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Decomposition and Coordination
Dual Approximate Dynamic Programming (DADP)

Theoretical Questions

Ultimate goal of the lecture

How to to obtain “good” strategies (or cost-to-go functions) for
a large scale stochastic optimal control problem in discrete time,
for example a problem corresponding to the optimal management
over a given time horizon of a system involving a large amount of
dynamical production units.

In order to obtain decision strategies (closed-loop controls),
we have to use dynamic programming or related methods.

Assumption: Markovian case,
Difficulty: curse of dimensionality.

To overcome the barrier of the dimension, we want to use
decomposition/coordination techniques, so that we have to
take into account the information pattern induced by the
stochastic optimization problem.
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Lecture Outline

1 Decomposition and Coordination
Bird’s Eye View of Coupling in Stochastic Optimization
Decomposition Background
About the Stochastic Case

2 Dual Approximate Dynamic Programming (DADP)
Problem Statement and Subproblem Structure
DADP Principle and Implementation
DADP Interpretations and Questions

3 Theoretical Questions
Existence of a Saddle Point
Convergence of the Uzawa Algorithm
Convergence w.r.t. Information
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Stochastic Optimal Control (SOC) Problem Formulation

min
U ,X

E
( N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )
))

,

subject to dynamics constraints (time coupling):

X i
0 = f i-1(W0) , i = 1 . . .N ,

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) , t = 0 . . .T−1 , i = 1 . . .N ,

to measurability constraints (uncertainty coupling):

U i
t � Ft := σ(W0, . . . ,Wt) , t = 0 . . .T−1 , i = 1 . . .N ,

and to production constraints (spatial coupling):

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 , t = 0 . . .T−1 ,
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Couplings and Decompositions for SOC Problems (1)

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � Ft

∑

i

Θi
t(X

i
t ,U

i
t) = 0

Three independent
couplings!

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 269 / 328



Decomposition and Coordination
Dual Approximate Dynamic Programming (DADP)

Theoretical Questions

Bird’s Eye View of Coupling in Stochastic Optimization
Decomposition Background
About the Stochastic Case

Couplings and Decompositions for SOC Problems (2)

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � Ft

∑

i

Θi
t(X

i
t ,U

i
t) = 0

Three independent
couplings!

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 270 / 328



Decomposition and Coordination
Dual Approximate Dynamic Programming (DADP)

Theoretical Questions

Bird’s Eye View of Coupling in Stochastic Optimization
Decomposition Background
About the Stochastic Case

Couplings and Decompositions for SOC Problems (3)

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � Ft

∑

i

Θi
t(X

i
t ,U

i
t) = 0

Three independent
couplings!

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 271 / 328



Decomposition and Coordination
Dual Approximate Dynamic Programming (DADP)

Theoretical Questions

Bird’s Eye View of Coupling in Stochastic Optimization
Decomposition Background
About the Stochastic Case

Couplings and Decompositions for SOC Problems (4)

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � Ft

∑

i

Θi
t(X

i
t ,U

i
t) = 0

Three independent
couplings!

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 272 / 328



Decomposition and Coordination
Dual Approximate Dynamic Programming (DADP)

Theoretical Questions

Bird’s Eye View of Coupling in Stochastic Optimization
Decomposition Background
About the Stochastic Case

Couplings and Decompositions for SOC Problems (5)

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � Ft

∑

i

Θi
t(X

i
t ,U

i
t) = 0

Three independent
couplings!

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 273 / 328



Decomposition and Coordination
Dual Approximate Dynamic Programming (DADP)

Theoretical Questions

Bird’s Eye View of Coupling in Stochastic Optimization
Decomposition Background
About the Stochastic Case

Couplings and Decompositions for SOC Problems (6)
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Time decomposition
Dynamic Programming
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Couplings and Decompositions for SOC Problems (7)
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Scenario decomposition
Progressive Hedging
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Couplings and Decompositions for SOC Problems (8)
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Spatial decomposition
Purpose of the lesson
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Decomposition and Coordination

Unit 1 Unit N

Unit 2 Unit 3

Interconnected units

The “large system” to be optimized
consists of interconnected subsystems:
we want to use this structure in order
to formulate optimization subproblems
of reasonable complexity.

But the presence of interactions requires
a level of coordination.

Coordination must provide a local model
of the interactions to each subproblem:
it is an iterative process.

