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Introduction

Large scale stochastic optimization problems are hard to solve

Different ways of attacking such problems:

decompose the problem and coordinate solutions
construct easily solvable approximations (Linear Programming)
find approximate value functions or policies

Behind the name SDDP, Stochastic Dual Dynamic
Programming, one finds three different things:

a class of algorithms,
based on specific mathematical assumptions
a specific implementation of an algorithm
a software implementing this method,
and developed by the PSR company
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Setting

Multi-stage stochastic optimization problems with finite
horizon.

Continuous, finite dimensional state and control.

Convex cost, linear dynamic.

Discrete, stagewise independent noises.
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Kelley algorithm

Data: Convex objective function J, Compact set X , Initial
point x0 ∈ X

Result: Admissible solution x (k), lower-bound v (k)

Set J(0) ≡ −∞ ;
for k ∈ N do

Compute a subgradient α(k) ∈ ∂J(x (k)) ;

Define a cut C(k) : x 7→ J(x (k)) + 〈α(k), x − x (k)〉;
Update the lower approximation J(k+1) = max{J(k), C(k)} ;

Solve (P(k)) : min
x∈X

J(k+1)(x);

Set v (k) = val(P(k));

Select x (k+1) ∈ sol(P(k));

end
Algorithm 1: Kelley’s cutting plane algorithm
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Problem considered

We consider an optimal control problem in discrete time
with finite horizon T

min
x∈RnT

T−1∑
t=0

ct(xt , xt+1) + K (xT )

s.t. (xt , xt+1) ∈ Pt , x0 given

xt ∈ Xt

We assume that Pt ⊂ Rn × Xt+1 is convex, and Xt convex compact

the transition costs ct(xt , xt+1) and the final cost K (xT ) are convex

For example, xt follow a dynamic xt+1 = ft(xt , ut), with

ft affine, ut ∈ Ut(xt) is convex compact

ct(xt , xt+1) = min
{
Lt(xt , ut) | ut ∈ Ut(xt), ft(xt , ut) = xt+1

}
,

where Lt is a convex instantaneous cost function
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Introducing Bellman’s function

We look for solutions as policies, where a policy is a sequence of
functions π = (π1, . . . , πT−1) giving for any state x a control u
This problem can be solved by dynamic programming,
thanks to the Bellman function that satisfies

VT (x) = K (x),

Ṽt(x) = min
y :(x,y)∈Pt

{
ct(x , y) + Vt+1(y)

}
Vt = Ṽt + IXt

Indeed, an optimal policy for the original problem is given by

πt(x) ∈ arg min
xt+1

{
ct(x , xt+1) + Vt+1(xt+1)

∣∣ (xt , xt+1) ∈ Pt

}
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Introducing Bellman’s operator

We define the Bellman operator

Bt(A) : x 7→ min
y :(x ,y)∈Pt

{
ct(x , y) + A(y)

}
With this notation, the Bellman Equation reads{

VT = K ,
Vt = Bt(Vt+1) + IXt

Any approximate cost function V̆t+1 induce an admissible policy

π
V̆t+1
t : x 7→ arg minBt

(
V̆t+1

)
(x).

By Dynamic Programming, π
Vt+1
t is optimal.
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Properties of the Bellman operator

Monotonicity:

V ≤ V ⇒ Bt
(
V
)
≤ Bt

(
V
)

Convexity: if ct is jointly convex, P and X are closed convex,
V is convex then

x 7→ Bt
(
V
)
(x) is convex

Polyhedrality: for any polyhedral function V ,
if ct is also polyhedral, and Pt and Xt are polyhedron, then

x 7→ Bt
(
V
)
(x) is polyhedral
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Duality property

Consider J : X× U→ R jointly convex, and define

ϕ(x) = min
u∈U

J(x , u)

Then we can obtain a subgradient α ∈ ∂ϕ(x0)
as the dual multiplier of

min
x ,u

J(x , u),

s.t. x0 − x = 0 [α]

(This is the marginal interpretation of the multiplier)

