Stochastic Optimization Recalls on convex analysis

V. Leclère

November 25 2020

Vincent Leclère OS - 1 25/11/2020 1 / 30

Presentation Outline

- Overview of the course
- Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform
- Ouality
 - Recall on Lagrangian duality
 - Marginal interpretation of multiplier
 - Fenchel duality

Objective of the course

- Uncertainty is present in most optimization problem, sometimes taken into account.
- Two major way of taking uncertainty into account :
 - Robust approach: assuming that uncertainty belongs in some set C, and will be chosen adversarily.
 - Stochastic approach: assuming that uncertainty is a random variable with known law.
- We will take the stochastic approach, considering the multi-stage approach: a first decision is taken, then part of the uncertainty is revealed, before taking a second decision and so on.

Syllabus

1st course: Convex toolbox

2nd course: Probability toolbox

3rd course: two-stage stochastic programm

4th course: Bellman operators and Dynamic Programming

5th course: Decomposition methods for two stage SP

6th course: Stochastic Dual Dynamic Programming

Vincent Leclère OS - 1 25/11/2020 3 / 30

Validation

- The stochastic optimization course is in two part
- Evaluation have 3 components :
 - A paper presentation with P.Carpentier
 - A written exam on my part of the course with theoretical and modelling questions
 - Multiple practical work to send to vincent.leclere@enpc.fr
- Practical work will be done in Julia (www.julialang.com)using jupyter notebook
- Instructions for installing julia / jupyter and using the library can be found at https://github.com/leclere/TP-Saclay
- Practical work will be posted there

Vincent Leclère OS - 1 25/11/2020 4 / 30

Presentation Outline

- Overview of the course
- Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform
- 3 Duality
 - Recall on Lagrangian duality
 - Marginal interpretation of multiplier
 - Fenchel duality

Convex sets

• C is a convex set iff

$$\forall x_1, x_2 \in C, \quad [x_1, x_2] \subset C.$$

- If for all $i \in I$, C_i is convex, then so is $\bigcap_{i \in I} C_i$
- $C_1 + C_2$, and $C_1 \times C_2$ are convex
- For any set X the convex hull of X is the smallest convex set containing X,

$$\operatorname{conv}(X) := \Big\{ tx_1 + (1-t)x_2 \mid x_1, x_2 \in C, t \in [0,1] \Big\}.$$

 The closed convex hull of X is the intersection of all half-spaces containing X.

Vincent Leclère OS - 1 25/11/2020 5 / 30

Separation

Let X be a Banach space, and X^* its topological dual (i.e. the set of all continuous linear form on X).

Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, $int(A) \neq \emptyset$, then there exists a separating hyperplane $(x^*, \alpha) \in X^* \times \mathbb{R}$ such that

$$\langle x^*, a \rangle \le \alpha \le \langle x^*, b \rangle \quad \forall a, b \in A \times B.$$

Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, A is closed, and B is compact (e.g. a point), then there exists a strict separating hyperplane $(x^*, \alpha) \in X^* \times \mathbb{R}$ such that, there exists $\varepsilon > 0$,

$$\langle x^*, a \rangle + \varepsilon \le \alpha \le \langle x^*, b \rangle - \varepsilon \quad \forall a, b \in A \times B.$$

Vincent Leclère OS - 1 25/11/2020 6

Convex functions : basic properties

- A function $f: X \to \overline{\mathbb{R}}$ is convex if its epigraph is convex.
- $f: X \to \mathbb{R} \cup \{+\infty\}$ is convex iff

$$\forall t \in [0,1], \quad \forall x, y \in X, \qquad f(tx+(1-t)y) \leq tf(x)+(1-t)f(y).$$

- If f, g convex, $\lambda > 0$, then $\lambda f + g$ is convex.
- If f convex non-decreasing, g convex, then $f \circ g$ convex.
- If f convex and a affine, then $f \circ a$ is convex.
- If $(f_i)_{i \in I}$ is a family of convex functions, then $\sup_{i \in I} f_i$ is convex.

Vincent Leclère OS - 1 25/11/2020 7 / 30

Convex functions: further definitions and properties

- The domain of a convex function is $dom(f) = \{x \in X \mid f(x) < +\infty\}.$
- The level set of a convex function is $lev_{\alpha}(f) = \{x \in X \mid f(x) \leq \alpha\}$
- A function is lower semi continuous (lsc) iff for all $\alpha \in \mathbb{R}$, lev_{α} is closed.
- The domain and the level sets of a convex function are convex.
- A convex function is proper if it never takes $-\infty$, and $dom(f) \neq \emptyset$.
- A function is coercive if $\lim_{\|x\|\to\infty} f(x) = +\infty$.