The ultimate goal is to obtain the solution
of the overall problem by concatenation of
the solutions of the subproblems.
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Example in the Energy Field: “Flower Model”

Unit 2

Unit 1 Unit N

Unit 3

Coupling

constraint

min
u

N∑

i=1

Ji (ui ) ,

s.t.
N∑

i=1

Θi (ui ) = θ .

Unit Commitment Problem
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Example in the Energy Field: “Cascade Model”

Unit 1

Unit 2

Coupling

constraints

Unit N

min
u,v

N∑

i=1

Ji (ui , vi ) ,

s.t. Hi (ui , vi ) = vi+1 ∀i .

Dams Management Problem

Link with the flower model: Θi  
(
0, . . . ,−vi ,Hi (ui , vi ), . . . , 0

)>
.
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Example in the Energy Field: “Network Model”

Unit 1 Unit N

Unit 3

Unit i

Unit 2

Coupling

constraints

min
u,v

N∑

i=1

Ji

(
ui ,
∑

j 6=i

vj ,i

)
,

s.t. Hi

(
ui ,
∑

j 6=i

vj ,i

)
= vi .

Smart Grid
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Price Decomposition Applied to the Flower Model (1)

min
u∈U

N∑

i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

with u = (u1, . . . , uN).

1 Form the Lagrangian and assume that a saddle point exists:

max
λ∈V

min
u∈U

N∑

i=1

(
Ji (ui ) +

〈
λ ,Θi (ui )

〉)
−
〈
λ , θ

〉
.

2 Solve this problem by the Uzawa algorithm:

u
(k+1)
i ∈ arg min

ui∈Ui
Ji (ui ) +

〈
λ(k) ,Θi (ui )

〉
, i = 1 . . . ,N .

λ(k+1) = λ(k) + ρ

( N∑

i=1

Θi

(
u

(k+1)
i

)
− θ
)
.
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Price Decomposition Applied to the Flower Model (2)

λ(k+1) = λ(k) + ρ

(∑
Θi

(
u
(k+1)
i

)
− θ

)

Subproblem 1 Subproblem i Subproblem N

Coordination

min J1(u1) + 〈λ(k),Θ1(u1)〉 min Ji(ui) + 〈λ(k),Θi(ui)〉 min JN(uN) + 〈λ(k),ΘN(uN)〉

λ(k) ΘN (u
(k)
N )Θ1(u

(k)
1 ) λ(k) λ(k)Θi(u

(k)
i )
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Remarks on the Price Decomposition Method

The theory is available for infinite dimensional Hilbert spaces,
and thus applies in the stochastic framework, that is, the case
where U is a space of random variables.

The minimization algorithm used for solving the subproblems
is not specified in the decomposition process.

New variables appear in the subproblems arising at iteration k
of the optimization process:

min
ui∈Ui

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
.

These variables are fixed when solving the subproblems, and
do not cause any difficulty, at least in the deterministic case.

There are many others decomposition methods. . .
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Mixing Spatial Decomposition and Dynamic Programming

Consider the “large scale” stochastic optimal control problem

min
U ,X

N∑

i=1

E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )

)
,

subject to the constraints:

X i
0 = f i-1(W0) , i = 1 . . .N ,

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) , t = 0 . . .T−1 , i = 1 . . .N ,

U i
t � Ft := σ(W0, . . . ,Wt) , t = 0 . . .T−1 , i = 1 . . .N ,

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 , t = 0 . . .T−1 ,

We assume that the r.v. Wt are independent (white noise).
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Dynamic Programming Yields Centralized Controls

Under the white noise assumption, it is possible to use dynamic
programming (DP) in order to solve the SOC problem.

The true optimal control U i
t of unit i is a feedback of the whole

system state, that is, a function of all X i
t ’s:

U i
t = γ it

(
X 1

t , . . . ,X
N
t

)
.

Of course, a straightforward use of DP is prohibited for N large
(curse of dimensionality), and decomposition is needed!

Decomposition may be difficult because the feedback γ it induces a
coupling between the units! Moreover, a naive decomposition of
the problem should lead to decentralized feedbacks:

U i
t = γ̂ it(X

i
t ) ,

which, in most cases, are far from being optimal. . .
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Straightforward Decomposition of Dynamic Programming?

