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Objective of the course

Uncertainty is present in most optimization problem,
sometimes taken into account.
Two major way of taking uncertainty into account :

Robust approach: assuming that uncertainty belongs in some
set C , and will be chosen adversarily.
Stochastic approach: assuming that uncertainty is a random
variable with known law.

We will take the stochastic approach, considering the
multi-stage approach : a first decision is taken, then part of
the uncertainty is revealed, before taking a second decision
and so on.
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Syllabus

1st course: Convex toolbox
2nd course: Probability toolbox
3rd course: two-stage stochastic programm
4th course: Bellman operators and Dynamic Programming
5th course: Decomposition methods for two stage SP
6th course: Stochastic Dual Dynamic Programming
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Validation

The stochastic optimization course is in two part
Evaluation have 3 components :

A paper presentation with P.Carpentier
A written exam on my part of the course with theoretical and
modelling questions
Multiple practical work to send to vincent.leclere@enpc.fr

Practical work will be done in Julia (www.julialang.com)using
jupyter notebook
Instructions for installing julia / jupyter and using the library
can be found at https://github.com/leclere/TP-Saclay
Practical work will be posted there
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Fundamental definitions and results

Convex sets

C is a convex set iff

∀x1, x2 ∈ C , [x1, x2] ⊂ C .

If for all i ∈ I, Ci is convex, then so is ∩i∈ICi

C1 + C2, and C1 × C2 are convex

For any set X the convex hull of X is the smallest convex set
containing X ,

conv(X ) :=
{

tx1 + (1− t)x2 | x1, x2 ∈ C , t ∈ [0, 1]
}
.

The closed convex hull of X is the intersection of all half-spaces
containing X .
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Fundamental definitions and results

Separation

Let X be a Banach space, and X∗ its topological dual (i.e. the set of all
continuous linear form on X ).

Theorem (Simple separation)
Let A and B be convex non-empty, disjunct subsets of X. Assume that,
int(A) 6= ∅, then there exists a separating hyperplane (x∗, α) ∈ X∗ × R
such that

〈x∗, a〉 ≤ α ≤ 〈x∗, b〉 ∀a, b ∈ A× B.

Theorem (Strong separation)
Let A and B be convex non-empty, disjunct subsets of X. Assume that,
A is closed, and B is compact (e.g. a point), then there exists a strict
separating hyperplane (x∗, α) ∈ X∗ × R such that, there exists ε > 0,

〈x∗, a〉+ ε ≤ α ≤ 〈x∗, b〉 − ε ∀a, b ∈ A× B.
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Fundamental definitions and results

Convex functions : basic properties

A function f : X → R̄ is convex if its epigraph is convex.

f : X → R ∪ {+∞} is convex iff

∀t ∈ [0, 1], ∀x , y ∈ X , f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y).

If f , g convex, λ > 0, then λf + g is convex.

If f convex non-decreasing, g convex, then f ◦ g convex.

If f convex and a affine, then f ◦ a is convex.

If (fi )i∈I is a family of convex functions, then supi∈I fi is convex.
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Fundamental definitions and results

Convex functions : further definitions and properties

The domain of a convex function is
dom(f ) = {x ∈ X | f (x) < +∞}.

The level set of a convex function is levα(f ) = {x ∈ X | f (x) ≤ α}

A function is lower semi continuous (lsc) iff for all α ∈ R, levα is
closed.

The domain and the level sets of a convex function are convex.

A convex function is proper if it never takes −∞, and dom(f ) 6= ∅.

A function is coercive if lim‖x‖→∞ f (x) = +∞.
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Fundamental definitions and results

Convex functions : polyhedral functions

A polyhedra is a finite intersection of half-spaces, thus convex.

A polyhedral function is a function whose epigraph is a polyhedra.

Finite intersection, cartesian product and sum of polyhedra is
polyhedra.

In particular a polyhedral function is convex lsc, with polyhedral
domain and level sets.

If f : Rn → R̄ is polyhedral, then it can be written as

f (x) = min
θ

θ

s.t. α>κ x + βκ ≤ θ ∀κ ≤ k
γκ>x + δκ ≤ 0 ∀κ ≤ k ′
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Fundamental definitions and results

Convex functions : polyhedral approximations

f is convex iff it is above all its tangeant.

