Stochastic case

An Introduction to Stochastic Dual Dynamic Programming (SDDP).

V. Leclère (CERMICS, ENPC)

17/11/2020

Introduction

- Large scale stochastic optimization problems are hard to solve
- Different ways of attacking such problems:
 - decompose the problem and coordinate solutions
 - construct easily solvable approximations (Linear Programming)
 - find approximate value functions or policies
- Behind the name SDDP, Stochastic Dual Dynamic
 - a class of algorithms,
 - a specific implementation of an algorithm
 - a software implementing this method,

Introduction

- Large scale stochastic optimization problems are hard to solve
- Different ways of attacking such problems:

Deterministic case

- decompose the problem and coordinate solutions
- construct easily solvable approximations (Linear Programming)
- find approximate value functions or policies
- Behind the name SDDP, Stochastic Dual Dynamic *Programming*, one finds three different things:
 - a class of algorithms, based on specific mathematical assumptions
 - a specific implementation of an algorithm
 - a software implementing this method, and developed by the PSR company

Setting

- Multi-stage stochastic optimization problems with finite horizon.
- Continuous, finite dimensional state and control.
- Convex cost, linear dynamic.
- Discrete, stagewise independent noises.

Contents

- Kelley's algorithm
- Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule

Deterministic case

- Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
- Conclusion


```
Data: Convex objective function J, Compact set X, Initial
         point x_0 \in X
Result: Admissible solution x^{(k)}. lower-bound y^{(k)}
Set J^{(0)} \equiv -\infty:
for k \in \mathbb{N} do
    Compute a subgradient \alpha^{(k)} \in \partial J(x^{(k)});
    Define a cut C^{(k)}: x \mapsto J(x^{(k)}) + \langle \alpha^{(k)}, x - x^{(k)} \rangle;
    Update the lower approximation J^{(k+1)} = \max\{J^{(k)}, C^{(k)}\};
    Solve (P^{(k)}): \min_{x \in X} J^{(k+1)}(x);
    Set \underline{v}^{(k)} = val(P^{(k)});
    Select x^{(k+1)} \in sol(P^{(k)}):
end
```

Algorithm 1: Kelley's cutting plane algorithm

Contents

- Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result

17/11/2020

Problem considered

We consider an optimal control problem in discrete time with finite horizon T

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^{nT}} & & \sum_{t=0}^{T-1} c_t(\mathbf{x}_t, \mathbf{x}_{t+1}) + \mathcal{K}(\mathbf{x}_T) \\ & s.t. & & (\mathbf{x}_t, \mathbf{x}_{t+1}) \in P_t, \quad \mathbf{x}_0 \text{ given} \\ & & & \mathbf{x}_t \in X_t \end{aligned}$$

- We assume that $P_t \subset \mathbb{R}^n \times X_{t+1}$ is convex, and X_t convex compact
- the transition costs $c_t(x_t, x_{t+1})$ and the final cost $K(x_T)$ are convex

For example, x_t follow a dynamic $x_{t+1} = f_t(x_t, u_t)$, with

- f_t affine, $u_t \in U_t(x_t)$ is convex compact
- $c_t(x_t, x_{t+1}) = \min \{L_t(x_t, u_t) \mid u_t \in U_t(x_t), f_t(x_t, u_t) = x_{t+1}\},$ where L_t is a convex instantaneous cost function

7 / 46

Problem considered

We consider an optimal control problem in discrete time with finite horizon T

$$\begin{aligned} \min_{x \in \mathbb{R}^{nT}} \quad & \sum_{t=0}^{T-1} c_t(x_t, x_{t+1}) + K(x_T) \\ s.t. \quad & (x_t, x_{t+1}) \in P_t, \quad x_0 \text{ given} \\ & \quad & x_t \in X_t \end{aligned}$$

Stochastic case

- We assume that $P_t \subset \mathbb{R}^n \times X_{t+1}$ is convex, and X_t convex compact
- the transition costs $c_t(x_t, x_{t+1})$ and the final cost $K(x_T)$ are convex

For example, x_t follow a dynamic $x_{t+1} = f_t(x_t, u_t)$, with

- f_t affine, $u_t \in U_t(x_t)$ is convex compact
- $c_t(x_t, x_{t+1}) = \min \{ L_t(x_t, u_t) \mid u_t \in U_t(x_t), f_t(x_t, u_t) = x_{t+1} \},$ where L_t is a convex instantaneous cost function