The crucial point is that the optimal feedback of a subsystem a
priori depends on the state of all other subsystems, so that using
a decomposition scheme by subsystems is not at all obvious. . .

As far as we have to deal with Dynamic Programming, the central
concern for decomposition/coordination purpose is resumed as:

?

?

?

?

??

how to decompose a feedback γt w.r.t.
its domain Xt rather than its range Ut?

And the answer is:

impossible in the general case!
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Price Decomposition in the Stochastic Case (1)

Dualize the spatial coupling constraints in the SOC problem:

min
U ,X

N∑

i=1

(
E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )
))

,

subject to the constraints:

X i
0 = f i-1(W0) , i = 1 . . .N ,

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) , t = 0 . . .T−1 , i = 1 . . .N ,

U i
t � Ft := σ(W0, . . . ,Wt) , t = 0 . . .T−1 , i = 1 . . .N ,

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 , t = 0 . . .T−1  Λt .
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Price Decomposition in the Stochastic Case (2)

Apply price decomposition to the SOC problem by dualizing the

spatial coupling constraint. Then a dual multiplier Λ
(k)
t appears

in each subproblem i at each iteration k :

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,Wt+1) + Λ

(k)
t ·Θi

t(X
i
t ,U

i
t)
)

+ K i (X i
T )
)
.

The Λ
(k)
t ’s are fixed random variables at step k of the algorithm.

Subproblem i thus encompasses 2 noise variables Wt+1 and Λ
(k)
t ,

but the Λ
(k)
t ’s may be correlated in time, in which case the white

noise assumption fails!

Otherwise stated, the original state X i
t is not a “good” state for

subproblem i : the feature which seemed to have been won by
decomposition is actually lost again by dynamic programming.
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Summary

On the one hand, it seems that dynamic programming
cannot be decomposed in a straightforward manner.

On the other hand, applying a decomposition scheme to a
SOC problem introduces coordination instruments in the

subproblems, e.g. the multipliers Λ
(k)
t in the case of price

decomposition. They correspond to additional fixed random
variables whose time structure is unknown,13 so that dynamic
programming cannot be used in a naive way for solving the
subproblems.

Question: how to handle these coordination instruments in order
to be able to use dynamic programming and to obtain (at least
an approximation of) the overall optimum of the SOC problem?

13One can only say that Λ
(k)
t is measurable with respect to (W0, . . . ,Wt).
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Optimization Problem

Recall the SOC problem under consideration:

min
U ,X

E
( N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )
))

, (9a)

subject to dynamics constraints:

X i
0 = f i-1(W0) , (9b)

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) , (9c)

to measurability constraints:

U i
t � σ(W0, . . . ,Wt) , (9d)

and to spatial coupling constraints

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 . Constraints to be dualized (9e)
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Assumptions

Assumption (Markovian Setting)

Noises W0, . . . ,WT are independent over time.

Hence Dynamic Programming applies: there is no optimality loss
to seek the controls U i

t as functions of the state at time t.

Assumption (Constraint Qualification Condition)

A saddle point of the Lagrangian L exists. More on that later. . .

L
(
X ,U ,Λ

)
= E

(
N∑
i=1

( T−1∑
t=0

Li
t(X

i
t ,U

i
t ,Wt+1)+K i (X i

T )+
T−1∑
t=0

Λt ·Θi
t(X

i
t ,U

i
t )

))
,

where Λt is a σ(W0, . . . ,Wt)-measurable random variables.

Assumption (Uzawa)

Uzawa algorithm applies. More on that later. . .
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Uzawa Algorithm

At iteration k of the algorithm,
1 Solve Subproblem i , i = 1, . . . ,N, with Λ(k) fixed:

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,Wt+1) + Λ

(k)
t ·Θi

t(X
i
t ,U

i
t)
)

+ K i (X i
T )

)
,

subject to

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) ,

U i
t � σ(W0, . . . ,Wt) ,

whose solution is denoted
(
U i ,(k+1),X i ,(k+1)

)
.

2 Update the multipliers Λt :

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

Θi
t

(
X i,(k+1)

t ,U i,(k+1)
t

))
.
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Structure of a Subproblem

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,Wt+1) + Λ

(k)
t ·Θi

t(X
i
t ,U

i
t)
))

,

subject to

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) ,

U i
t � σ(W0, . . . ,Wt) .