In particular, we have that

ϕ(·) ≥ ϕ(x0) + 〈α, · − x0〉
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General idea

The SDDP algorithm recursively constructs
an approximation of each Bellman function Vt

as the supremum of affine functions

At stage k , we have a lower approximation V
(k)
t of Vt

and we want to construct a better approximation

We follow an optimal trajectory (x
(k)
t )t of the approximated

problem, and add a so-called “cut” to improve each Bellman
function
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Deterministic SDDP

x

t=0

x

t=1

K

x

t=2

Final Cost V2 = K
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Deterministic SDDP

V0

x

t=0

V1

x
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K

x

t=2

Assume that we have lower polyhedral approximations of Vt
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Deterministic SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x

t=1

K

x

t=2

Thus we have a lower bound on the value of our problem
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V
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0 to x0 and obtain x
(2)
1
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DDP description

Data: Starting point, initial lower approximation
Result: optimal trajectory and value function;
VT ≡ K ;
for k = 1, 2, . . . do

set x
(k)
0 = x0

/* Forward pass : compute trajectory */

for t = 0, . . . ,T − 1 do

find x
(k)
t+1 ∈ arg minBt(V (k)

t+1)(x
(k)
t ) ;

end
/* Backward pass : update cuts */

for t = T − 1, . . . , 0 do

Solve Bt(V (k+1)
t+1 )(x

(k)
t ) to compute C(k+1)

t ;

Update lower approximations : V
(k+1)
t := max{V (k)

t , C(k+1)
t };

end

end
Algorithm 2: Deterministic Dual Dynamic Programming
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Detailing forward pass

From t = 0 to t = T − 1 we have to solve T one-stage problem of
the form

x
(k)
t+1 ∈ arg min

y
ct(x

(k)
t , y) + V

(k)
t+1(y)

(x
(k)
t , y) ∈ Pt

We only need to keep the trajectory (x
(k)
t )t∈J0,TK.

V. Leclère Introduction to SDDP 17/11/2020 15 / 46
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Detailing Backward pass

From t = T − 1 to t = 0 we have to solve T one-stage problem of
the form

θ
(k+1)
t = min

x,y
ct(x , y) + V

(k+1)
t+1 (y)

(x , y) ∈ Pt

x = x
(k)
t [α

(k+1)
t ]

By construction, we have that

θ
(k+1)
t = Bt

(
V

(k+1)
t+1

)(
x

(k)
t

)
, α

(k+1)
t ∈ ∂Bt

(
V

(k+1)
t+1

)(
x

(k)
t

)
.

Which means

C(k+1)
t := θ

(k+1)
t +〈α(k+1)

t , ·−x (k)
t 〉 ≤ Bt

(
V

(k+1)
t+1

)
≤ Bt

(
Vt+1

)
= Ṽt ≤ Vt
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Initialization and stopping rule

To initialize the algorithm, we need a lower bound V
(0)
t for

each value function Vt . This lower bound can be computed
backward by arbitrarily choosing a point xt and using the
standard cut computation.

At any step k we have an admissible, non optimal trajectory

(x
(k)
t )t , with

an upper bound

T−1∑
t=0

ct
(
x

(k)
t , x

(k)
t+1

)
+ K

(
x

(k)
T

)
a lower bound V

(k)
0 (x0)

A reasonable stopping rule for the algorithm is given by
checking that the (relative) difference between the upper and
lower bounds is small enough
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Extended Relatively Complete Recourse

We say that we are in a relatively complete recourse framework if

∀t, ∀xt ∈ Xt , ∃xt+1 ∈ Xt+1 such that (xt , xt+1) ∈ Pt .

We say that we are in a extended relatively complete recourse
framework if there exists ε > 0 such that

∀t, ∀xt ∈ Xt + εB, ∃xt+1 ∈ Xt+1 such that (xt , xt+1) ∈ Pt .

RCR is required for the algorithm to run (otherwise we could find
non-finite problems, and would require some feasability cuts
mechanisms).

