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Overview of the course
®00

Objective of the course

@ Uncertainty is present in most optimization problem,
sometimes taken into account.

@ Two major way of taking uncertainty into account :

e Robust approach: assuming that uncertainty belongs in some
set C, and will be chosen adversarily.

e Stochastic approach: assuming that uncertainty is a random
variable with known law.

@ We will take the stochastic approach, considering the
multi-stage approach : a first decision is taken, then part of
the uncertainty is revealed, before taking a second decision
and so on.
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Overview of the course
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Overview of the course
ooe

Validation

@ The stochastic optimization course is in two part
o Evaluation have 3 components :
e A paper presentation with P.Carpentier
e A written exam on my part of the course with theoretical and
modelling questions
e Multiple practical work to send to vincent.leclere@enpc.fr
@ Practical work will be done in Julia (www.julialang.com)using
jupyter notebook
e Instructions for installing julia / jupyter and using the library
can be found at https://github.com/leclere/ TP-Saclay

@ Practical work will be posted there
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Convex sets and functions
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Fundamental definitions and results

Convex sets

@ Cis a convex set iff

Vxqy, X0 € C, [X17X2] c C.

@ If for all i € I, C; is convex, then so is N;¢/C;
@ (G + G, and G x G are convex
@ For any set X the convex hull of X is the smallest convex set

containing X,

CODV(X)Z:{tX1+(1—f)X2 | x1,x € C, te[O,l]}.

@ The closed convex hull of X is the intersection of all half-spaces
containing X.
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Convex sets and functions
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Fundamental definitions and results

Separation

Let X be a Banach space, and X* its topological dual (i.e. the set of all
continuous linear form on X).

Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that,
int(A) # (), then there exists a separating hyperplane (x*, ) € X* x R
such that

(x*,a) < a < (x* b) Va,be A x B.

Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that,
A is closed, and B is compact (e.g. a point), then there exists a strict
separating hyperplane (x*,a) € X* x R such that, there exists € > 0,

(x,a)+e<a<(x",b)—e VabeAxB.
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Convex sets and functions
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Fundamental definitions and results

Convex functions : basic properties

@ A function f : X — R is convex if its epigraph is convex.

f: X = RU{+oo} is convex iff

vt €[0,1], Vx,y € X, f(tx+(1—t)y) < tf(x)+ (1 —t)f(y).

o If f, g convex, A > 0, then \f + g is convex.
@ If f convex non-decreasing, g convex, then f o g convex.
@ If f convex and a affine, then f o a is convex.

@ If (f;)ies is a family of convex functions, then sup;, f; is convex.
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Convex sets and functions
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Fundamental definitions and results

Convex functions : further definitions and properties

@ The domain of a convex function is
dom(f) = {x € X|f(x) < +o0}.

The level set of a convex function is lev,(f) = {x € X|f(x) < a}

A function is lower semi continuous (Isc) iff for all & € R, lev,, is
closed.

@ The domain and the level sets of a convex function are convex.
@ A convex function is proper if it never takes —co, and dom(f) # 0.

@ A function is coercive if lim, o f(x) = 400.
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Convex sets and functions
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Fundamental definitions and results

Convex functions : polyhedral functions

A polyhedra is a finite intersection of half-spaces, thus convex.

A polyhedral function is a function whose epigraph is a polyhedra.

@ Finite intersection, cartesian product and sum of polyhedra is
polyhedra.

@ In particular a polyhedral function is convex Isc, with polyhedral
domain and level sets.

o Iff:R" = Ris polyhedral, then it can be written as

f(x) = mein 0
s.t. aIerﬂ,igG Vk < k
Ve Tx+0, <0 Ve < k'
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Fundamental definitions and results

Convex functions : polyhedral approximations

@ f is convex iff it is above all its tangeant.
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Fundamental definitions and results

Convex functions : polyhedral approximations

@ f is convex iff it is above all its tangeant.

@ Let {xy, gx}r<k be a collection of (sub-)gradient, that is such that
f > (ge,  — Xu) + F(xs), then

foix— m<af<g,£,x — X)) + f(x)

is a polyhedral outer-approximation of f.
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Fundamental definitions and results

Convex functions : polyhedral approximations

@ f is convex iff it is above all its tangeant.

@ Let {xy, gx}r<k be a collection of (sub-)gradient, that is such that
f > (ge,  — Xu) + F(xs), then

foix— m<af<g,£,x — X)) + f(x)

is a polyhedral outer-approximation of f.