Without additional knowledge of the process Λ(k) (we just know

that Λ
(k)
t � (W0, . . . ,Wt)), the state of this subproblem at time t

cannot be summarized by the physical state X i
t . A possible state is

the history H i
t = (W0,U

i
0, . . . ,U

i
t−1,Wt)  H i

t+1 = (H i
t ,U

i
t ,Wt+1).

The state of the subproblem increases with time! Something
has to be compressed in order to use Dynamic Programming.
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Main Idea of DADP

In order to overcome the difficulty induced by the multipliers Λ
(k)
t ,

we choose at each time t a random variable Yt measurable w.r.t.
the past noises

(
W0, . . . ,Wt

)
. The process Y =

(
Y0, . . . ,YT−1

)

is called the information process associated to the constraint.

The core idea is then to replace the multiplier Λ
(k)
t at iteration k

by its conditional expectation w.r.t. Yt : Λ
(k)
t  E(Λ

(k)
t | Yt).

This idea will lead to a good approximation if Yt is (sufficiently)
correlated to the random variable Λt . It will also allow interesting
interpretations. More on that later. . .

Note that we require that the information process is not influenced by controls.
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Subproblem Approximation

Using this idea, we replace Subproblem i in Uzawa algorithm by:

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,Wt+1)+E(Λ

(k)
t | Yt)·Θi

t(X
i
t ,U

i
t)
)

+K i (X i
T )

)
,

subject to

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) ,

U i
t � σ(W0, . . . ,Wt) .

The conditional expectation E(Λ
(k)
t | Yt) corresponds to a given

function µ
(k)
t of the variable Yt , so that subproblem i now involves

the white noise process W and the information process Y . If the
process Y follows a Markovian dynamics, e.g.

Yt+1 = ht
(
Yt ,Wt+1

)
,

then
(
X i

t ,Yt

)
is a valid state for subproblem i and DP applies.
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Dynamic Programming Equation

Assuming a non-controlled dynamics Yt+1 = ht(Yt ,Wt+1) for the
information process Y , the DP equation for Subproblem i writes:

V i
T (x i , y) = K i (x i ) ,

V i
t (x i , y) = min

ui
E
(
Lit(x

i , ui ,Wt+1)

+ E
(
Λ

(k)
t

∣∣ Yt = y
)
·Θi

t(x
i , ui )

+ V i
t+1

(
X i

t+1,Yt+1

))
,

subject to the dynamics:

X i
t+1 = f it (x i , ui ,Wt+1) ,

Yt+1 = ht(y ,Wt+1) .
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About the Coordination (1)

The task of coordination is performed thanks to scenarios.

A set of noise scenarios is drawn once for all. Trajectories of
the information process Y are simulated along the scenarios.

At iteration k, the optimal trajectories of the state process
X i ,(k+1) and of the control process U i ,(k+1) are simulated
along the noise scenarios, for all subsystems.

The dual multipliers are updated along the noise scenarios
according to the formula:

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

Θi
t

(
X i ,(k+1)

t ,U i ,(k+1)
t

))
.

The conditional expectations E(Λ
(k+1)
t | Yt) are obtained by

regression of the trajectories of Λ
(k+1)
t on those of Yt .
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About the coordination (reduced gradients) (2)

One may perform the coordination by dealing with functions of Yt .

Compute the optimal trajectories of the state process X i ,(k+1)

and of the control process U i ,(k+1) along the noise scenarios.
Compute the conditional expectation of the gradient:

E
( N∑

i=1

Θi
t

(
X i,(k+1)

t ,U i,(k+1)
t

) ∣∣∣∣ Yt

)
.

Update the conditional expectation of the multipliers:

E(Λ
(k+1)
t | Yt) = E(Λ

(k)
t | Yt)

+ ρt E
( N∑

i=1

Θi
t

(
X i,(k+1)

t ,U i,(k+1)
t

) ∣∣∣∣ Yt

)
.

Many numerical advantages if the support of Yt is finite.
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Multiplier

Process Λ
(k)
t

· · ·Solving
subproblem 1

Solving
subproblem N

N∑

i=1

Θi
t

(
X i ,(k+1)

t ,U i ,(k+1)
t

)

︸ ︷︷ ︸
∆

(k+1)
t

= 0 ?