ERCR is required for the convergence proof as the way of ensuring
that the multipliers αk

t remains bounded.
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Technical lemmas

Lemma

Let f : X → R where X is compact. Let (f k)k∈N be a sequence of
functions such that

f k ≤ f k+1 ≤ f

f k are Lipschitz continuous uniformly in k

Consider a sequence (xk)k∈N of points of X such that
f (xk)− f k+1(xk)→ 0. Then, we also have f (xk)− f k(xk)→ 0.

Lemma

Under convexity assumptions, compactness of Xt , and ERCR the SDDP
algorithm is well defined and

i) for all t, Vt is convex and Lipschitz

ii) for all t, k, and x ∈ Xt , V
k
t ≤ Vt

iii) There exists L > 0 such that ‖αk
t ‖ ≤ L, thus V k

t is L-Lipschitz
V. Leclère Introduction to SDDP 17/11/2020 19 / 46
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Convergence result

Theorem

Let K and ct be convex functions, Xt and Pt be closed convex
sets, and Xt bounded. Assume that we have extended relatively
complete recourse. Then, for every t, we have

lim
k

V
(k)
t (x

(k)
t )− Vt(x

(k)
t ) = 0.

Further, the cost associated to πV
(k)
t converges toward the optimal

value of the problem.
In other words, the upper and lower bounds are both converging.
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What’s new ?

Now we introduce random variables ξt in our problem,
which complexifies the algorithm in different ways:

we need some probabilistic assumptions

for each stage k we need to do a forward phase, for each
sequence of realizations of the random variables, that yields a

trajectory (x
(k)
t )t , and a backward phase that gives a new cut

we cannot compute an exact upper bound for the problem
value
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Problem statement

We consider the optimization problem

min E
[ T−1∑

t=0

ct(x t , x t+1, ξt+1) + K (xT )
]

s.t. (x t , x t+1) ∈ Pt(ξt+1)

x t ∈ Xt , x0 = x0

x t � σ(ξ1, . . . , ξt)

under the crucial assumption that (ξt)t∈{1,··· ,T} is a white noise

 we are in an hazard-decision framework.
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Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by dynamic
programming, where the Bellman functions satisfy

VT = K

V̂t(x , ξ) = min
(x,y)∈Pt(ξ)

ct(x , y , ξ) + Vt+1(y)

Ṽt(x) = E
[
V̂t(x , ξt)

]
Vt = Ṽt + IXt

Indeed, an optimal policy for this problem is given by

πt(x , ξ) ∈ arg min
(x,y)∈Pt(ξ)

{
ct(x , y , ξ) + Vt+1(y)

}

V. Leclère Introduction to SDDP 17/11/2020 23 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Bellman operator

For any time t, and any function A mapping the set of states and noises
X× Ξ into R, we define B̂t(A)(x , ξ) := min

(x,y)∈Pt(ξ)
ct(x , y , ξ) + A(y)

Bt(A)(x) := E
[
B̂t(A)(x , ξt)

]
Thus the Bellman equation simply reads

VT = K
Vt = Bt(Vt+1)︸ ︷︷ ︸

Ṽt

+IXt

The Bellman operators have the same properties as in the deterministic

case
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Computing cuts (1/2)

Suppose that we have V
(k+1)
t+1 ≤ Vt+1

θ̂
(k+1)
t (ξ) = min

x,y
ct(x , y , ξ) + V

(k+1)
t+1 (y)

s.t x = x
(k)
t [α̂

(k+1)
t (ξ)]

(x , y) ∈ Pt(ξ)

This can also be written as

θ̂
(k+1)
t (ξ) = B̂t

[
V

(k+1)
t+1

]
(x , ξ)

α̂
(k+1)
t (ξ) ∈ ∂x B̂t

[
V

(k+1)
t+1

]
(x , ξ)

Thus, for all ξ, Ĉ(k+1),ξ
t : x 7→ θ̂

(k+1)
t (ξ) +

〈
α̂

(k+1)
t (ξ), x − x

(k)
t

〉
satisfy

Ĉ(k+1),ξ
t (x) ≤ B̂t

[
V

(k+1)
t+1

]
(x , ξ) ≤ B̂t

[
Vt+1

]
(x , ξ) = V̂t(x , ξ)
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Ĉ(k+1),ξ
t (x) ≤ B̂t