Contents

- Melley's algorithm
- 2 Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
- 4 Conclusion

Introducing Bellman's function

We look for solutions as policies, where a policy is a sequence of functions $\pi = (\pi_1, \dots, \pi_{T-1})$ giving for any state x a control u. This problem can be solved by dynamic programming, thanks to the Bellman function that satisfies

$$\begin{cases} V_{\mathcal{T}}(x) &= K(x), \\ \tilde{V}_t(x) &= \min_{y:(x,y)\in P_t} \left\{ c_t(x,y) + V_{t+1}(y) \right\} \\ V_t &= \tilde{V}_t + \mathbb{I}_{X_t} \end{cases}$$

Indeed, an optimal policy for the original problem is given by

$$\pi_t(x) \in \arg\min_{x_{t+1}} \left\{ c_t(x, x_{t+1}) + V_{t+1}(x_{t+1}) \mid (x_t, x_{t+1}) \in P_t \right\}$$

Introducing Bellman's function

We look for solutions as policies, where a policy is a sequence of functions $\pi = (\pi_1, \dots, \pi_{T-1})$ giving for any state x a control u. This problem can be solved by dynamic programming, thanks to the Bellman function that satisfies

$$\begin{cases} V_{\mathcal{T}}(x) &= K(x), \\ \tilde{V}_t(x) &= \min_{y:(x,y)\in P_t} \left\{ c_t(x,y) + V_{t+1}(y) \right\} \\ V_t &= \tilde{V}_t + \mathbb{I}_{X_t} \end{cases}$$

Indeed, an optimal policy for the original problem is given by

$$\pi_t(x) \in \arg\min\left\{c_t(x, x_{t+1}) + V_{t+1}(x_{t+1}) \mid (x_t, x_{t+1}) \in P_t\right\}$$

Introducing Bellman's operator

We define the Bellman operator

$$\mathcal{B}_t(A): \mathbf{x} \mapsto \min_{\mathbf{y}: (\mathbf{x}, \mathbf{y}) \in P_t} \left\{ c_t(\mathbf{x}, \mathbf{y}) + A(\mathbf{y}) \right\}$$

With this notation, the Bellman Equation reads

$$\begin{cases} V_T = K, \\ V_t = \mathcal{B}_t(V_{t+1}) + \mathbb{I}_{X_t} \end{cases}$$

$$\pi_t^{\check{V}_{t+1}}: x \mapsto \arg\min \mathcal{B}_t(\check{V}_{t+1})(x)$$

9 / 46

Introducing Bellman's operator

We define the Bellman operator

$$\mathcal{B}_t(A): \mathbf{x} \mapsto \min_{\mathbf{y}: (\mathbf{x}, \mathbf{y}) \in P_t} \left\{ c_t(\mathbf{x}, \mathbf{y}) + A(\mathbf{y}) \right\}$$

With this notation, the Bellman Equation reads

$$\begin{cases} V_T = K, \\ V_t = \mathcal{B}_t(V_{t+1}) + \mathbb{I}_{X_t} \end{cases}$$

Any approximate cost function V_{t+1} induce an admissible policy

$$\pi_t^{\breve{V}_{t+1}}: x \mapsto \arg\min \mathcal{B}_t(\breve{V}_{t+1})(x).$$

9 / 46

Introducing Bellman's operator

We define the Bellman operator

$$\mathcal{B}_t(A): \mathbf{x} \mapsto \min_{\mathbf{y}: (\mathbf{x}, \mathbf{y}) \in P_t} \left\{ c_t(\mathbf{x}, \mathbf{y}) + A(\mathbf{y}) \right\}$$

With this notation, the Bellman Equation reads

$$\begin{cases} V_T = K, \\ V_t = \mathcal{B}_t(V_{t+1}) + \mathbb{I}_{X_t} \end{cases}$$

Any approximate cost function V_{t+1} induce an admissible policy

$$\pi_t^{\breve{V}_{t+1}}: x \mapsto \arg\min \mathcal{B}_t(\breve{V}_{t+1})(x).$$

By Dynamic Programming, $\pi_t^{V_{t+1}}$ is optimal.