Λ
(k+1)
t = Λ

(k)
t + ρ∆

(k+1)
t

Θi
t

(
X i ,(k+1)

t ,U i ,(k+1)
t

)

Information Process
Yt+1 = ht(Yt ,Wt+1)

Stochastic spatial
decomposition scheme
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Interpretations of DADP (1)

The approximation made on the dual process gives us a tractable
way of computing strategies for the subsystems. Let us examine
precisely the consequences in terms of constraints.

Consider a relaxed problem derived from (9):

min
U ,X

E
( N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )
))

, (10a)

subject to the modified coupling constraints:

E
( N∑

i=1

Θi
t(X

i
t ,U

i
t)
∣∣∣ Yt

)
= 0 . (10b)
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Interpretations of DADP (2)

Proposition

The DADP algorithm can be interpreted as the Uzawa algorithm
applied to Problem (10).

Sketch of proof. Since the duality term E
(
E(Λ

(k)
t | Yt) ·Θi

t(X i
t ,U i

t )
)

which
appears in the cost function of subproblem i in DADP can be written:

E
(
E(Λ

(k)
t | Yt) ·Θi

t(X
i
t ,U

i
t )
)

= E
(
Λ

(k)
t · E(Θi

t(X
i
t ,U

i
t ) | Yt)

)
,

the global constraint really handled by DADP is:

E
( N∑

i=1

Θi
t(X

i
t ,U

i
t )
∣∣∣ Yt

)
= 0 . 2

DADP thus consists in replacing an almost-sure constraint by
its conditional expectation w.r.t. the information variable Yt .
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Interpretations of DADP (3)

DADP as an approximation of the optimal multiplier

Λt  E
(
Λt

∣∣ Yt

)
.

DADP as a decision-rule approach for the dual problem

max
Λ

min
U ,X

L
(
X ,U ,Λ

)
 max

Λt�Yt

min
U ,X

L
(
X ,U ,λ

)
.

DADP as a constraint relaxation for the primal problem

N∑

i=1

Θi
t

(
X i

t ,U
i
t

)
= 0  E

( N∑

i=1

Θi
t

(
X i

t ,U
i
t

) ∣∣∣ Yt

)
= 0 .

Thanks to the last interpretation, the optimal value given by
DADP is a guaranteed lower bound for the problem value.
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DADP is a guaranteed lower bound for the problem value.
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Practical Questions

? How to choose the information variables Yt?

Perfect memory: Yt =
(
W0, . . . ,Wt

)
.

Minimal information: Yt ≡ cste.

Static information: Yt = ht
(
Wt

)
.

Dynamic information: Yt+1 = ht
(
Yt ,Wt+1

)
.

? How to obtain a feasible solution from the relaxed problem?

Use an appropriate heuristic (built using the output of DADP).

? How to accelerate the gradient algorithm?

Augmented Lagrangian.

More sophisticated gradient methods.
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Theoretical Questions

? What is the suitable theoretical framework of the algorithm?

The convergence of Uzawa’s algorithm is granted provided that:

the problem is posed in Hilbert spaces,
and a saddle point exists.

It thus seems natural to place ourselves in a Hilbert space. But it
is known (papers by Rockafellar and Wets) that a saddle point
doesn’t exist in Hilbert spaces for such problems. . .

? Does the approximate solution converge to the true solution?

Epiconvergence results are available w.r.t. the information given by
Yt . But epiconvergence raises technical problems when addressed to
stochastic optimization problems.
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What Are the Issues to Consider?

The spatial coupling constraints of our stochastic optimization
problem are handled by duality methods.

Uzawa algorithm is a dual method which is naturally described
in an Hilbert space, but we cannot guarantee the existence of
an optimal multiplier in the space L2

(
Ω,A,P;Rn

)
!

Consequently, we extend the algorithm to the non-reflexive
Banach space L∞

(
Ω,A,P;Rn

)
, by giving a set of conditions

ensuring the existence of a L1
(
Ω,A,P;Rn

)
optimal multiplier,

and by providing a convergence result of the Uzawa algorithm.

We also have to deal with the approximation induced by the
information variable, that is, a convergence result when the
information delivered by Yt goes towards σ(W0, . . . ,Wt),
(information available at time t for the initial problem).
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Abstract Formulation of the Problem

We consider the following abstract optimization problem:

(
P
)

min
U∈Uad

J(U ) s.t. Θ(U ) ∈ −C ,

where U and V are two Banach spaces, and

J : U → R is the objective function,

Uad is the admissible set,

Θ : U → V is the constraint function, to be dualized,

C ⊂ V is the cone of constraint.