[
V

(k+1)
t+1

]
(x , ξ) ≤ B̂t

[
Vt+1

]
(x , ξ) = V̂t(x , ξ)

V. Leclère Introduction to SDDP 17/11/2020 25 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Computing cuts (2/2)

Thus, we have an affine minorant of V̂t(x , ξt) for each realization of ξt
Replacing ξ by the random variable ξt and taking the expectation yields
the following affine minorant

C(k+1) := θ
(k+1)
t +

〈
α

(k+1)
t , · − x

(k)
t

〉
≤ Vt

where  θ
(k+1)
t := E

[
θ̂

(k+1)
t (ξt)

]
= Bt

[
V

(k)
t+1

]
(x)

α
(k+1)
t := E

[
α̂

(k+1)
t (ξt)

]
∈ ∂Bt

[
V

(k)
t+1

]
(x)
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Abstract SDDP

x

t=0

x

t=1

K

x

t=2

Final Cost V2 = K
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Abstract SDDP

V0
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x
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Abstract SDDP
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Abstract SDDP
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V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x2
1

x

t=1

K

x2
2

x

t=2

Compute a cut for K at x
(2)
2

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x2
1

x

t=1

K

x

t=2

Add the cut to V
(2)
2 which gives V

(3)
2

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x2
1

x

t=1

K

x

t=2

A new lower approximation of V1 is B1(V
(3)
2 )

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x2
1

x

t=1

K

x

t=2

Compute the face active at x
(2)
1

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x

t=1

K

x

t=2

Add the cut to V
(2)
1 which gives V

(3)
1

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x

t=1

K

x

t=2

A new lower approximation of V0 is B0(V
(3)
1 )

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x

t=1

K

x

t=2

Compute the face active at x0

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 2
0(x0)

x

t=0

V1

x

t=1

K

x

t=2

Compute the face active at x0

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 3
0(x0)

x

t=0

V1

x

t=1

K

x

t=2

Obtain a new lower bound

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Abstract SDDP

V0

x0

V0(x0)

V 3
0(x0)

x

t=0

V1

x

t=1

K

x

t=2

Obtain a new lower bound

V. Leclère Introduction to SDDP 17/11/2020 27 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

SDDP description

for k = 1, 2, . . . do

set V
(k+1)
T ≡ K ; x

(k)
0 = x0 ;

draw (ξ
(k)
t )t∈J1,TK ;

/* Forward pass : compute trajectory */

for t = 0, . . . ,T − 1 do

find x
(k)
t+1 ∈ arg min B̂t(V (k)

t+1)(x
(k)
t , ξ

(k)
t ) ;

end
/* Backward pass : update cuts */

for t = T − 1, . . . , 0 do
for ξ ∈ Ξt do

Solve B̂t(V (k+1)
t+1 )(x

(k)
t , ξ) to compute Ĉ(k+1),ξ

t ;
end

end

Compute averaged cut : C(k+1)
t ;

Update lower approximation : V
(k+1)
t := max{V (k)

t , C(k+1)
t };

end
Algorithm 3: Stochastic Dual Dynamic Programming
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Detailing forward pass

From t = 0 to t = T − 1 we have to solve T one-stage problem of
the form

x
(k)
t+1 ∈ arg min

y
ct(x

(k)
t , y , ξ

(k)
t ) + V

(k)
t+1(y)

(x
(k)
t , y) ∈ Pt

We only need to keep the trajectory (x
(k)
t )t∈J0,TK.
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Detailing Backward pass

For each t = T − 1→ 0 we solve Ξt one-stage problem

θ̂
(k+1)
t (ξ) = min

y
ct(x

(k)
t , y , ξ) + V

(k+1)
t+1 (y)

(x
(k)
t , y) ∈ Pt

x = x
(k)
t [α̂

(k+1)
t (ξ)]

By construction, we have that

θ̂
(k+1)
t (ξ) = Bt

(
V

(k)
t+1

)(
x

(k)
t , ξ

)
, α̂

(k+1)
t (ξ) ∈ ∂Bt

(
V

(k)
t+1

)(
x

(k)
t , ξ

)
.