Properties of the Bellman operator

Monotonicity:

$$V \leq \overline{V} \quad \Rightarrow \mathcal{B}_t(V) \leq \mathcal{B}_t(\overline{V})$$

• Convexity: if c_t is jointly convex, P and X are closed convex, V is convex then

$$x \mapsto \mathcal{B}_t(V)(x)$$
 is convex

• Polyhedrality: for any polyhedral function V, if c_t is also polyhedral, and P_t and X_t are polyhedron, then

$$x \mapsto \mathcal{B}_t(V)(x)$$
 is polyhedral

Duality property

• Consider $J: \mathbb{X} \times \mathbb{U} \to \mathbb{R}$ jointly convex, and define

$$\varphi(x) = \min_{u \in \mathbb{I}} J(x, u)$$

• Then we can obtain a subgradient $\alpha \in \partial \varphi(x_0)$ as the dual multiplier of

$$\min_{x,u} J(x,u),$$
s.t. $x_0 - x = 0$ $[\alpha]$

(This is the marginal interpretation of the multiplier)

• In particular, we have that

$$\varphi(\cdot) > \varphi(x_0) + \langle \alpha, \cdot - x_0 \rangle$$

Contents

- Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result

General idea

- The SDDP algorithm recursively constructs an approximation of each Bellman function V_t as the supremum of affine functions
- At stage k, we have a lower approximation $V_t^{(k)}$ of V_t and we want to construct a better approximation
- We follow an optimal trajectory $(x_t^{(k)})_t$ of the approximated problem, and add a so-called "cut" to improve each Bellman function

t=0

t=1

x

X

x Final Cost $V_2 = K$

x

x

Real Bellman function $V_1 = \mathcal{B}_1(V_2)$

x

Deterministic SDDP

x Real Bellman function $V_0 = \mathcal{B}_0(V_1)$

Lower polyhedral approximation K of K

Lower polyhedral approximation $\underline{V}_1 = \mathcal{B}_t(\underline{K})$ of V_1

Lower polyhedral approximation $\underline{V}_0 = \mathcal{B}_t(\underline{V}_1)$ of V_0

Assume that we have lower polyhedral approximations of V_t

Thus we have a lower bound on the value of our problem

We apply $\pi_0^{\stackrel{\frown}{V_1^{(2)}}}$ to x_0 and obtain $x_1^{(2)}$

We apply $\pi_1^{V_1^{(2)}}$ to $x_1^{(2)}$ and obtain $x_2^{(2)}$

We apply $\pi_1^{V_1^{(2)}}$ to $x_1^{(2)}$ and obtain $x_2^{(2)}$

V. Leclère Introduction to SDDP 17/11/2020 13 / 46

V. Leclère Introduction to SDDP 17/11/2020 13 / 46

V. Leclère Introduction to SDDP 17/11/2020 13 / 46

Add the cut to $\underline{V}_2^{(2)}$ which gives $\underline{\overset{\times}{V}_2^{(3)}}$

V. Leclère Introduction to SDDP 17/11/2020 13 / 46

V. Leclère Introduction to SDDP 17/11/2020 13 / 46

We only compute the face active at $x_1^{(2)}$

V. Leclère Introduction to SDDP 17/11/2020 13 / 46

A new lower approximation of V_0 is $\mathcal{B}_0(\underline{V}_1^{(3)})$

Deterministic case

We only compute the face active at x_0

V. Leclère Introduction to SDDP 13 / 46

We only compute the face active at x_0

V. Leclère Introduction to SDDP 17/11/2020 13 / 46

We obtain a new lower bound

Deterministic case

We obtain a new lower bound

end

```
Data: Starting point, initial lower approximation
Result: optimal trajectory and value function;
V_T \equiv K:
for k = 1, 2, ... do
    set x_0^{(k)} = x_0
    /* Forward pass : compute trajectory
                                                                                */
    for t = 0, ..., T - 1 do
    find x_{t+1}^{(k)} \in \arg\min \mathcal{B}_t(V_{t+1}^{(k)})(x_t^{(k)}):
    end
    /* Backward pass : update cuts
                                                                                */
    for t = T - 1, ..., 0 do
         Solve \mathcal{B}_t(V_{t+1}^{(k+1)})(x_t^{(k)}) to compute \mathcal{C}_t^{(k+1)};
         Update lower approximations : V_t^{(k+1)} := \max\{V_t^{(k)}, C_t^{(k+1)}\}:
    end
```

Algorithm 2: Deterministic Dual Dynamic Programming

Detailing forward pass

• From t=0 to t=T-1 we have to solve T one-stage problem of the form

Stochastic case

$$egin{aligned} x_{t+1}^{(k)} \in rg\min_{y} & c_t(x_t^{(k)}, y) + \underline{V}_{t+1}^{(k)}(y) \ & (x_t^{(k)}, y) \in P_t \end{aligned}$$

• We only need to keep the trajectory $(x_t^{(k)})_{t \in [0, T]}$.