@ Let {x,}x<k be a collection of point in dom(f). Then,

is a polyhedral inner-approximation of f.
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Convex sets and functions
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Fundamental definitions and results

Convex functions : strict and strong convexity

@ f: X — RU{+4o0} is strictly convex iff
vt €]0,1[, Vx,y € X, f(tx + (1 —t)y) < tf(x)+ (1 = t)f(y).

o f: X - RU{+oc0} is a-convex iff Vx,y € X
a
Fy) = £+ (VFG).y ) + 21l — x|
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Fundamental definitions and results

Convex functions : strict and strong convexity

@ f: X — RU{+4o0} is strictly convex iff
vt €]0,1[, Vx,y € X, f(tx + (1 —t)y) < tf(x)+ (1 = t)f(y).

o f: X - RU{+oc0} is a-convex iff Vx,y € X
a
Fy) = £+ (VFG).y ) + 21l — x|

e If f € CHR")
o (Vf(x)—VIf(y),x —y) > 0iff f convex
e if strict inequality holds, then f strictly convex
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Fundamental definitions and results

Convex functions : strict and strong convexity

@ f: X — RU{+4o0} is strictly convex iff
vt €]0,1[, Vx,y € X, f(tx + (1 —t)y) < tf(x)+ (1 = t)f(y).

o f: X - RU{+oc0} is a-convex iff Vx,y € X
a
Fy) = £+ (VFG).y ) + 21l — x|

e If f € CHR")

o (Vf(x)—VIf(y),x —y) > 0iff f convex

e if strict inequality holds, then f strictly convex
e If f € C3(R"),

o V2f = 0iff f convex

o if V2f = 0 then f strictly convex
o if V2f = al then f is a-convex
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Convex sets and functions
oe0

Convex function and minimization

Convex optimization problem

Where C is closed convex and f convex finite valued, is a convex
optimization problem.

@ If C is compact and f proper Isc, then there exists an optimal
solution.

@ If f proper Isc and coercive, then there exists an optimal solution.
@ The set of optimal solutions is convex.
@ If f is strictly convex the minimum (if it exists) is unique.

@ If f is a-convex the minimum exists and is unique.
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Convex sets and functions
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Convex function and minimization

Constraints and infinite values

A very standard trick in optimization consists in replacing constraints by
infinite value of the cost function.

 in f(x)= min f(x) + Ie(x).

HC(X):{O if x € C

where

+o00  otherwise

@ If fisIsc and C is closed, then f +1I¢ is Isc.
@ If f is proper and C is bounded, then f + I is coercive.

@ Thus, from a theoretical point of view, we do not need to explicitely
write constraint in a problem.
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Convex sets and functions
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Subdifferential and Fenchel-Transform

Subdifferential of convex function

Let X be a Banach space, f: X — R.

@ X* is the topological dual of X, that is the set of continuous linear
form on X.

@ The subdifferential of f at x € dom(f) is the set of slopes of all
affine minorants of f exact at x:

OF(x) = {x* eX* | F()> (x5 —x)+ f(x)}.

@ If f is convex and derivable at x then

of (x) = {Vf(x)}.

Vincent Leclere 0S-1 25/11/2020 14 / 30



Convex sets and functions
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Subdifferential and Fenchel-Transform

Partial infimum

Let f : X x Y — R be a jointly convex and proper function, and define

V() = inf F(x.7)

then v is convex.

Vincent Leclere 0S-1 /11/2020 15 / 30




Convex sets and functions
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Subdifferential and Fenchel-Transform

Partial infimum

Let f : X x Y — R be a jointly convex and proper function, and define
= inf f
v(x) = inf F(x.)
then v is convex.

If v is proper, and v(x) = f(x, y*(x)) then

v(x)={geX* | (g0)ecdf(x,y (x)}
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Convex sets and functions
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Subdifferential and Fenchel-Transform

Partial infimum

Let f : X x Y — R be a jointly convex and proper function, and define

V() = inf F(x.7)

then v is convex.
If v is proper, and v(x) = f(x, y*(x)) then

v(x)={geX* | (g0)ecdf(x,y (x)}

proof:

geiv(x) & VX, v(x') > v(x) + (g, x" — x)

s XLy f(X”y/) > f(x,yu(x)) + <(g> ) (;) — <yﬁ>((x))>

& (g) € 9f (x, y*(x))
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Convex sets and functions
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Subdifferential and Fenchel-Transform

Convex function : regularity

@ Assume f convex, then f is continuous on the relative interior of its
domain, and Lipschtiz on any compact contained in the relative
interior of its domain.

