optimization problem

T(i.r)] r\‘r/1(i.r)1 E (K(Xg(tf)))

subject to:
) =x, x&(t) = FEOE(), u(t), vi(t))
lu(l| <1 Veels,t], [VOI<1 Veels+15 4],

P(C(Xg(tf)) = O) >p.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 186 / 328



Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
Stochastic APP Algorithm

atial Rendez-vous Under Probability Constraint .
Sp v 4 Numerical Results

Stochastic Formulation (2)

The problem is to minimize the expected cost (fuel consumption)
@ w.r.t. the open-loop control u and the closed-loop strategy V,

@ the probability to hit the target at t; being at least equal to p.

Robust stochastic optimization problem

T(i.? r\’r)(i.r)'n ]E(K(Xé(tf)> ’ C(Xf(tf)> = 0)

subject to:
) =x, x8(t) = FEOE(E), u(t), vi(t))
lu(l| <1 Veels,t], [VOI<1 Veels+15 4],

P(C(Xg(tf)) = O) >p.
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Indicator Function

Consider the real-valued indicator function:

1 ify=0,
0 otherwise.
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Indicator Function

Consider the real-valued indicator function:
1 ify=0,

0 otherwise.

Then

P<C(X§(tf)) = 0) = E(l(\\c(xi(tf))u)) ,
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7 Numerical Results

Indicator Function

Consider the real-valued indicator function:

l(y)_{l if y =0,

0 otherwise.

Then

P<C(X§(tf)) = 0) = E(l(\\c(xi(tf))u)) ,

and
B (K<) < 1| <))
E(1(][c(<e))

E(K(xX(t) | C(x() = 0) =
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Problem Reformulation

Then, the robust stochastic optimization problem can be (shortly)
reformulated as

_B(K((m) x 1| cEm)I)
OV E(1(|cE)]))
st. E(1(cOE@))) = p-

This formulation is not well-suited for a numerical implementation
(e.g. stochastic APP algorithm) for many reasons, and first of all
because
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Problem Reformulation

Then, the robust stochastic optimization problem can be (shortly)
reformulated as

_B(K((m) x 1| cEm)I)
OV E(1(|cE)]))
st. E(1(cOE@))) = p-

This formulation is not well-suited for a numerical implementation

(e.g. stochastic APP algorithm) for many reasons, and first of all
because

a ratio of expectations is not an expectation!
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An Useful Lemma

The previous problem falls in the class of problems formulated as

J(u)
o) st. O(u) > p, (7)

mln

where J and © assume positive values.

@ If u’ is a solution of (7) and if ©(u*) = p, then u” is also a solution of

muin J(u) st. O(u)>p. (8)

@ Conversely, if u” is a solution of (8), and if an optimal Kuhn-Tucker
multiplier 5% satisfies the condition

then u? is also a solution of (7).
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Back to a Cost in Expectation

Using this lemma, the robust stochastic optimization problem is
reformulated as a problem in which the cost and the constraint
functions correspond to expectations:

T(i-? r\1/1(i.r)1 E(K(Xg(tf)) X 1(HC(X£(tf)) H))

st. E(1(|cOE@)) = p-
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Back to a Cost in Expectation

Using this lemma, the robust stochastic optimization problem is
reformulated as a problem in which the cost and the constraint
functions correspond to expectations:

T(i-? r\1/1(i.r)1 E(K(Xg(tf)) X 1(HC(X£(tf)) H))

st. E(1(|C()) = p-

Using the Interchange Theorem, this problem is equivalent to

min & (min K (5(20) < 1( (5]

st E(1(|COE@))) = p-

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 191 / 328



Satellite del and Optimization Problem
Probability and Conditional Expectation Handling

Stochastic APP Algorithm
Numerical Results

Spatial Rendez-vous Under Probability Constraint

© Spatial Rendez-vous Under Probability Constraint

@ Stochastic APP Algorithm

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021



Spatial Rendez-vous Under Probability Constraint

e Model and Optim on Problem
obability and Conditional Expectation Handling
Stochastic APP Algorithm
Numerical Results

Lagrangian Formulation

min E(min K(xé(tf)) X I(HC(Xé(tf))"))

P. Carpentier

u()
s.t. p—E(l(HC(xg(tf))HDSO o

ve()

Master Optimization — Stochastic Optimization July 6, 2021
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Lagrangian Formulation

min E(mmK( (¢ )XI(HC( tf))H))

u(-) ve()

s.t. p—E(l(HC(xg(tf))HDSO o

Assume there exists a saddle point for the associated Lagrangian.
In order to solve

max min {,up—l—E(mzn( (x 5(tf)) 1) X I(HC(xf(tf))H))} )

n>0 u(’)