We average the coefficients

θ
(k+1)
t = E

[
θ̂

(k+1)
t (ξ)

]
, α

(k+1)
t = E

[
α̂

(k+1)
t (ξ)

]
Which means

C(k+1)
t := θ

(k+1)
t +〈α(k+1)

t , ·−x (k)
t 〉 ≤ Bt

(
V

(k+1)
t+1

)
≤ Bt

(
Vt+1

)
= Ṽt ≤ Vt
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Recall on CLT

Let {Ci}i∈N be a sequence of identically distributed random
variables with finite variance.

Then the Central Limit Theorem ensures that

√
n
(∑n

i=1 C i

n
− E[C 1]

)
=⇒ G ∼ N (0,Var [C 1]) ,

where the convergence is in law.

In practice it is often used in the following way.
Asymptotically,

P
(
E
[
C1

]
∈
[
C̄n −

1.96σn√
n

, C̄n +
1.96σn√

n

])
' 95% ,

where C̄n =
∑n

i=1 C i

n is the empirical mean and

σn =

√∑n
i=1(C i−C̄n)2

n−1 the empirical standard deviation.
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Bounds

Exact lower bound on the value of the problem: V
(k)
0 (x0).

Exact upper bound on the value of the problem:

E
[ T−1∑

t=0

ct(x
(k)
t , x

(k)
t+1, ξt+1) + K (XT )

]
where X

(k)
t is the trajectory induced by V

(k)
t .

This bound cannot be computed exactly,
but can be estimated by Monte-Carlo method as follows

Draw N scenarios
{
ξn1 , . . . , ξ

n
T

}
.

Simulate the corresponding N trajectories x
(k),n
t ,

and the total cost for each trajectory C (k),n.
Compute the empirical mean C̄ (k),N and standard dev. σ(k),N .
Then, with confidence 95% the upper bound on the problem is[
C̄ (k),N − 1.96σ(k),N

√
N

, C̄ (k),N +
1.96σ(k),N

√
N︸ ︷︷ ︸

UBk

]
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Stopping rule

One stopping test consist in fixing an a priori relative gap ε,
and stopping if

UBk − V
(k)
0 (x0)

V
(k)
0 (x0)

≤ ε

in which case we know that the solution is ε-optimal with
probability 97.5%.

It is not necessary to evaluate the gap at each iteration.

To alleviate the computational load, we can estimate the
upper bound by using the trajectories of the recent forward
phases.

Another more practical stopping rule consists in stopping after
a given number of iterations or fixed computation time.
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Non-independent inflows

In most cases the stagewise independence assumption is not
realistic.

One classical way of modelling dependencies consists in
considering that the inflows It follow an AR-k process

It = α1It−1 + · · ·+ αk It−k + θt + ξt

where ξt is the residual, forming an independent sequence.

The state of the system is now (Xt , It−1, . . . , I(t−k)).
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Implementations and numerical tricks

We can play with the number of forward / backward pass.
Classically we do 200 forward passes in parallel, before computing
cuts.

Instead of averaging the cuts, we can keep one cut per alea, for a
multicut version. In other word instead of representing Vt we
represent V̂t .

Early forward passes are not really usefull, selecting (randomly or by
hand) a few trajectory can save some workload.

Cut pruning (eliminating useless cuts) is easy to implement and
pretty efficient.

Adding some regularization term in the forward pass has shown
some numerical improvement but is not yet fully understood.
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Cut Selection methods I

Let V
(k)
t be defined as max`≤k C

(`)
t

For j ≤ k , if

min
x ,α

α− C(j)
t (x)

s.t. α ≥ C(`)
t (x) ∀` 6= j

is non-negative, then cut j can be discarded without

modifying V
(k)
t

this technique is exact but time-consuming.
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Cut Selection methods II

Instead of comparing a cut everywhere, we can choose to
compare it only on the already visited points.