@ A proper convex function is subdifferentiable on the relative interior
of its domain

@ If f is convex, it is L-Lipschitz iff 9f (x) C B(0,L), Vx € dom(f)

Vincent Leclére 0S-1 25/11/2020 16 / 30



Convex sets and functions
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Subdifferential and Fenchel-Transform

Fenchel transform

Let X be a Banach space, f : X — R convex proper.

@ The Fenchel transform of f, is f* : X* — R with

*(x*) = sup(x*, x) — f(x).
xeX
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Subdifferential and Fenchel-Transform

Fenchel transform

Let X be a Banach space, f : X — R convex proper.

@ The Fenchel transform of , is f* : X* — R with
*(x*) = sup(x*, x) — f(x).

xeX

@ f* is convex Isc as the supremum of affine functions.
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Subdifferential and Fenchel-Transform

Fenchel transform

Let X be a Banach space, f : X — R convex proper.

@ The Fenchel transform of f, is f* : X* — R with

*(x*) = sup(x*, x) — f(x).
xeX

@ f* is convex Isc as the supremum of affine functions.

o f < g implies that f* > g*.
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Convex sets and functions
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Subdifferential and Fenchel-Transform

Fenchel transform

Let X be a Banach space, f : X — R convex proper.

@ The Fenchel transform of , is f* : X* — R with
*(x*) = sup(x*, x) — f(x).

xeX

@ f* is convex Isc as the supremum of affine functions.
o f < g implies that f* > g*.

@ If f is proper convex Isc, then f** = f, otherwise f** < f.
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Convex sets and functions
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Subdifferential and Fenchel-Transform

Fenchel transform and subdifferential

@ By definition f*(x*) > (x*, x) — f(x) for all x,
@ thus we always have (Fenchel-Young) f(x) + f*(x*) > (x*, x).
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Subdifferential and Fenchel-Transform

Fenchel transform and subdifferential

@ By definition f*(x*) > (x*, x) — f(x) for all x,
@ thus we always have (Fenchel-Young) f(x) + f*(x*) > (x*, x).
@ Recall that x* € Of (x) iff for all X', f(x') > f(x) + (x*, x" — x) iff
(x*,x) = f(x) > (x*,x") = f(x") WX
that is

x* € Of(x) & x € argmax { (x*, x')=f(xX)} & f(x)+F*(x*) = (x*,x)
x'eX
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Convex sets and functions
oooo0e

Subdifferential and Fenchel-Transform

Fenchel transform and subdifferential

@ By definition f*(x*) > (x*, x) — f(x) for all x,
@ thus we always have (Fenchel-Young) f(x) + f*(x*) > (x*, x).
@ Recall that x* € Of (x) iff for all X', f(x') > f(x) + (x*, x" — x) iff
(x*,x) = f(x) > (x*,x") = f(x") WX
that is
x* € of(x )@xeargmxax{x XV—F(X")} & F(x)+F(x") = (x*, x)
x'€
@ From Fenchel-Young equality we have

v (x)£D = 0v™(x)=0v(x) and v (x) = v(x).
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Convex sets and functions
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Subdifferential and Fenchel-Transform

Fenchel transform and subdifferential

@ By definition f*(x*) > (x*, x) — f(x) for all x,
@ thus we always have (Fenchel-Young) f(x) + f*(x*) > (x*, x).
@ Recall that x* € Of (x) iff for all X', f(x') > f(x) + (x*, x" — x) iff
(x*,x) = f(x) > (x*,x") = f(x") WX
that is
x* € of(x )@xeargmxax{x XV—F(X")} & F(x)+F(x") = (x*, x)
x'€
@ From Fenchel-Young equality we have

v (x)£D = 0v™(x)=0v(x) and v (x) = v(x).