Vincent Leclère OS - 1 25/11/2020 8 / 30

Convex functions : polyhedral functions

- A polyhedra is a finite intersection of half-spaces, thus convex.
- A polyhedral function is a function whose epigraph is a polyhedra.
- Finite intersection, cartesian product and sum of polyhedra is polyhedra.
- In particular a polyhedral function is convex lsc, with polyhedral domain and level sets.
- If $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is polyhedral, then it can be written as

$$f(x) = \min_{\theta} \quad \theta$$

$$s.t. \quad \alpha_{\kappa}^{\top} x + \beta_{\kappa} \le \theta \qquad \forall \kappa \le k$$

$$\gamma_{\kappa} \top x + \delta_{\kappa} < 0 \qquad \forall \kappa < k'$$

Vincent Leclère OS - 1 25/11/2020 9 / 30

Convex functions: polyhedral approximations

- f is convex iff it is above all its tangeant.
- Let $\{x_{\kappa}, g_{\kappa}\}_{\kappa \leq k}$ be a collection of (sub-)gradient, that is such that $f \geq \langle g_{\kappa}, \dots, x_{\kappa} \rangle + f(x_{\kappa})$, then

$$\underline{\mathbf{f}}_k: \mathbf{x} \mapsto \max_{\kappa \leq k} \langle g_\kappa, \mathbf{x} - \mathbf{x}_\kappa \rangle + f(\mathbf{x}_\kappa)$$

is a polyhedral outer-approximation of f.

• Let $\{x_{\kappa}\}_{\kappa \leq k}$ be a collection of point in dom(f). Then,

$$\bar{f}_k : x \mapsto \min_{\sigma \in \Delta_k} \left\{ \sum_{\kappa=1}^k \sigma_{\kappa} f(x_{\kappa}) \mid \sum_{\kappa=1}^k \sigma_{\kappa} x_{\kappa} = x \right\}$$

is a polyhedral inner-approximation of f

Vincent Leclère OS - 1 25/11/2020 10 / 30

- f is convex iff it is above all its tangeant.
- Let $\{x_{\kappa}, g_{\kappa}\}_{\kappa \leq k}$ be a collection of (sub-)gradient, that is such that $f \geq \langle g_{\kappa}, -x_{\kappa} \rangle + f(x_{\kappa})$, then

$$\underline{\mathbf{f}}_k: \mathbf{x} \mapsto \max_{\kappa \leq k} \langle \mathbf{g}_\kappa, \mathbf{x} - \mathbf{x}_\kappa \rangle + f(\mathbf{x}_\kappa)$$

is a polyhedral outer-approximation of f.

• Let $\{x_{\kappa}\}_{\kappa \leq k}$ be a collection of point in dom(f). Then,

$$\bar{f}_k: x \mapsto \min_{\sigma \in \Delta_k} \Big\{ \sum_{\kappa=1}^k \sigma_{\kappa} f(x_{\kappa}) \quad \Big| \quad \sum_{\kappa=1}^k \sigma_{\kappa} x_{\kappa} = x \Big\}$$

is a polyhedral inner-approximation of f

Vincent Leclère OS - 1 25/11/2020 10 / 30

Convex functions : polyhedral approximations

- f is convex iff it is above all its tangeant.
- Let $\{x_{\kappa}, g_{\kappa}\}_{\kappa \leq k}$ be a collection of (sub-)gradient, that is such that $f \geq \langle g_{\kappa}, -x_{\kappa} \rangle + f(x_{\kappa})$, then

$$\underline{\mathbf{f}}_k : \mathbf{x} \mapsto \max_{\kappa \leq k} \langle \mathbf{g}_\kappa, \mathbf{x} - \mathbf{x}_\kappa \rangle + f(\mathbf{x}_\kappa)$$

is a polyhedral outer-approximation of f.

• Let $\{x_{\kappa}\}_{\kappa < k}$ be a collection of point in dom(f). Then,

$$\bar{f}_k: x \mapsto \min_{\sigma \in \Delta_k} \left\{ \sum_{\kappa=1}^k \sigma_{\kappa} f(x_{\kappa}) \mid \sum_{\kappa=1}^k \sigma_{\kappa} x_{\kappa} = x \right\}$$

is a polyhedral inner-approximation of f.

Vincent Leclère OS - 1 25/11/2020 10 / 30

Convex functions: strict and strong convexity

- $f: X \to \mathbb{R} \cup \{+\infty\}$ is strictly convex iff $\forall t \in]0,1[, \forall x,y \in X, f(tx+(1-t)y) < tf(x)+(1-t)f(y).$
- $f: X \to \mathbb{R} \cup \{+\infty\}$ is α -convex iff $\forall x, y \in X$

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\alpha}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

- If $f \in C^1(\mathbb{R}^n)$
 - $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$ iff f convex
 - if strict inequality holds, then f strictly convex
- If $f \in C^2(\mathbb{R}^n)$,
 - $\nabla^2 f \geq 0$ iff f convex
 - if $\nabla^2 f \succ 0$ then f strictly convex
 - if $\nabla^2 f \geq \alpha I$ then f is α -convex

Vincent Leclère OS - 1 25/11/2020 11 / 30

Convex functions: strict and strong convexity

- $f: X \to \mathbb{R} \cup \{+\infty\}$ is strictly convex iff $\forall t \in]0,1[, \quad \forall x,y \in X, \qquad f(tx+(1-t)y) < tf(x)+(1-t)f(y).$
- $f: X \to \mathbb{R} \cup \{+\infty\}$ is α -convex iff $\forall x, y \in X$

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\alpha}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

- If $f \in C^1(\mathbb{R}^n)$
 - $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$ iff f convex
 - if strict inequality holds, then f strictly convex
- If $f \in C^2(\mathbb{R}^n)$,
 - $\nabla^2 f \geq 0$ iff f convex
 - if $\nabla^2 f > 0$ then f strictly convex
 - if $\nabla^2 f \geq \alpha I$ then f is α -convex