V. Leclère Introduction to SDDP 17/11/2020 15 / 46

Detailing Backward pass

• From t = T - 1 to t = 0 we have to solve T one-stage problem of the form

$$\theta_t^{(k+1)} = \min_{x,y} \quad c_t(x,y) + \underline{V}_{t+1}^{(k+1)}(y)$$
$$(x,y) \in P_t$$
$$x = x_t^{(k)} \quad [\alpha_t^{(k+1)}]$$

By construction, we have that

$$\theta_t^{(k+1)} = \mathcal{B}_t \left(\underline{\mathcal{V}}_{t+1}^{(k+1)} \right) (x_t^{(k)}), \qquad \alpha_t^{(k+1)} \quad \in \partial \mathcal{B}_t \left(\underline{\mathcal{V}}_{t+1}^{(k+1)} \right) (x_t^{(k)}).$$

Which means

$$\mathcal{C}_t^{(k+1)} := \theta_t^{(k+1)} + \langle \alpha_t^{(k+1)}, \cdot -x_t^{(k)} \rangle \leq \mathcal{B}_t \left(\underline{V}_{t+1}^{(k+1)} \right) \leq \mathcal{B}_t \left(V_{t+1} \right) = \tilde{V}_t \leq V_t$$

V. Leclère Introduction to SDDP 17/11/2020 16 / 46

Contents

- Melley's algorithm
- 2 Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
- 4 Conclusion

Initialization and stopping rule

- To initialize the algorithm, we need a lower bound $\underline{V}_t^{(0)}$ for each value function V_t . This lower bound can be computed backward by arbitrarily choosing a point x_t and using the standard cut computation.
- At any step k we have an admissible, non optimal trajectory $(x_t^{(k)})_t$, with
 - an upper bound

$$\sum_{t=0}^{T-1} c_t (x_t^{(k)}, x_{t+1}^{(k)}) + K(x_T^{(k)})$$

- a lower bound $\underline{V}_0^{(k)}(x_0)$
- A reasonable stopping rule for the algorithm is given by checking that the (relative) difference between the upper and lower bounds is small enough

Contents

- Melley's algorithm
- 2 Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
 - 4 Conclusion

Extended Relatively Complete Recourse

• We say that we are in a relatively complete recourse framework if

$$\forall t, \quad \forall x_t \in X_t, \quad \exists x_{t+1} \in X_{t+1} \quad \text{such that} \quad (x_t, x_{t+1}) \in P_t.$$

 We say that we are in a extended relatively complete recourse framework if there exists $\varepsilon > 0$ such that

$$\forall t, \quad \forall x_t \in X_t + \varepsilon B, \quad \exists x_{t+1} \in X_{t+1} \quad \text{such that} \quad (x_t, x_{t+1}) \in P_t.$$

- RCR is required for the algorithm to run (otherwise we could find
- ERCR is required for the convergence proof as the way of ensuring

V. Leclère Introduction to SDDP 17/11/2020 18 / 46

Extended Relatively Complete Recourse

• We say that we are in a relatively complete recourse framework if

$$\forall t, \quad \forall x_t \in X_t, \quad \exists x_{t+1} \in X_{t+1} \quad \text{such that} \quad (x_t, x_{t+1}) \in P_t.$$

• We say that we are in a extended relatively complete recourse framework if there exists $\varepsilon > 0$ such that

$$\forall t, \quad \forall x_t \in X_t + \varepsilon B, \quad \exists x_{t+1} \in X_{t+1} \quad \text{such that} \quad (x_t, x_{t+1}) \in P_t.$$

- RCR is required for the algorithm to run (otherwise we could find non-finite problems, and would require some feasability cuts mechanisms).
- ERCR is required for the convergence proof as the way of ensuring that the multipliers α_t^k remains bounded.