W(u, p, )
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Lagrangian Formulation

min E(mmK( (¢ )XI(HC( tf))H))

u()
s.t. p—E(l(HC(xg(tf))HDSO o

ve()

Assume there exists a saddle point for the associated Lagrangian.
In order to solve

max min {,up—l—E(mzn( (x 5(tf)) 1) X I(HC(xf(tf))H))} )

n>0 u(’)

W(u, p, )

that is,

we use the stochastic APP algorithm with core K(-) = 4| - ||2.
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Algorithm Overview

Stochastic APP algorithm

At iteration k,
@ draw a failure ¢k = (tgk7 gk) according to its probability law,
@ compute the gradient of W w.r.t. u and update u(-):
L=y (uk — ek VUW(uk,uk./Ek)> ,
© compute the gradient of W w.r.t. ;1 and update u:

/,Lk+1 = maxX (0 u+p (P+ vy W( ke Lkﬂgk))> .
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First Difficulty: 1 is not a Smooth Function

At every iteration k, we must evaluate function W as well as
its derivatives w.r.t. u(.) and p. But W is not differentiable!
To overcome the difficulty, we implement a mollifier technique:
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First Difficulty: 1 is not a Smooth Function

At every iteration k, we must evaluate function W as well as
its derivatives w.r.t. u(.) and p. But W is not differentiable!
To overcome the difficulty, we implement a mollifier technique:

1 ify=0 (1 y2>2 if y € [—r.1]
if y=0, . if y € [—r,r],
l(y) = y A ]_r(y) = I’2 'y

0 otherwise, 0 otherwise.
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First Difficulty: 1 is not a Smooth Function

At every iteration k, we must evaluate function W as well as
its derivatives w.r.t. u(.) and p. But W is not differentiable!
To overcome the difficulty, we implement a mollifier technique:

1 ify=0 (1 y2>2 if y € [—r.1]
if y=0, . if y € [—r,r],
l(y) = y A ]_r(y) = I’2 'y

0 otherwise, 0 otherwise.

There are rules to drive r to 0 as the iteration number kK — +00
[Andrieu et al., 2007].
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Second Difficulty: Solving the Inner Problem

The mollified optimization problem to solve at each iteration is:

W (0, 64,k = min { (K () = 1) = 1 (€S )} -
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Second Difficulty: Solving the Inner Problem

The mollified optimization problem to solve at each iteration is:

W (0¥, €%, 1) = min { (K (x(8)) = %) x L (€ () ) |-

ve()
In this setting, we have to check if the target is reached up to r¥.
Different cases have to be considered:
© the target can be reached accurately,
@ the target can be reached up to r¥ only,
© the target cannot be reached up to r.

Note that if reaching the target is possible but too expensive (that
is, if K(x%(tr)) > pi¥), the best thing to do is to stop the engine!

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 196 / 328



Satellite Model and Optimization Problem
Probability and Conditional Expectation Handling
Stochastic APP Algorithm

atial Rendez-vous Under Probability Constraint N
Sp v 4 Numerical Results

Second Difficulty: Solving the Inner Problem

The mollified optimization problem to solve at each iteration is:
W, €519 = min {(K((00) = 1) % 1 () )}

In this setting, we have to check if the target is reached up to r¥.
Different cases have to be considered:

© the target can be reached accurately,

@ the target can be reached up to r¥ only,

© the target cannot be reached up to r.
Note that if reaching the target is possible but too expensive (that
is, if K(xf(tf)) > 1¥), the best thing to do is to stop the engine!

In practice, the solution of the approximated problem is derived
from the resolution of two standard optimal control problems. . .
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Parameters Tuning

Gradient step length:

~> usual for a standard stochastic gradient algorithm.

Optimal choice of the smoothing parameter:
k (6]

r‘ = ————,
B+ ks

~~ the mollifier coefficient r* decreases slowly.
Stochastic APP algorithm will need a large number of iterations.
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© Spatial Rendez-vous Under Probability Constraint

@ Numerical Results
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Example: Interplanetary Mission

e t; = 0.70 and t; = 8.70 (normalized units),
@ t,: exponential distribution: IP’(tp > tf) ~ 0.58 = 7,
@ tq: exponential distribution: ]P’(0.035 <ty < 0.125) ~ 0.80.
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Example: Interplanetary Mission

e t; = 0.70 and t; = 8.70 (normalized units),
@ t,: exponential distribution: IP’(tp > tf) ~ 0.58 = 7,
@ tq: exponential distribution: ]P’(0.035 <ty < 0.125) ~ 0.80.

o] The deterministic optimal control
has a “bang—off-bang” shape.
Along the optimal trajectory, the

] probability to recover a failure is:
B | plt=0.94.

Comp. normale w
Comp. tangentielle s
Comp. radiale g
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Figure: Probability level p = 0.750
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The Price of Safety. ..
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