Vincent Leclère OS - 1 25/11/2020 11 / 30

Convex functions: strict and strong convexity

- $f: X \to \mathbb{R} \cup \{+\infty\}$ is strictly convex iff $\forall t \in]0,1[, \quad \forall x,y \in X, \qquad f(tx+(1-t)y) < tf(x)+(1-t)f(y).$
- $f: X \to \mathbb{R} \cup \{+\infty\}$ is α -convex iff $\forall x, y \in X$ $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{\alpha}{2} ||y x||^2.$
- If $f \in C^1(\mathbb{R}^n)$
 - $\langle \nabla f(x) \nabla f(y), x y \rangle \ge 0$ iff f convex
 - if strict inequality holds, then f strictly convex
- If $f \in C^2(\mathbb{R}^n)$,
 - $\nabla^2 f \geq 0$ iff f convex
 - if $\nabla^2 f > 0$ then f strictly convex
 - if $\nabla^2 f \geq \alpha I$ then f is α -convex

Vincent Leclère OS - 1 25/11/2020 11 / 30

Presentation Outline

- 1 Overview of the course
- Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform
- 3 Duality
 - Recall on Lagrangian duality
 - Marginal interpretation of multiplier
 - Fenchel duality

Convex optimization problem

$$\min_{x \in C} f(x)$$

Where C is closed convex and f convex finite valued, is a convex optimization problem.

- If C is compact and f proper lsc, then there exists an optimal solution.
- If f proper lsc and coercive, then there exists an optimal solution.
- The set of optimal solutions is convex.
- If f is strictly convex the minimum (if it exists) is unique.
- If f is α -convex the minimum exists and is unique.

Vincent Leclère OS - 1 25/11/2020 12 / 30

Constraints and infinite values

A very standard trick in optimization consists in replacing constraints by infinite value of the cost function.

$$\min_{x \in C \subset X} f(x) = \min_{x \in X} f(x) + \mathbb{I}_C(x).$$

where

$$\mathbb{I}_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise} \end{cases}$$

- If f is lsc and C is closed, then $f + \mathbb{I}_C$ is lsc.
- If f is proper and C is bounded, then $f + \mathbb{I}_C$ is coercive.
- Thus, from a theoretical point of view, we do not need to explicitly write constraint in a problem.

Vincent Leclère OS - 1 25/11/2020 13 / 30

Presentation Outline

- Overview of the course
- Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform
- 3 Duality
 - Recall on Lagrangian duality
 - Marginal interpretation of multiplier
 - Fenchel duality

Subdifferential of convex function

Let X be a Banach space, $f: X \to \overline{\mathbb{R}}$.

- X* is the topological dual of X, that is the set of continuous linear form on X
- The subdifferential of f at $x \in dom(f)$ is the set of slopes of all affine minorants of f exact at x:

$$\partial f(x) := \Big\{ x^* \in X^* \quad | \quad f(\cdot) \ge \langle x^*, \cdot - x \rangle + f(x) \Big\}.$$

• If f is convex and derivable at x then

$$\partial f(x) = {\nabla f(x)}.$$

Vincent Leclère OS - 1 25/11/2020 14 / 30

Partial infimum

Let $f: X \times Y \to \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

$$v(x) = \inf_{y \in Y} f(x, y)$$

then v is convex.

If v is proper, and $v(x) = f(x, y^{\sharp}(x))$ then

$$\partial v(\mathbf{x}) = \{ g \in X^* \mid (g, 0) \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x})) \}$$

proof

$$g \in \partial v(x) \quad \Leftrightarrow \quad \forall x', \qquad v(x') \ge v(x) + \langle g, x' - x \rangle$$

$$\Leftrightarrow \quad \forall x', y' \quad f(x', y') \ge f(x, y^{\sharp}(x)) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} - \begin{pmatrix} x \\ y^{\sharp}(x) \end{pmatrix} \right\rangle$$

$$\Leftrightarrow \quad \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(x, y^{\sharp}(x))$$

Vincent Leclère OS - 1 25/11/2020 15 / 30

Partial infimum

Let $f: X \times Y \to \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

$$v(x) = \inf_{y \in Y} f(x, y)$$

then \mathbf{v} is convex.

If v is proper, and $v(x) = f(x, y^{\sharp}(x))$ then

$$\partial v(\mathbf{x}) = \{ g \in X^* \mid (g, 0) \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x})) \}$$

proof

$$g \in \partial v(\mathbf{x}) \quad \Leftrightarrow \quad \forall \mathbf{x}', \qquad v(\mathbf{x}') \ge v(\mathbf{x}) + \langle g, \mathbf{x}' - \mathbf{x} \rangle$$

$$\Leftrightarrow \quad \forall \mathbf{x}', \mathbf{y}' \quad f(\mathbf{x}', \mathbf{y}') \ge f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x})) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ \mathbf{y}^{\sharp}(\mathbf{x}) \end{pmatrix} \right\rangle$$

$$\Leftrightarrow \quad \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x}))$$

Partial infimum

Let $f: X \times Y \to \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

$$v(x) = \inf_{v \in Y} f(x, y)$$

then \mathbf{v} is convex.