Let {xκ, gκ}κ≤k be a collection of (sub-)gradient, that is such that
f ≥ 〈gκ, · − xκ〉+ f (xκ), then

fk : x 7→ max
κ≤k
〈gκ, x − xκ〉+ f (xκ)

is a polyhedral outer-approximation of f .

Let {xκ}κ≤k be a collection of point in dom(f ). Then,

f̄k : x 7→ min
σ∈∆k

{ k∑
κ=1

σκf (xκ)
∣∣∣ k∑

κ=1
σκxκ = x

}
is a polyhedral inner-approximation of f .
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Fundamental definitions and results

Convex functions : strict and strong convexity

f : X → R ∪ {+∞} is strictly convex iff
∀t ∈]0, 1[, ∀x , y ∈ X , f (tx + (1− t)y) < tf (x) + (1− t)f (y).

f : X → R ∪ {+∞} is α-convex iff ∀x , y ∈ X

f (y) ≥ f (x) + 〈∇f (x), y − x〉+ α

2 ‖y − x‖2.

If f ∈ C 1(Rn)
〈∇f (x)−∇f (y), x − y〉 ≥ 0 iff f convex
if strict inequality holds, then f strictly convex

If f ∈ C 2(Rn),
∇2f < 0 iff f convex
if ∇2f � 0 then f strictly convex
if ∇2f < αI then f is α-convex
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Convex function and minimization

Convex optimization problem

min
x∈C

f (x)

Where C is closed convex and f convex finite valued, is a convex
optimization problem.

If C is compact and f proper lsc, then there exists an optimal
solution.

If f proper lsc and coercive, then there exists an optimal solution.

The set of optimal solutions is convex.

If f is strictly convex the minimum (if it exists) is unique.

If f is α-convex the minimum exists and is unique.
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Convex function and minimization

Constraints and infinite values

A very standard trick in optimization consists in replacing constraints by
infinite value of the cost function.

min
x∈C⊂X

f (x) = min
x∈X

f (x) + IC (x).

where

IC (x) =
{

0 if x ∈ C
+∞ otherwise

If f is lsc and C is closed, then f + IC is lsc.

If f is proper and C is bounded, then f + IC is coercive.

Thus, from a theoretical point of view, we do not need to explicitely
write constraint in a problem.
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Subdifferential and Fenchel-Transform

Subdifferential of convex function

Let X be a Banach space, f : X → R̄.

X∗ is the topological dual of X , that is the set of continuous linear
form on X .

The subdifferential of f at x ∈ dom(f ) is the set of slopes of all
affine minorants of f exact at x :

∂f (x) :=
{

x∗ ∈ X∗ | f (·) ≥ 〈x∗, · − x〉+ f (x)
}
.

If f is convex and derivable at x then

∂f (x) =
{
∇f (x)

}
.
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Subdifferential and Fenchel-Transform

Partial infimum
Let f : X × Y → R̄ be a jointly convex and proper function, and define

v(x) = inf
y∈Y

f (x , y)

then v is convex.
If v is proper, and v(x) = f (x , y ](x)) then

∂v(x) =
{

g ∈ X∗ | (g , 0) ∈ ∂f (x , y ](x))
}

proof:

g ∈ ∂v(x) ⇔ ∀x ′, v(x ′) ≥ v(x) + 〈g , x ′ − x〉

⇔ ∀x ′, y ′ f (x ′, y ′) ≥ f (x , y ](x)) +
〈(

g
0

)
,

(
x ′
y ′
)
−
(

x
y ](x)

)〉
⇔

(
g
0

)
∈ ∂f (x , y ](x))
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Subdifferential and Fenchel-Transform

Convex function : regularity

Assume f convex, then f is continuous on the relative interior of its
domain, and Lipschtiz on any compact contained in the relative
interior of its domain.

A proper convex function is subdifferentiable on the relative interior
of its domain

If f is convex, it is L-Lipschitz iff ∂f (x) ⊂ B(0, L), ∀x ∈ dom(f )
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Subdifferential and Fenchel-Transform

Fenchel transform

Let X be a Banach space, f : X → R̄ convex proper.