Here, U is a space of random variables, and J is defined by

J(U ) = E
(
j(U ,W )

)
.

The relationship with Problem (9) is almost straightforward. . .
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Standard Duality in L2 Spaces (1)

Assume that U = L2
(
Ω,A,P;Rn

)
and V = L2

(
Ω,A,P;Rm

)
.

The standard sufficient constraint qualification condition

0 ∈ ri
(

Θ
(
Uad ∩ dom(J)

)
+ C

)
,

is scarcely satisfied in such a stochastic setting.

Proposition

If the σ-algebra A is not finite modulo P,a then for any subset
Uad ⊂ Rn that is not an affine subspace, the set

Uad =
{
U ∈ Lp

(
Ω,A,P;Rn

)
| U ∈ Uad P− a.s.

}
,

has an empty relative interior in Lp, for any p < +∞.

aIf the σ-algebra is finite modulo P, then U is a finite dimensional space.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 315 / 328



Decomposition and Coordination
Dual Approximate Dynamic Programming (DADP)

Theoretical Questions

Existence of a Saddle Point
Convergence of the Uzawa Algorithm
Convergence w.r.t. Information

Standard Duality in L2 Spaces (1)

Assume that U = L2
(
Ω,A,P;Rn

)
and V = L2

(
Ω,A,P;Rm

)
.

The standard sufficient constraint qualification condition

0 ∈ ri
(

Θ
(
Uad ∩ dom(J)

)
+ C

)
,

is scarcely satisfied in such a stochastic setting.

Proposition

If the σ-algebra A is not finite modulo P,a then for any subset
Uad ⊂ Rn that is not an affine subspace, the set

Uad =
{
U ∈ Lp

(
Ω,A,P;Rn

)
| U ∈ Uad P− a.s.

}
,

has an empty relative interior in Lp, for any p < +∞.

aIf the σ-algebra is finite modulo P, then U is a finite dimensional space.

P. Carpentier Master Optimization — Stochastic Optimization July 6, 2021 315 / 328



Decomposition and Coordination
Dual Approximate Dynamic Programming (DADP)

Theoretical Questions

Existence of a Saddle Point
Convergence of the Uzawa Algorithm
Convergence w.r.t. Information

Standard Duality in L2 Spaces (2)

Consider the following optimization problem (with α > 0):

inf
u0,U1

u2
0 + E

(
(U1 + α)2

)
,

s.t. u0 ≥ a ,

U1 ≥ 0 ,

u0 −U1 ≥W , to be dualized

where W is a random variable uniform on [1, 2].

For a < 2, we can construct a maximizing sequence of multipliers
for the dual problem that does not converge in L2. We are in the
so-called non relatively complete recourse case, that is, the case
where the constraints on U1 induce a stronger constraint on u0.

The optimal multiplier is not in L2, but in
(
L∞
)?

. . .
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Constraint Qualification in
(
L∞,L1

)

From now on, we assume that

U = L∞
(
Ω,A,P;Rn

)
,

V = L∞
(
Ω,A,P;Rm

)
,

C = {0} ,
where the σ-algebra A is not finite modulo P.

We consider the pairing
(
L∞,L1

)
with the following topologies:

σ
(
L∞,L1

)
: weak? topology on L∞ (coarsest topology such

that all the L1-linear forms are continuous),

τ
(
L∞,L1

)
: Mackey-topology on L∞ (finest topology such

that the continuous linear forms are only the L1-linear forms).
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Weak? closedness of linear subspaces of L∞

Proposition

Let Θ : L∞
(
Ω,A,P;Rn

)
→ L∞

(
Ω,A,P;Rm

)
be a linear operator,

and assume that there exists a linear operator
Θ† : L1

(
Ω,A,P;Rm

)
→ L1

(
Ω,A,P;Rn

)
such that:

〈
V ,Θ(U )

〉
=
〈
Θ†(V ) ,U

〉
∀U ∈ L∞(Rn), ∀V ∈ L1(Rm) .

Then the linear operator Θ is weak? continuous.