Lemma

Let $f: X \to \mathbb{R}$ where X is compact. Let $(f^k)_{k \in \mathbb{N}}$ be a sequence of functions such that

- $f^k < f^{k+1} < f$
- f^k are Lipschitz continuous uniformly in k

Consider a sequence $(x^k)_{k\in\mathbb{N}}$ of points of X such that $f(x^k) - f^{k+1}(x^k) \to 0$. Then, we also have $f(x^k) - f^k(x^k) \to 0$.

Lemma

Under convexity assumptions, compactness of X_t , and ERCR the SDDP algorithm is well defined and

- \emptyset for all t, V_t is convex and Lipschitz
- for all t, k, and $x \in X_t$, $\underline{V}_t^k \leq V_t$
- There exists L > 0 such that $\|\alpha_t^k\| \leq L$, thus V_t^k is L-Lipschitz

Convergence result

$\mathsf{Theorem}$

Let K and c_t be convex functions, X_t and P_t be closed convex sets, and X_t bounded. Assume that we have extended relatively complete recourse. Then, for every t, we have

Stochastic case

$$\lim_{k} \underline{V}_{t}^{(k)}(x_{t}^{(k)}) - V_{t}(x_{t}^{(k)}) = 0.$$

Further, the cost associated to $\pi \frac{V_t^{(k)}}{t}$ converges toward the optimal value of the problem.

Convergence result

$\mathsf{Theorem}$

Let K and c_t be convex functions, X_t and P_t be closed convex sets, and X_t bounded. Assume that we have extended relatively complete recourse. Then, for every t, we have

Stochastic case

$$\lim_{k} \underline{V}_{t}^{(k)}(x_{t}^{(k)}) - V_{t}(x_{t}^{(k)}) = 0.$$

Further, the cost associated to $\pi \frac{V_t^{(k)}}{t}$ converges toward the optimal value of the problem.

In other words, the upper and lower bounds are both converging.

Contents

- Melley's algorithm
- Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
- 4 Conclusion

nat 5 new .

Now we introduce random variables ξ_t in our problem, which complexifies the algorithm in different ways:

- we need some probabilistic assumptions
- for each stage k we need to do a forward phase, for each sequence of realizations of the random variables, that yields a trajectory $(x_t^{(k)})_t$, and a backward phase that gives a new cut

Stochastic case

we cannot compute an exact upper bound for the problem value

Problem statement

We consider the optimization problem

$$\begin{aligned} & \min \quad \mathbb{E}\Big[\sum_{t=0}^{T-1} c_t(\boldsymbol{x}_t, \boldsymbol{x}_{t+1}, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\Big] \\ & s.t. \quad (\boldsymbol{x}_t, \boldsymbol{x}_{t+1}) \in P_t(\boldsymbol{\xi}_{t+1}) \\ & \quad \boldsymbol{x}_t \in X_t, \qquad \boldsymbol{x}_0 = x_0 \\ & \quad \boldsymbol{x}_t \preceq \sigma(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_t) \end{aligned}$$

Stochastic case

under the crucial assumption that $(\xi_t)_{t \in \{1, \dots, T\}}$ is a white noise

Stochastic case

Problem statement

We consider the optimization problem

$$\begin{aligned} & \min \quad \mathbb{E}\Big[\sum_{t=0}^{T-1} c_t(\boldsymbol{x}_t, \boldsymbol{x}_{t+1}, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{x}_T)\Big] \\ & s.t. \quad (\boldsymbol{x}_t, \boldsymbol{x}_{t+1}) \in P_t(\boldsymbol{\xi}_{t+1}) \\ & \quad \boldsymbol{x}_t \in X_t, \qquad \boldsymbol{x}_0 = x_0 \\ & \quad \boldsymbol{x}_t \preceq \sigma(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_t) \end{aligned}$$

under the crucial assumption that $(\xi_t)_{t \in \{1, \dots, T\}}$ is a white noise

→ we are in an hazard-decision framework.