If v is proper, and $v(x) = f(x, y^{\sharp}(x))$ then

$$\partial v(\mathbf{x}) = \left\{ g \in X^* \mid (g, 0) \in \partial f(\mathbf{x}, y^{\sharp}(\mathbf{x})) \right\}$$

proof:

$$g \in \partial v(\mathbf{x}) \quad \Leftrightarrow \quad \forall \mathbf{x}', \qquad v(\mathbf{x}') \ge v(\mathbf{x}) + \langle g, \mathbf{x}' - \mathbf{x} \rangle$$

$$\Leftrightarrow \quad \forall \mathbf{x}', \mathbf{y}' \quad f(\mathbf{x}', \mathbf{y}') \ge f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x})) + \left\langle \begin{pmatrix} g \\ 0 \end{pmatrix}, \begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ \mathbf{y}^{\sharp}(\mathbf{x}) \end{pmatrix} \right\rangle$$

$$\Leftrightarrow \quad \begin{pmatrix} g \\ 0 \end{pmatrix} \in \partial f(\mathbf{x}, \mathbf{y}^{\sharp}(\mathbf{x}))$$

Convex function: regularity

- Assume f convex, then f is continuous on the relative interior of its domain, and Lipschtiz on any compact contained in the relative interior of its domain.
- A proper convex function is subdifferentiable on the relative interior of its domain
- If f is convex, it is L-Lipschitz iff $\partial f(x) \subset B(0,L)$, $\forall x \in \text{dom}(f)$

Vincent Leclère OS - 1 25/11/2020 16 / 30

Let X be a Banach space, $f: X \to \overline{\mathbb{R}}$ convex proper.

$$f^*(x^*) := \sup_{x \in X} \langle x^*, x \rangle - f(x).$$

- f^* is convex lsc as the supremum of affine functions.
- f < g implies that $f^* > g^*$.
- If f is proper convex lsc, then $f^{**} = f$, otherwise $f^{**} < f$.

Let X be a Banach space, $f: X \to \overline{\mathbb{R}}$ convex proper.

$$f^*(x^*) := \sup_{x \in X} \langle x^*, x \rangle - f(x).$$

- f* is convex lsc as the supremum of affine functions.
- $f \le g$ implies that $f^* \ge g^*$.
- If f is proper convex lsc, then $f^{**} = f$, otherwise $f^{**} < f$.

Let X be a Banach space, $f: X \to \overline{\mathbb{R}}$ convex proper.

$$f^*(x^*) := \sup_{x \in X} \langle x^*, x \rangle - f(x).$$

- f* is convex lsc as the supremum of affine functions.
- $f \leq g$ implies that $f^* \geq g^*$.
- If f is proper convex lsc, then $f^{**} = f$, otherwise $f^{**} < f$.

Let X be a Banach space, $f: X \to \overline{\mathbb{R}}$ convex proper.

$$f^*(x^*) := \sup_{x \in X} \langle x^*, x \rangle - f(x).$$

- f* is convex lsc as the supremum of affine functions.
- $f \le g$ implies that $f^* \ge g^*$.
- If f is proper convex lsc, then $f^{**} = f$, otherwise $f^{**} < f$.

- By definition $f^*(x^*) \ge \langle x^*, x \rangle f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x) + f^*(x^*) \ge \langle x^*, x \rangle$.
- Recall that $x^* \in \partial f(x)$ iff for all x', $f(x') \ge f(x) + \langle x^*, x' x \rangle$ iff

$$\langle x^*, x \rangle - f(x) \ge \langle x^*, x' \rangle - f(x')$$
 $\forall x'$

that i

$$x^* \in \partial f(x) \Leftrightarrow x \in \operatorname*{arg\,max}_{x' \in X} \left\{ \langle x^*, x' \rangle - f(x') \right\} \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle$$

• From Fenchel-Young equality we have

$$\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x)$$

If f proper convex lsc

$$x^* \in \partial f(x) \iff x \in \partial f^*(x^*)$$

Vincent Leclère OS - 1 25/11/2020 18 / 30

- By definition $f^*(x^*) \ge \langle x^*, x \rangle f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x) + f^*(x^*) \ge \langle x^*, x \rangle$.
- Recall that $x^* \in \partial f(x)$ iff for all x', $f(x') \ge f(x) + \langle x^*, x' x \rangle$ iff $\langle x^*, x \rangle f(x) \ge \langle x^*, x' \rangle f(x')$ $\forall x'$

that is

$$x^* \in \partial f(x) \Leftrightarrow x \in \arg\max_{\mathbf{x}' \in X} \left\{ \langle x^*, \mathbf{x}' \rangle - f(\mathbf{x}') \right\} \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle$$

• From Fenchel-Young equality we have

$$\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x)$$

If f proper convex lsc

$$x^* \in \partial f(x) \iff x \in \partial f^*(x^*)$$

- By definition $f^*(x^*) \ge \langle x^*, x \rangle f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x) + f^*(x^*) \ge \langle x^*, x \rangle$.
- Recall that $x^* \in \partial f(x)$ iff for all x', $f(x') \ge f(x) + \langle x^*, x' x \rangle$ iff $\langle x^*, x \rangle f(x) \ge \langle x^*, x' \rangle f(x')$ $\forall x'$

that is

$$x^* \in \partial f(x) \Leftrightarrow x \in \arg\max_{\mathbf{x}' \in X} \left\{ \langle x^*, \mathbf{x}' \rangle - f(\mathbf{x}') \right\} \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle$$