The Fenchel transform of f , is f ∗ : X∗ → R̄ with

f ∗(x∗) := sup
x∈X
〈x∗, x〉 − f (x).

f ∗ is convex lsc as the supremum of affine functions.

f ≤ g implies that f ∗ ≥ g∗.

If f is proper convex lsc, then f ∗∗ = f , otherwise f ∗∗ ≤ f .
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Subdifferential and Fenchel-Transform

Fenchel transform and subdifferential

By definition f ∗(x∗) ≥ 〈x∗, x〉 − f (x) for all x ,
thus we always have (Fenchel-Young) f (x) + f ∗(x∗) ≥ 〈x∗, x〉.
Recall that x∗ ∈ ∂f (x) iff for all x ′, f (x ′) ≥ f (x) + 〈x∗, x ′ − x〉 iff

〈x∗, x〉 − f (x) ≥ 〈x∗, x ′〉 − f (x ′) ∀x ′

that is
x∗ ∈ ∂f (x)⇔ x ∈ arg max

x ′∈X

{
〈x∗, x ′〉−f (x ′)

}
⇔ f (x)+f ∗(x∗) = 〈x∗, x〉

From Fenchel-Young equality we have
∂v∗∗(x) 6= ∅ =⇒ ∂v∗∗(x) = ∂v(x) and v∗∗(x) = v(x).

If f proper convex lsc
x∗ ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(x∗).
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Recall on Lagrangian duality

Weak duality
The problem

(P) min
x∈Rn

f (x)

s.t. ci(x) = 0 ∀i ∈ J1, nE K
cj(x) ≤ 0 ∀j ∈ JnE + 1, nE + nIK

can be written
min
x∈Rn

max
λ∈RnE ,µ∈RnI

+

L(x , λ, µ)

where

L(x , λ, µ) := f (x) +
nE +nI∑

i=1

λici(x)

The dual problem is
(D) max

λ∈RnE×RnI
+

min
x∈Rn

L(x , λ, µ)

and we have, without assumption
vD ≤ vP .
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Recall on Lagrangian duality

Linear Programming duality

min
x≥0

c>x

s.t. Ax = b

is equivalent to
min
x≥0

max
λ

(c − A>λ)>x + b>λ

and the dual problem is

max
λ

b>λ

s.t. A>λ ≤ c

with equality between both problem except if there is neither primal nor
dual admissible solution.
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Recall on Lagrangian duality

Strong duality

The duality gap is the difference between the primal value and dual value
of a problem.
Consider problem

(P) min
x∈Rn

f (x)

s.t. ci (x) = 0 ∀i ∈ J1, nE K
cj(x) ≤ 0 ∀j ∈ JnE + 1, nE + nIK

with (P) convex in the sense that f is convex, cI is convex lsc, cI is affine.
If further the constraints are qualified, then there is no duality gap.
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Recall on Lagrangian duality

Recall KKT

Assume that f , gi and hj are differentiable. Assume that x ] is an optimal
solution of (P), and that the constraints are qualified in x ]. Then we
have 

∇xL(x ], λ]) = ∇f (x ]) +
nE +ni∑

i=1
λ]i∇ci (x ]) = 0

cE (x ]) = 0
0 ≤ λI ⊥ cI(x ]) ≤ 0
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Presentation Outline

1 Overview of the course

2 Convex sets and functions
Fundamental definitions and results
Convex function and minimization
Subdifferential and Fenchel-Transform

3 Duality
Recall on Lagrangian duality
Marginal interpretation of multiplier
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Marginal interpretation of multiplier

Perturbed problem

Consider the perturbed problem

(Pp) min
x∈Rn

f (x)

s.t. ci (x) + pi = 0 ∀i ∈ J1, nE K
cj(x) + pj ≤ 0 ∀j ∈ JnE + 1, nI + nE K

with value v(p), and optimal multiplier (for p = 0) λ0.
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Marginal interpretation of multiplier