V. Leclère Introduction to SDDP 17/11/2020 22 / 46

Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by dynamic programming, where the Bellman functions satisfy

Stochastic case

$$\left\{egin{array}{lll} V_{\mathcal{T}} &=& \mathcal{K} \ \hat{V}_t(x,\xi) &=& \displaystyle\min_{(x,y)\in P_t(\xi)} c_t(x,y,\xi) + V_{t+1}(y) \ ilde{V}_t(x) &=& \mathbb{E}\Big[\hat{V}_t(x,oldsymbol{\xi}_t)\Big] \ V_t &=& ilde{V}_t + \mathbb{I}_{\mathcal{X}_t} \end{array}
ight.$$

Indeed, an optimal policy for this problem is given by

$$\pi_t(x,\xi) \in \operatorname*{arg\,min}_{(x,y) \in P_t(\xi)} \left\{ c_t(x,y,\xi) + V_{t+1}(y) \right\}$$

Bellman operator

For any time t, and any function A mapping the set of states and noises $\mathbb{X} \times \Xi$ into \mathbb{R} , we define

Stochastic case

$$\begin{cases} \hat{\mathcal{B}}_t(A)(x,\xi) &:= \min_{(x,y) \in P_t(\xi)} c_t(x,y,\xi) + A(y) \\ \mathcal{B}_t(A)(x) &:= \mathbb{E}\Big[\hat{\mathcal{B}}_t(A)(x,\xi_t)\Big] \end{cases}$$

$$\begin{cases} V_{\mathcal{T}} &= K \\ V_{t} &= \underbrace{\mathcal{B}_{t}(V_{t+1})}_{\tilde{V}_{t}} + \mathbb{I}_{X} \end{cases}$$

V. Leclère Introduction to SDDP 17/11/2020 24 / 46

Bellman operator

For any time t, and any function A mapping the set of states and noises $\mathbb{X} \times \Xi$ into \mathbb{R} , we define

Stochastic case

$$\begin{cases} \hat{\mathcal{B}}_t(A)(x,\xi) &:= \min_{(x,y) \in P_t(\xi)} c_t(x,y,\xi) + A(y) \\ \mathcal{B}_t(A)(x) &:= \mathbb{E}\Big[\hat{\mathcal{B}}_t(A)(x,\xi_t)\Big] \end{cases}$$

Thus the Bellman equation simply reads

$$\begin{cases} V_T &= K \\ V_t &= \underbrace{\mathcal{B}_t(V_{t+1})}_{\widetilde{V}_t} + \mathbb{I}_{X_t} \end{cases}$$

The Bellman operators have the same properties as in the deterministic case

V. Leclère Introduction to SDDP 17/11/2020 24 / 46

24 / 46

Contents

- - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result

Computing cuts (1/2)

Suppose that we have $V_{t+1}^{(k+1)} \leq V_{t+1}$

$$\begin{split} \hat{\theta}_{t}^{(k+1)}(\xi) &= \min_{x,y} \quad c_{t}(x,y,\xi) + \underline{V}_{t+1}^{(k+1)}(y) \\ s.t \quad x &= x_{t}^{(k)} \qquad [\hat{\alpha}_{t}^{(k+1)}(\xi)] \\ (x,y) &\in P_{t}(\xi) \end{split}$$

$$\hat{\theta}_t^{(k+1)}(\xi) = \hat{\mathcal{B}}_t \left[\underline{V}_{t+1}^{(k+1)} \right] (x, \xi)$$
$$\hat{\alpha}_t^{(k+1)}(\xi) \in \partial_x \hat{\mathcal{B}}_t \left[\underline{V}_{t+1}^{(k+1)} \right] (x, \xi)$$

Thus, for all
$$\xi$$
, $\hat{\mathcal{C}}_t^{(k+1),\xi}: x \mapsto \hat{\theta}_t^{(k+1)}(\xi) + \left\langle \hat{\alpha}_t^{(k+1)}(\xi), x - x_t^{(k)} \right\rangle$ satisfy
$$\hat{\mathcal{C}}_t^{(k+1),\xi}(x) \leq \hat{\mathcal{B}}_t \left[\underline{V}_{t+1}^{(k+1)} \right](x,\xi) \leq \hat{\mathcal{B}}_t \left[V_{t+1} \right](x,\xi) = \hat{V}_t(x,\xi)$$

Computing cuts (1/2)

Suppose that we have $V_{t+1}^{(k+1)} \leq V_{t+1}$

$$\begin{split} \hat{\theta}_{t}^{(k+1)}(\xi) &= \min_{x,y} \quad c_{t}(x,y,\xi) + \underline{V}_{t+1}^{(k+1)}(y) \\ s.t \quad x &= x_{t}^{(k)} \quad [\hat{\alpha}_{t}^{(k+1)}(\xi)] \\ (x,y) &\in P_{t}(\xi) \end{split}$$