• From Fenchel-Young equality we have

$$\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x).$$

If f proper convex lsc

$$x^* \in \partial f(x) \iff x \in \partial f^*(x^*)$$

- By definition $f^*(x^*) \ge \langle x^*, x \rangle f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x) + f^*(x^*) \ge \langle x^*, x \rangle$.
- Recall that $x^* \in \partial f(x)$ iff for all x', $f(x') \ge f(x) + \langle x^*, x' x \rangle$ iff $\langle x^*, x \rangle f(x) \ge \langle x^*, x' \rangle f(x')$ $\forall x'$

that is

$$x^* \in \partial f(x) \Leftrightarrow x \in \operatorname*{arg\,max}_{\mathbf{x}' \in X} \left\{ \langle x^*, \mathbf{x}' \rangle - f(\mathbf{x}') \right\} \Leftrightarrow f(x) + f^*(x^*) = \langle x^*, x \rangle$$

• From Fenchel-Young equality we have

$$\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x).$$

• If f proper convex lsc

$$x^* \in \partial f(x) \iff x \in \partial f^*(x^*).$$

Vincent Leclère OS - 1 25/11/2020 18 / 30

Recall on Lagrangian duality

Presentation Outline

- - Fundamental definitions and results
 - Convex function and minimization.
 - Subdifferential and Fenchel-Transform
- Ouality
 - Recall on Lagrangian duality
 - Marginal interpretation of multiplier
 - Fenchel duality

Vincent Leclère OS - 125/11/2020 18 / 30

Weak duality

The problem

$$(P) \quad \min_{x \in \mathbb{R}^n} \quad f(x)$$

$$s.t. \quad c_i(x) = 0 \qquad \forall i \in \llbracket 1, n_E \rrbracket$$

$$c_j(x) \le 0 \qquad \forall j \in \llbracket n_E + 1, n_E + n_I \rrbracket$$

can be written

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \max_{\lambda \in \mathbb{R}^{n_E}, \mu \in \mathbb{R}^{n_I}_+} \quad \mathcal{L}(\mathbf{x}, \lambda, \mu)$$

where

$$\mathcal{L}(x,\lambda,\mu) := f(x) + \sum_{i=1}^{n_E + n_I} \lambda_i c_i(x)$$

The dual problem is

(D)
$$\max_{\lambda \in \mathbb{R}^{n_E} \times \mathbb{R}^{n_I}} \quad \min_{x \in \mathbb{R}^n} \quad \mathcal{L}(x, \lambda, \mu)$$

and we have, without assumption

$$V_D \le V_P$$

Weak duality

The problem

$$(P) \quad \min_{x \in \mathbb{R}^n} \quad f(x)$$

$$s.t. \quad c_i(x) = 0 \qquad \forall i \in [1, n_E]$$

$$c_j(x) \le 0 \qquad \forall j \in [n_E + 1, n_E + n_I]$$

can be written

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \max_{\lambda \in \mathbb{R}^{n_E}, \mu \in \mathbb{R}^{n_I}_+} \quad \mathcal{L}(\mathbf{x}, \lambda, \mu)$$

where

$$\mathcal{L}(x,\lambda,\mu) := f(x) + \sum_{i=1}^{n_E+n_I} \lambda_i c_i(x)$$

The dual problem is

(D)
$$\max_{\lambda \in \mathbb{R}^{n_E} \times \mathbb{R}^{n_I}_{\perp}} \quad \min_{x \in \mathbb{R}^n} \quad \mathcal{L}(x, \lambda, \mu)$$

and we have, without assumption

$$v_D \leq v_P$$
.

Linear Programming duality

$$\min_{x \ge 0} c^{\top} x$$

$$s.t. Ax = b$$

is equivalent to

$$\min_{x>0} \max_{\lambda} (c - A^{\top} \lambda)^{\top} x + b^{\top} \lambda$$

and the dual problem is

$$\max_{\lambda} \quad b^{\top} \lambda$$
s.t. $A^{\top} \lambda \leq c$

with equality between both problem except if there is neither primal nor dual admissible solution.

Vincent Leclère OS - 1 25/11/2020 20 / 30

Strong duality

The duality gap is the difference between the primal value and dual value of a problem.

Consider problem

$$(P) \quad \min_{x \in \mathbb{R}^n} \quad f(x)$$

$$s.t. \quad c_i(x) = 0 \qquad \forall i \in [1, n_E]$$

$$c_i(x) \le 0 \qquad \forall j \in [n_E + 1, n_E + n_I]$$

with (P) convex in the sense that f is convex, c_l is convex lsc, c_l is affine. If further the constraints are qualified, then there is no duality gap.