Linear programming case

v(p) := min
x≥0

c>x

s.t. Ax + p = b
by LP duality (assuming at least one admissible primal solution) we have

v(p) = max
λ

− b>λ+ p>λ

s.t. A>λ ≤ c

Note λ0 the optimal multiplier for (P0), note that it is admissible for
(Dp), hence v(p) ≥ −b>λ0 + p>λ0. By strong duality we have
v(0) = −b>λ0, hence

v(p) ≥ v(0) + λ>0 p
or

λ0 ∈ ∂v(0).
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Marginal interpretation of multiplier

Optimality condition by saddle point

Let Λ := RnE × RnI
+ . (x ], λ]) is a saddle-point of L on Rn × Λ iff

∀λ ∈ Λ, L(x ], λ) ≤ L(x ], λ]) ≤ L(x , λ]), ∀x ∈ Rn

Consider (x̄ , λ̄) ∈ Rn × Λ. Then λ̄ ∈ arg maxλ∈Λ L(x̄ , λ) iff cE (x̄) = 0
and 0 ≤ λ̄I ⊥ cI(x̄) ≤ 0.

Theorem
If (x ], λ]) is a saddle-point of L on Rn × Λ, then x ] is an optimal
solution of (P).

Note that we need no assumption for this result.
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Marginal interpretation of multiplier

Convex case

If (P) is convex in the sense that f is convex, cI is convex and cE is
affine, then v is convex.

Theorem
Assume that v is convex, then

∂v(0) =
{
λ ∈ Λ | (x , λ) is a saddle point of L

}
In particular, ∂v(0) 6= ∅ iff there exists a saddle point of L.

Theorem (Slater’s qualification condition)
Consider a convex optimisation problem. Assume that c ′E is onto, and
there exists x ∈ rint(dom(f )) with cI(x) < 0, and cI continuous at x,
then if x∗ is an optimal solution, there exists λ∗ such that (x∗, λ∗) is a
saddle-point of the Lagrangian. Further, v is locally Lipschitz around 0.
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Fenchel duality

Duality by abstract perturbation
Let X and Y be Banach spaces. There exists an abstract duality
framework for minx∈X f (x) by considering a perturbation function
Φ : X× Y→ R ∪ {+∞} (with Φ(·, 0) = f ).

(Py ) v(y) := inf
x∈X

Φ(x , y).

We have

v∗(y∗) = sup
y∈Y
〈y∗, y〉 − v(y)

= sup
x ,y
〈y∗, y〉 − Φ(x , y) = Φ∗(0, y∗)

Thus we have

(Dy ) v∗∗(y) = sup
y∗∈Y∗

〈y∗, y〉 − Φ∗(0, y∗)

Generically
val(Dy ) = v∗∗(y) ≤ v(y) = val(Py )
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Fenchel duality

Solution of the dual as subgradient
Note that the set of solution of the dual is S(Dy ) = ∂v∗∗(y).
Recall that, for v proper convex,

∂v∗∗(x) 6= ∅ =⇒ ∂v∗∗(x) = ∂v(x) and v∗∗(x) = v(x)

Thus, if v is proper convex and subdifferentiable at y (or equivalently if
S(Dy ) 6= ∅), then,

val(Dy ) = val(Py )
S(Dy ) = ∂v(y)

Finally, as a convex function is subdifferentiable on the relative interior of
its domain, a sufficient qualification condition (to have a zero dual gap
and existence of multipliers), is that

0 ∈ rint(dom(v)).
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Fenchel duality

Recovering the Lagrangian dual

Problem (Py ) can be written

min
x ,z

Φ(x , z)

s.t. z = y

with Lagrangian dual

max
y∗∈Y ∗

inf
x ,z∈X×Y

Φ(x , z)+〈y∗, y−z〉 = max
y∗∈Y ∗

〈y∗, y〉− sup
x ,z∈X×Y

{
〈y∗, z〉 − Φ(x , z)

}
︸ ︷︷ ︸

Φ∗(0,y∗)

Hence, we recover the Fenchel dual from the Lagrangian dual.
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Fenchel duality

For next week

Install Julia / Jupyter / JuMP (see instructions
https://github.com/leclere/TP-Saclay)
Run the CrashCourse notebook to get used with those tools
(there are other resources available on the web as well)
Contact me vincent.leclere@enpc.fr in case of trouble
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