This can also be written as

$$\begin{split} \hat{\theta}_t^{(k+1)}(\xi) &= \hat{\mathcal{B}}_t \Big[\underline{V}_{t+1}^{(k+1)} \Big](x, \xi) \\ \hat{\alpha}_t^{(k+1)}(\xi) &\in \partial_x \hat{\mathcal{B}}_t \Big[\underline{V}_{t+1}^{(k+1)} \Big](x, \xi) \end{split}$$

Thus, for all
$$\xi$$
, $\hat{\mathcal{C}}_t^{(k+1),\xi}: x \mapsto \hat{\theta}_t^{(k+1)}(\xi) + \left\langle \hat{\alpha}_t^{(k+1)}(\xi), x - x_t^{(k)} \right\rangle$ satisfy
$$\hat{\mathcal{C}}_t^{(k+1),\xi}(x) \leq \hat{\mathcal{B}}_t \left[\underline{V}_{t+1}^{(k+1)} \right](x,\xi) \leq \hat{\mathcal{B}}_t \left[V_{t+1} \right](x,\xi) = \hat{V}_t(x,\xi)$$

V. Leclère Introduction to SDDP 17/11/2020 25 / 46

Computing cuts (1/2)

Suppose that we have $\underline{V}_{t+1}^{(k+1)} \leq V_{t+1}$

$$\begin{split} \hat{\theta}_{t}^{(k+1)}(\xi) &= \min_{x,y} \quad c_{t}(x,y,\xi) + \underline{V}_{t+1}^{(k+1)}(y) \\ s.t \quad x &= x_{t}^{(k)} \quad [\hat{\alpha}_{t}^{(k+1)}(\xi)] \\ (x,y) &\in P_{t}(\xi) \end{split}$$

This can also be written as

$$\begin{split} \hat{\theta}_t^{(k+1)}(\xi) &= \hat{\mathcal{B}}_t \Big[\underline{V}_{t+1}^{(k+1)} \Big](x, \xi) \\ \hat{\alpha}_t^{(k+1)}(\xi) &\in \partial_x \hat{\mathcal{B}}_t \Big[\underline{V}_{t+1}^{(k+1)} \Big](x, \xi) \end{split}$$

Thus, for all
$$\xi$$
, $\hat{\mathcal{C}}_t^{(k+1),\xi}: x \mapsto \hat{\theta}_t^{(k+1)}(\xi) + \left\langle \hat{\alpha}_t^{(k+1)}(\xi), x - x_t^{(k)} \right\rangle$ satisfy
$$\hat{\mathcal{C}}_t^{(k+1),\xi}(x) \leq \hat{\mathcal{B}}_t \left[\underline{V}_{t+1}^{(k+1)} \right](x,\xi) \leq \hat{\mathcal{B}}_t \left[V_{t+1} \right](x,\xi) = \hat{V}_t(x,\xi)$$

Computing cuts (2/2)

Thus, we have an affine minorant of $\hat{V}_t(x, \xi_t)$ for each realization of ξ_t Replacing ξ by the random variable ξ_t and taking the expectation yields the following affine minorant

$$C^{(k+1)} := \theta_t^{(k+1)} + \left\langle \alpha_t^{(k+1)}, \cdot - x_t^{(k)} \right\rangle \leq V_t$$

where

$$\begin{cases} \theta_t^{(k+1)} &:= & \mathbb{E}\left[\hat{\theta}_t^{(k+1)}(\boldsymbol{\xi}_t)\right] = \mathcal{B}_t\left[\underline{V}_{t+1}^{(k)}\right](x) \\ \alpha_t^{(k+1)} &:= & \mathbb{E}\left[\hat{\alpha}_t^{(k+1)}(\boldsymbol{\xi}_t)\right] \in \partial \mathcal{B}_t\left[\underline{V}_{t+1}^{(k)}\right](x) \end{cases}$$

Contents

- 1 Kelley's algorithm
- 2 Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
 - 4 Conclusion

x

t=0 t=1

X

Final Cost $V_2 = K$

X

Real Bellman function $V_1 = \mathcal{B}_1(V_2)$

X

Abstract SDDP

x Real Bellman function $V_0 = \mathcal{B}_0(V_1)$

Lower polyhedral approximation K of K

Lower polyhedral approximation $\underline{V}_1 = \mathcal{B}_t(\underline{K})$ of V_1

Lower polyhedral approximation $\underline{V}_0 = \mathcal{B}_t(\underline{V}_1)$ of V_0