Vincent Leclère OS - 1 25/11/2020 21 / 30

Recall KKT

Assume that f, g_i and h_j are differentiable. Assume that x^{\sharp} is an optimal solution of (P), and that the constraints are qualified in x^{\sharp} . Then we have

$$\begin{cases} \nabla_{x} \mathcal{L}(x^{\sharp}, \lambda^{\sharp}) = \nabla f(x^{\sharp}) + \sum_{i=1}^{n_{E} + n_{i}} \lambda_{i}^{\sharp} \nabla c_{i}(x^{\sharp}) = 0 \\ c_{E}(x^{\sharp}) = 0 \\ 0 \leq \lambda_{I} \perp c_{I}(x^{\sharp}) \leq 0 \end{cases}$$

Presentation Outline

- 1 Overview of the course
- Convex sets and functions
 - Fundamental definitions and results
 - Convex function and minimization
 - Subdifferential and Fenchel-Transform
- Ouality
 - Recall on Lagrangian duality
 - Marginal interpretation of multiplier
 - Fenchel duality

Perturbed problem

Consider the perturbed problem

$$\begin{aligned} (P_{\mathbf{p}}) & & \min_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \\ & s.t. & c_i(\mathbf{x}) + \mathbf{p}_i = 0 & \forall i \in \llbracket 1, n_E \rrbracket \\ & & c_j(\mathbf{x}) + \mathbf{p}_j \le 0 & \forall j \in \llbracket n_E + 1, n_I + n_E \rrbracket \end{aligned}$$

with value v(p), and optimal multiplier (for p=0) λ_0 .

Linear programming case

$$v(p) := \min_{x \ge 0} c^{\top} x$$

 $s.t. Ax + p = b$

by LP duality (assuming at least one admissible primal solution) we have

$$v(p) = \max_{\lambda} - b^{\top} \lambda + p^{\top} \lambda$$

s.t. $A^{\top} \lambda \leq c$

Note λ_0 the optimal multiplier for (P_0) , note that it is admissible for (D_p) , hence $v(p) \geq -b^{\top}\lambda_0 + p^{\top}\lambda_0$. By strong duality we have $v(0) = -b^{\top}\lambda_0$, hence

$$v(\mathbf{p}) \geq v(0) + \lambda_0^{\top} \mathbf{p}$$

01

$$\lambda_0 \in \partial v(0)$$

Linear programming case

$$v(p) := \min_{x \ge 0} c^{\top} x$$

 $s.t. Ax + p = b$

by LP duality (assuming at least one admissible primal solution) we have

$$v(p) = \max_{\lambda} - b^{\top} \lambda + p^{\top} \lambda$$

s.t. $A^{\top} \lambda \le c$

Note λ_0 the optimal multiplier for (P_0) , note that it is admissible for (D_p) , hence $v(p) \geq -b^{\top}\lambda_0 + p^{\top}\lambda_0$. By strong duality we have $v(0) = -b^{\top}\lambda_0$, hence

$$v(p) \geq v(0) + \lambda_0^{\top} p$$

 \bigcirc

$$\lambda_0 \in \partial v(0)$$

Linear programming case

$$v(p) := \min_{x \ge 0} c^{\top} x$$

 $s.t. Ax + p = b$

by LP duality (assuming at least one admissible primal solution) we have

$$v(p) = \max_{\lambda} - b^{\top} \lambda + p^{\top} \lambda$$

s.t. $A^{\top} \lambda \le c$

Note λ_0 the optimal multiplier for (P_0) , note that it is admissible for (D_p) , hence $v(p) \geq -b^{\top}\lambda_0 + p^{\top}\lambda_0$. By strong duality we have $v(0) = -b^{\top}\lambda_0$, hence

$$v(\mathbf{p}) \geq v(0) + \lambda_0^{\top} \mathbf{p}$$

or

$$\lambda_0 \in \partial v(0)$$
.

Optimality condition by saddle point

Let
$$\Lambda := \mathbb{R}^{n_E} \times \mathbb{R}^{n_I}_+$$
. $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^n \times \Lambda$ iff $\forall \lambda \in \Lambda$, $\mathcal{L}(x^{\sharp}, \lambda) \leq \mathcal{L}(x^{\sharp}, \lambda^{\sharp}) \leq \mathcal{L}(x, \lambda^{\sharp})$, $\forall x \in \mathbb{R}^n$

Consider $(\bar{x}, \bar{\lambda}) \in \mathbb{R}^n \times \Lambda$. Then $\bar{\lambda} \in \arg \max_{\lambda \in \Lambda} \mathcal{L}(\bar{x}, \lambda)$ iff $c_E(\bar{x}) = 0$ and $0 \le \bar{\lambda}_I \perp c_I(\bar{x}) \le 0$.

$\mathsf{Theorem}$

If $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^n \times \Lambda$, then x^{\sharp} is an optimal solution of (P).

Note that we need no assumption for this result

Vincent Leclère OS - 1 25/11/2020 25 / 30

Optimality condition by saddle point

Let
$$\Lambda := \mathbb{R}^{n_E} \times \mathbb{R}^{n_I}_+$$
. $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^n \times \Lambda$ iff $\forall \lambda \in \Lambda$, $\mathcal{L}(x^{\sharp}, \lambda) \leq \mathcal{L}(x^{\sharp}, \lambda^{\sharp}) \leq \mathcal{L}(x, \lambda^{\sharp})$, $\forall x \in \mathbb{R}^n$

Consider $(\bar{x}, \bar{\lambda}) \in \mathbb{R}^n \times \Lambda$. Then $\bar{\lambda} \in \arg \max_{\lambda \in \Lambda} \mathcal{L}(\bar{x}, \lambda)$ iff $c_E(\bar{x}) = 0$ and $0 \le \bar{\lambda}_I \perp c_I(\bar{x}) \le 0$.