If f proper convex Isc
x* € df(x) <« xeIf*(x").
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Recall on Lagrangian duality

Weak duality

The problem
(P)

can be written

where

Vincent Leclere

min
xERN

s.t.

f(x)
ci(x)=0 Vi € [1, ne]
Cj(X) <0 Vje [[nE—i—l,nE—i—n,]]
min max L(x, A, 1)
XxERN AER"E,He]RZr’
ng+ny
LA 1) = F(x)+ > Niai(x)
i=1

0S-1
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Recall on Lagrangian duality

Weak duality

The problem
(P) min f(x)
x€ERN
s.t. c(x)=0 Vi € [1, ne]
Cj(X) <0 Vje [[nE—i—l,nE—i—n,]]
can be written
min max L(x, A, 1)

XxERN AER"E,He]RZr’

where
ng+ny

LA 1) = F(x)+ > Niai(x)
i=1
The dual problem is

(D) max min  L(x, A, )
AERE xR xER"

and we have, without assumption

vp < vp.

Vincent Leclére 0S-1 25/11/2020 19 / 30



Duality
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Recall on Lagrangian duality

Linear Programming duality

T

min ¢’ x
x>0
s.t. Ax=0b

is equivalent to
minmax(c — AT A)Tx + b\
x>0 A
and the dual problem is
max b'A
X
s.t. ATa<c
with equality between both problem except if there is neither primal nor

dual admissible solution.
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Recall on Lagrangian duality

Strong duality

The duality gap is the difference between the primal value and dual value
of a problem.
Consider problem

(P)  min  f(x)
s.t. c(x)=0 Vi € [1, ng
G(x) <0 Vj € [ne +1,ne + ni]

with (P) convex in the sense that f is convex, ¢ is convex Isc, ¢ is affine.
If further the constraints are qualified, then there is no duality gap.
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Duality
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Recall on Lagrangian duality

Recall KKT

Assume that f, g; and h; are differentiable. Assume that x% is an optimal
solution of (P), and that the constraints are qualified in x*. Then we

have
ng+n;

VLA M) = V() + Y MVe(x*) =0
i=1

CE(Xu) =
0< )\ L C/(Xu) <

Vincent Leclére 0S-1 25/11/2020 22 / 30
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Marginal interpretation of multiplier

Perturbed problem

Consider the perturbed problem

(P,) min £(x)

s.it. c(x)+pi=0 Vi€ [1,ng]
G(x)+p <0 Vj € [ne +1,n + ng]

with value v(p), and optimal multiplier (for p = 0) X.
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Marginal interpretation of multiplier

Linear programming case

v(p) :== min ¢ x

sit. Ax+p=b
by LP duality (assuming at least one admissible primal solution) we have

v(p) = max  — b A+p"A

s.t. ATA<c

Vincent Leclere 0S-1 25/11/2020 24 / 30
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Marginal interpretation of multiplier

Linear programming case

v(p) :== min ¢ x

sit. Ax+p=b
by LP duality (assuming at least one admissible primal solution) we have

v(p) = max  — b A+p"A
s.t. ATA<c
Note )¢ the optimal multiplier for (Pp), note that it is admissible for
(D,), hence v(p) > —b" Ao + p Ao. By strong duality we have

v(0) = —b " \g, hence
v(p) > v(0) + Ag p

Vincent Leclere 0S-1 25/11/2020 24 / 30



Duality
00®00

Marginal interpretation of multiplier

Linear programming case

v(p) :== min ¢ x

sit. Ax+p=b
by LP duality (assuming at least one admissible primal solution) we have

v(p) = max  — b A+p"A

s.t. ATA<c

Note )¢ the optimal multiplier for (Pp), note that it is admissible for
(D,), hence v(p) > —b" Ao + p Ao. By strong duality we have
v(0) = —bT X\g, hence
v(p) > v(0) + Ag p
or

Ao € 8V(0)
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Marginal interpretation of multiplier

Optimality condition by saddle point

Let A :=R" x R, (x*, \*) is a saddle-point of £ on R" x A iff

YAEN, L(x*, ) <L(x*MN) < L(x,\), VxeR"

Vincent Leclére 0S-1 25/11/2020
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Marginal interpretation of multiplier

Optimality condition by saddle point

Let A :=R" x R, (x*, \*) is a saddle-point of £ on R" x A iff

YAEN, L(x*, ) <L(x*MN) < L(x,\), VxeR"

Consider (x,A) € R" x A. Then \ € arg max,c £(X, \) iff cg(x) =0
and 0 < )\, L a(x) <0.
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25 / 30



Duality
000e0

Marginal interpretation of multiplier

Optimality condition by saddle point

Let A :=R" x R, (x*, \*) is a saddle-point of £ on R" x A iff

YAEN, L(x*, ) <L(x*MN) < L(x,\), VxeR"

Consider (x,A) € R" x A. Then \ € arg max,c £(X, \) iff cg(x) =0
and 0 < )\, L a(x) <0.