The Level-1 cut method goes as follow:

keep a list of all visited points x
(`)
t for ` ≤ k.

for ` from 1 to k , tag each cut that is active at x
(`)
t .

Discard all non-tagged cut.
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Coherent Risk Measure I

To take into account some risk aversion we can replace the
expectation by a risk measure. A risk measure is a function giving
to a random cost X a determinitic equivalent ρ(X ) A Coherent
Risk Measure ρ : L∞

(
Ω,F ,P

)
→ R is a functionnal satisfying

Monotonicity: if X ≥ Y then ρ(X ) ≥ ρ(Y ),

Translation equivariance: for c ∈ R we have
ρ(X + c) = ρ(X ) + c ,

Convexity: for t ∈ [0, 1], we have

ρ(tX + (1− t)Y ) ≤ tρ(X ) + (1− t)ρ(Y ),

Positive homogeneity: for α ∈ R+, we have ρ(αX ) = αρ(X ).
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Coherent Risk Measure II

From convex analysis we obtain the main theorem over coherent
risk measure.

Theorem

Let ρ be a coherent risk measure, then there exists a (convex) set
of probability P such that

∀X , ρ(X ) = sup
Q∈P

EP[X ].
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Average Value at Risk I

One of the most practical and used coherent risk measure is the
Average Value at Risk at level α. Roughly, it is the expectation of
the cost over the α-worst cases. For a random variable X
admitting a density, we define de value at risk of level α, as the
quantile of level α, that is

VaRα(X ) = inf
{
t ∈ R | P

(
X ≥ t

)
≤ α

}
.

And the average value at risk is

AVaRα(X ) = E
[
X
∣∣ X ≥ VaRα(X )

]
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Average Value at Risk II

One of the best aspect of the AVaR, is the following formula

AVaRα(X ) = min
t∈R

{
t +

E
[
X − t

]+
α

}
.

Indeed it allow to linearize the AVaR.
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SDDP and risk

The problem studied was risk neutral

However a lot of works has been done recently about how to
solve risk averse problems

Most of them are using AVAR, or a mix between AVAR and
expectation either as objective or constraint

Indeed AVAR can be used in a linear framework by adding
other variables

Another easy way is to use “composed risk measures”

Finally a convergence proof with convex costs (instead of
linear costs) exists, although it requires to solve non-linear
problems

V. Leclère Introduction to SDDP 17/11/2020 42 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 17/11/2020 42 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Assumptions

Noises are time-independent, with finite support.

Xt is convex compact, Pt is closed convex.

Costs are convex and lower semicontinuous.

We are in a strong relatively complete recourse framework.

Remark, if we take the tree-view of the algorithm

stage-independence of noise is not required to have theoretical
convergence

node-selection process should be admissible (e.g. independent,
SDDP, CUPPS...)
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Convergence result

Theorem

With the preceding assumption, we have that the upper and lower
bound are almost surely converging toward the optimal value, and
we can obtain an ε−optimal strategy for any ε > 0.

More precisely, if we call V
(k)
t the outer approximation of the

Bellman function Vt at step k of the algorithm, and π
(k)
t the

corresponding strategy, we have

V
(k)
0 (x0)→k V0(x0)

and

E
[
ct
(
x

(k)
t , x

(k)
t+1, ξt

)
+ V

(k)
t+1(x

(k)
t+1)

]
− Vt(x

(k)
t )→k 0.

V. Leclère Introduction to SDDP 17/11/2020 44 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule
Convergence

3 Stochastic case
Problem statement
Computing cuts
SDDP algorithm
Complements
Risk
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 17/11/2020 44 / 46



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Conclusion

SDDP is an algorithm, more precisely a class of algorithms, that

exploits convexity of the value functions (from convexity of
costs...)

does not require state discretization

constructs outer approximations of Vt , those approximations
being precise only “in the right places”

gives bounds:

“true” lower bound V
(k)
0 (x0)

estimated (by Monte-Carlo) upper bound

constructs linear-convex approximations, thus enabling to use
linear solver like CPLEX

can be shown to display asymptotic convergence
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