Theorem

If $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^n \times \Lambda$, then x^{\sharp} is an optimal solution of (P).

Note that we need no assumption for this result

Vincent Leclère OS - 1 25/11/2020 25 / 30

Optimality condition by saddle point

Let
$$\Lambda := \mathbb{R}^{n_E} \times \mathbb{R}^{n_I}_+$$
. $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^n \times \Lambda$ iff $\forall \lambda \in \Lambda$, $\mathcal{L}(x^{\sharp}, \lambda) \leq \mathcal{L}(x^{\sharp}, \lambda^{\sharp}) \leq \mathcal{L}(x, \lambda^{\sharp})$, $\forall x \in \mathbb{R}^n$

Consider $(\bar{x}, \bar{\lambda}) \in \mathbb{R}^n \times \Lambda$. Then $\bar{\lambda} \in \arg \max_{\lambda \in \Lambda} \mathcal{L}(\bar{x}, \lambda)$ iff $c_{\mathcal{E}}(\bar{x}) = 0$ and $0 \leq \bar{\lambda}_I \perp c_I(\bar{x}) \leq 0$.

Theorem

If $(x^{\sharp}, \lambda^{\sharp})$ is a saddle-point of \mathcal{L} on $\mathbb{R}^n \times \Lambda$, then x^{\sharp} is an optimal solution of (P).

Note that we need no assumption for this result.

Vincent Leclère OS - 1 25/11/2020 25 / 30

Convex case

If (P) is convex in the sense that f is convex, c_l is convex and c_E is affine, then v is convex.

Theorem

Assume that v is convex, then

$$\partial v(0) = \{\lambda \in \Lambda \mid (x, \lambda) \text{ is a saddle point of } \mathcal{L}\}$$

In particular, $\partial v(0) \neq \emptyset$ iff there exists a saddle point of \mathcal{L} .

Theorem (Slater's qualification condition

Consider a convex optimisation problem. Assume that c_E' is onto, and there exists $x \in rint(dom(f))$ with $c_I(x) < 0$, and c_I continuous at x, then if x^* is an optimal solution, there exists λ^* such that (x^*, λ^*) is a saddle-point of the Lagrangian. Further, v is locally Lipschitz around 0

Convex case

If (P) is convex in the sense that f is convex, c_l is convex and c_E is affine, then v is convex.

Theorem

Assume that v is convex, then

$$\partial v(0) = \{\lambda \in \Lambda \mid (x, \lambda) \text{ is a saddle point of } \mathcal{L}\}$$

In particular, $\partial v(0) \neq \emptyset$ iff there exists a saddle point of \mathcal{L} .

Theorem (Slater's qualification condition)

Consider a convex optimisation problem. Assume that c_E' is onto, and there exists $x \in rint(dom(f))$ with $c_I(x) < 0$, and c_I continuous at x, then if x^* is an optimal solution, there exists λ^* such that (x^*, λ^*) is a saddle-point of the Lagrangian. Further, v is locally Lipschitz around 0.

Presentation Outline

- - Fundamental definitions and results
 - Convex function and minimization.
 - Subdifferential and Fenchel-Transform
- Ouality
 - Recall on Lagrangian duality
 - Marginal interpretation of multiplier
 - Fenchel duality

Vincent Leclère OS - 125/11/2020 26 / 30

Duality by abstract perturbation

Let \mathbb{X} and \mathbb{Y} be Banach spaces. There exists an abstract duality framework for $\min_{x \in \mathbb{X}} f(x)$ by considering a perturbation function $\Phi : \mathbb{X} \times \mathbb{Y} \to \mathbb{R} \cup \{+\infty\}$ (with $\Phi(\cdot, 0) = f$).

$$(\mathcal{P}_y)$$
 $v(y) := \inf_{\mathbf{x} \in \mathbb{X}} \Phi(\mathbf{x}, y).$

We have

$$v^*(y^*) = \sup_{y \in \mathbb{Y}} \langle y^*, y \rangle - v(y)$$

=
$$\sup_{x,y} \langle y^*, y \rangle - \Phi(x, y) = \Phi^*(0, y^*)$$

Thus we have

$$(\mathcal{D}_y) \qquad v^{**}(y) = \sup_{y^* \in \mathbb{Y}^*} \langle y^*, y \rangle - \Phi^*(0, y^*)$$

Generically

$$\operatorname{val}(\mathcal{D}_{v}) = v^{**}(y) \le v(y) = \operatorname{val}(\mathcal{P}_{v})$$

Duality by abstract perturbation

Let \mathbb{X} and \mathbb{Y} be Banach spaces. There exists an abstract duality framework for $\min_{x \in \mathbb{X}} f(x)$ by considering a perturbation function $\Phi : \mathbb{X} \times \mathbb{Y} \to \mathbb{R} \cup \{+\infty\}$ (with $\Phi(\cdot, 0) = f$).

$$(\mathcal{P}_y)$$
 $v(y) := \inf_{\mathbf{x} \in \mathbb{X}} \Phi(\mathbf{x}, y).$