Applications

Θ(U ) = U − E
(
U
∣∣ B
)
: non-anticipativity constraints,

Θ(U ) = AU with A ∈Mm,n(R): finite number of constraints.
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A Duality Theorem

(
P
)

min
U∈U

J(U ) s.t. Θ(U ) = 0 , with J(U ) = E
(
j(U ,W )

)
.

Theorem

Assume that j is a convex normal integrand, that J is continuous
in the Mackey topology at some point U0 such that Θ(U0) = 0,
and that Θ is linear weak? continuous on L∞

(
Ω,A,P;Rn

)
. Then,

U ] ∈ U is an optimal solution of Problem
(
P
)

if and only if there

exists Λ] ∈ L1
(
Ω,A,P;Rm

)
such that

U ] ∈ arg min
U∈U

E
(
j(U ,W ) + Λ] ·Θ(U )

)
,

Θ(U ]) = 0.

Extension to P-a.s. constraints: adding almost sure bound constraints

causes Mackey discontinuity (see the previous example in L2 spaces)!
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Uzawa Algorithm

(
P
)

min
U∈U

J(U ) s.t. Θ(U ) = 0 , with J(U ) = E
(
j(U ,W )

)
.

The standard Uzawa algorithm

U(k+1) ∈ arg min
U∈Uad

J(U ) +
〈
Λ(k) ,Θ(U )

〉
,

Λ(k+1) = Λ(k) + ρ Θ
(
U(k+1)

)
,

makes sense with in the L∞ setting, that is, the minimization
problem is well-posed and the update formula of Λ is valid.

Note that all the multipliers Λ(k) belong to L∞
(
Ω,A,P;Rm

)
as

soon as the initial multiplier Λ(0) ∈ L∞
(
Ω,A,P;Rm

)
.
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Convergence Result

Theorem

Assume that

1 J : U → R is proper, weak? l.s.c., differentiable and a-convex,

2 Θ : U → V is affine, weak? continuous and κ-Lipschitz,

3 Uad is weak? closed and convex,

4 an admissible U0 ∈ dom J ∩Θ−1(0) ∩ Uad exists,

5 an optimal L1-multiplier to the constraint Θ
(
U
)

= 0 exists,

6 the step ρ is such that 0 < ρ < 2a
κ .

Then, there exists a subsequence
{
U(nk )

}
k∈N of the sequence

generated by the Uzawa algorithm converging in L∞ towards the
optimal solution U ] of the primal problem.
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Remarks about the Result

The result is not as good as expected (global convergence?).

Improvements and extensions (inequality constraint) needed.

The Mackey-continuity assumption forbids the use of bounds.

In order to deal with almost sure bound constraints, we can
turn towards the work of R.T. Rockafellar and R. J-B Wets.

In a series of 4 papers (stochastic convex programming), they
have detailed the duality theory on two-stage and multistage
problems, with the focus on non-anticipativity constraints.

These papers require:

a strict feasability assumption,
a relatively complete recourse assumption.
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Relaxed Problems

Following the interpretation of DADP in terms of a relaxation of
the original problem, and given a sequence {An}n∈N of subfields
of the σ-field A, we replace the abstract problem:

(
P
)

min
U∈U

J(U ) s.t. Θ(U ) = 0 ,

by the sequence of approximated problems:

(
Pn
)

min
U∈U

J(U ) s.t. E
(
Θ(U )

∣∣An

)
= 0 .

We assume the strong convergence of {An}n∈N towards A:

An −→ A
(
⇐⇒ ∀X∈L1(Ω,A,P;R), E(X |An)

L1
−→E(X |A)

)
.
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Convergence Result

Theorem

Assume that

U is a topological space,

V = Lp(Ω,A,P;Rm), with p ∈ [1,+∞),

J and Θ are continuous operators,

{An}n∈N strongly converges towards A.

Then the sequence {J̃n}n∈N epi-converges towards J̃, with

J̃n =

{
J(U ) if U satisfies the constraints of

(
Pn

)
,

+∞ otherwise.
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Conclusion

DADP method allows to tackle large-scale stochastic optimal
control problems, such as the ones found in the field of energy
management.

A lot of practical experiments have been performed,

on flower models (unit commitment problem),
on chained models (hydraulic valley management),
on network models (smart grid).

Much work remains to be done in this area.

There is an ongoing research project on the subject, in order
to assess the foundations of the method.
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