If (x*, \*) is a saddle-point of £ on R™ x A, then x* is an optimal
solution of (P).

Note that we need no assumption for this result.

Vincent Leclére 0S-1 25/11/2020 25 / 30
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Marginal interpretation of multiplier

Convex case

If (P) is convex in the sense that f is convex, ¢; is convex and cg is
affine, then v is convex.

Assume that v is convex, then

ov(0)={NeA | (x,A\)isa saddle point of L}

In particular, dv(0) # 0 iff there exists a saddle point of L.
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Marginal interpretation of multiplier

Convex case

If (P) is convex in the sense that f is convex, ¢; is convex and cg is
affine, then v is convex.

Assume that v is convex, then

ov(0)={NeA | (x,A\)isa saddle point of L}

In particular, dv(0) # 0 iff there exists a saddle point of L.

Theorem (Slater's qualification condition)

Consider a convex optimisation problem. Assume that cf is onto, and
there exists x € rint(dom(f)) with ¢;(x) < 0, and ¢, continuous at x,
then if x* is an optimal solution, there exists \* such that (x*, \*) is a
saddle-point of the Lagrangian. Further, v is locally Lipschitz around 0.
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@ Fenchel duality
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Fenchel duality

Duality by abstract perturbation

Let X and Y be Banach spaces. There exists an abstract duality
framework for minyex f(x) by considering a perturbation function
X xY — RU{+o0} (with ®(-,0) = f).

(Py)  vly):= inf &(x,y).

We have
vi(y®) =sup (y*,y) — v(y)
yeY
=sup (y*,y) — ®(x,y) = ¢*(0,y")
X,y
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Fenchel duality

Duality by abstract perturbation

Let X and Y be Banach spaces. There exists an abstract duality
framework for minyex f(x) by considering a perturbation function
X xY — RU{+o0} (with ®(-,0) = f).

(Py)  vly):= inf &(x,y).

We have
vi(y®) =sup (y*,y) — v(y)
yeY
=sup (y*,y) — ®(x,y) = ¢*(0,y")
X,y

Thus we have

(Dy)  v(y) = sup (y",y) —®*(0,y")
yrEY*
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Fenchel duality

Duality by abstract perturbation

Let X and Y be Banach spaces. There exists an abstract duality
framework for minyex f(x) by considering a perturbation function
X xY — RU{+o0} (with ®(-,0) = f).

(Py)  vly):= inf &(x,y).

We have
vi(y®) =sup (y*,y) — v(y)
yeY
=sup (y*,y) — ®(x,y) = ¢*(0,y")
X,y

Thus we have

(Dy)  v(y) = sup (y",y) —®*(0,y")
yrEY*

Generically
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Fenchel duality

Solution of the dual as subgradient

Note that the set of solution of the dual is S(D,) = ov**(y).
Recall that, for v proper convex,

v*(x)£0D = 9Ov™(x)=09v(x) and v (x) = v(x)
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Duality

Fenchel duality

Solution of the dual as subgradient

Note that the set of solution of the dual is S(D,) = ov**(y).
Recall that, for v proper convex,

v*(x)£0D = 9Ov™(x)=09v(x) and v (x) = v(x)

Thus, if v is proper convex and subdifferentiable at y (or equivalently if

S(D,) # 0), then,

Finally, as a convex function is subdifferentiable on the relative interior of
its domain, a sufficient qualification condition (to have a zero dual gap
and existence of multipliers), is that

0 € rint(dom(v)).
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Duality

Fenchel duality

Recovering the Lagrangian dual

Problem (P,) can be written
min  ®(x, z)

st. z=y

with Lagrangian dual

max inf  ®(x,z)+(y",y—z) = max (y*,y)— su { *z fd)x,z}
Jnax inf o, (x,2)+(y", y—2) y*ey*<y ) P (y* z) — ®(x, 2)

&+ (0,y™)

Hence, we recover the Fenchel dual from the Lagrangian dual.
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Duality

Fenchel duality

For next week

o Install Julia / Jupyter / JuMP (see instructions
https://github.com/leclere/ TP-Saclay)

@ Run the CrashCourse notebook to get used with those tools
(there are other resources available on the web as well)

o Contact me vincent.leclere@enpc.fr in case of trouble
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