We have

$$v^*(y^*) = \sup_{y \in \mathbb{Y}} \langle y^*, y \rangle - v(y)$$

=
$$\sup_{x,y} \langle y^*, y \rangle - \Phi(x, y) = \Phi^*(0, y^*)$$

Thus we have

$$(\mathcal{D}_{y}) \qquad v^{**}(y) = \sup_{\boldsymbol{y}^{*} \in \mathbb{Y}^{*}} \langle \boldsymbol{y}^{*}, \boldsymbol{y} \rangle - \Phi^{*}(0, \boldsymbol{y}^{*})$$

Generically

$$\operatorname{val}(\mathcal{D}_{v}) = v^{**}(y) \le v(y) = \operatorname{val}(\mathcal{P}_{v})$$

Duality by abstract perturbation

Let \mathbb{X} and \mathbb{Y} be Banach spaces. There exists an abstract duality framework for $\min_{x \in \mathbb{X}} f(x)$ by considering a perturbation function $\Phi : \mathbb{X} \times \mathbb{Y} \to \mathbb{R} \cup \{+\infty\}$ (with $\Phi(\cdot, 0) = f$).

$$(\mathcal{P}_y)$$
 $v(y) := \inf_{\mathbf{x} \in \mathbb{X}} \Phi(\mathbf{x}, y).$

We have

$$v^*(y^*) = \sup_{y \in \mathbb{Y}} \langle y^*, y \rangle - v(y)$$

=
$$\sup_{x,y} \langle y^*, y \rangle - \Phi(x, y) = \Phi^*(0, y^*)$$

Thus we have

$$(\mathcal{D}_y) \qquad v^{**}(y) = \sup_{\mathbf{y}^* \in \mathbb{Y}^*} \langle \mathbf{y}^*, \mathbf{y} \rangle - \Phi^*(0, \mathbf{y}^*)$$

Generically

$$\operatorname{val}(\mathcal{D}_{v}) = v^{**}(y) \le v(y) = \operatorname{val}(\mathcal{P}_{v})$$

Solution of the dual as subgradient

Note that the set of solution of the dual is $S(\mathcal{D}_y) = \partial v^{**}(y)$. Recall that, for v proper convex,

$$\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x)$$

Thus, if v is proper convex and subdifferentiable at y (or equivalently if $S(\mathcal{D}_y) \neq \emptyset$), then,

$$\operatorname{val}(\mathcal{D}_y) = \operatorname{val}(\mathcal{P}_y)$$

 $S(\mathcal{D}_y) = \partial v(y)$

Finally, as a convex function is subdifferentiable on the relative interior of its domain, a sufficient qualification condition (to have a zero dual gap and existence of multipliers), is that

$$0 \in rint(dom(v))$$

Vincent Leclère OS - 1 25/11/2020 28 / 30

Solution of the dual as subgradient

Note that the set of solution of the dual is $S(\mathcal{D}_y) = \partial v^{**}(y)$. Recall that, for v proper convex,

$$\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x)$$

Thus, if v is proper convex and subdifferentiable at y (or equivalently if $S(\mathcal{D}_y) \neq \emptyset$), then,

$$\operatorname{val}(\mathcal{D}_y) = \operatorname{val}(\mathcal{P}_y)$$

 $S(\mathcal{D}_y) = \partial v(y)$

Finally, as a convex function is subdifferentiable on the relative interior of its domain, a sufficient qualification condition (to have a zero dual gap and existence of multipliers), is that

$$0 \in rint(dom(v))$$

Solution of the dual as subgradient

Note that the set of solution of the dual is $S(\mathcal{D}_y) = \partial v^{**}(y)$. Recall that, for v proper convex,

$$\partial v^{**}(x) \neq \emptyset \implies \partial v^{**}(x) = \partial v(x) \text{ and } v^{**}(x) = v(x)$$

Thus, if v is proper convex and subdifferentiable at y (or equivalently if $S(\mathcal{D}_y) \neq \emptyset$), then,

$$\operatorname{val}(\mathcal{D}_y) = \operatorname{val}(\mathcal{P}_y)$$

 $S(\mathcal{D}_y) = \partial v(y)$

Finally, as a convex function is subdifferentiable on the relative interior of its domain, a sufficient qualification condition (to have a zero dual gap and existence of multipliers), is that

$$0 \in rint(dom(v))$$
.

Vincent Leclère OS - 1 25/11/2020 28 / 30

Recovering the Lagrangian dual

Problem (\mathcal{P}_{v}) can be written

$$\min_{x,z} \quad \Phi(x,z)$$
s.t. $z = y$

with Lagrangian dual

$$\max_{y^* \in Y^*} \inf_{x,z \in X \times Y} \Phi(x,z) + \langle y^*, y - z \rangle = \max_{y^* \in Y^*} \langle y^*, y \rangle - \underbrace{\sup_{x,z \in X \times Y} \left\{ \langle y^*, z \rangle - \Phi(x,z) \right\}}_{\Phi^*(0,y^*)}$$

Hence, we recover the Fenchel dual from the Lagrangian dual.

Vincent Leclère OS - 1 25/11/2020 29 / 30

For next week

- Install Julia / Jupyter / JuMP (see instructions https://github.com/leclere/TP-Saclay)
- Run the CrashCourse notebook to get used with those tools (there are other resources available on the web as well)
- Contact me vincent.leclere@enpc.fr in case of trouble