Introduction to SDDP 17/11/2020 27 / 46

Assume that we have lower polyhedral approximations of V_t

Obtain a lower bound on the value of our problem

Stochastic case

Draw a random realisation $x_2^{(2)}$ of $\boldsymbol{X}_2^{(2)}$

Compute a cut for K at $x_2^{(2)}$

A new lower approximation of V_1 is $\mathcal{B}_1(\underline{V}_2^{(3)})$

Compute the face active at $x_1^{(2)}$

A new lower approximation of V_0 is $\mathcal{B}_0(\underline{V}_1^{(3)})$

Compute the face active at x_0

Compute the face active at x_0

Obtain a new lower bound

Obtain a new lower bound

28 / 46

SDDP description

```
for k = 1, 2, ... do
     set V_T^{(k+1)} \equiv K; x_0^{(k)} = x_0:
    draw (\xi_t^{(k)})_{t\in \llbracket 1,T\rrbracket};
     /* Forward pass : compute trajectory
                                                                                              */
     for t = 0, ..., T - 1 do
         find x_{t+1}^{(k)} \in \arg\min \hat{\mathcal{B}}_t(V_{t+1}^{(k)})(x_t^{(k)}, \xi_t^{(k)});
     end
     /* Backward pass : update cuts
                                                                                              */
     for t = T - 1, ..., 0 do
           for \xi \in \Xi_t do
              Solve \hat{\mathcal{B}}_t(\underline{V}_{t+1}^{(k+1)})(x_t^{(k)},\xi) to compute \hat{\mathcal{C}}_t^{(k+1),\xi}:
           end
     end
     Compute averaged cut : C_t^{(k+1)} ;
     Update lower approximation : V_t^{(k+1)} := \max\{V_t^{(k)}, C_t^{(k+1)}\}:
end
```

Algorithm 3: Stochastic Dual Dynamic Programming

Detailing forward pass

• From t=0 to t=T-1 we have to solve T one-stage problem of the form

Stochastic case

$$x_{t+1}^{(k)} \in \operatorname*{arg\,min}_{y} \quad c_{t}(x_{t}^{(k)}, y, \xi_{t}^{(k)}) + \underline{V}_{t+1}^{(k)}(y)$$

$$(x_{t}^{(k)}, y) \in P_{t}$$

• We only need to keep the trajectory $(x_t^{(k)})_{t \in [0, T]}$.

Detailing Backward pass

• For each $t = T - 1 \rightarrow 0$ we solve Ξ_t one-stage problem

$$\hat{\theta}_{t}^{(k+1)}(\xi) = \min_{y} \quad c_{t}(x_{t}^{(k)}, y, \xi) + \underline{V}_{t+1}^{(k+1)}(y)$$
$$(x_{t}^{(k)}, y) \in P_{t}$$
$$x = x_{t}^{(k)} \quad [\hat{\alpha}_{t}^{(k+1)}(\xi)]$$

By construction, we have that

$$\hat{\theta}_t^{(k+1)}(\xi) = \mathcal{B}_t\Big(\underline{V}_{t+1}^{(k)}\Big)\big(x_t^{(k)},\xi\big), \qquad \hat{\alpha}_t^{(k+1)}(\xi) \quad \in \partial \mathcal{B}_t\Big(\underline{V}_{t+1}^{(k)}\Big)\big(x_t^{(k)},\xi\big).$$

We average the coefficients

$$\theta_t^{(k+1)} = \mathbb{E}\left[\hat{\theta}_t^{(k+1)}(\boldsymbol{\xi})\right], \qquad \alpha_t^{(k+1)} = \mathbb{E}\left[\hat{\alpha}_t^{(k+1)}(\boldsymbol{\xi})\right]$$

Which means

$$\mathcal{C}_t^{(k+1)} := \theta_t^{(k+1)} + \langle \alpha_t^{(k+1)}, \cdot - x_t^{(k)} \rangle \leq \mathcal{B}_t \Big(\underline{V}_{t+1}^{(k+1)} \Big) \leq \mathcal{B}_t \Big(V_{t+1} \Big) = \tilde{V}_t \leq V_t$$

- Let $\{C_i\}_{i\in\mathbb{N}}$ be a sequence of identically distributed random variables with finite variance.
- Then the Central Limit Theorem ensures that

$$\sqrt{n}\Big(rac{\sum_{i=1}^{n} \boldsymbol{C}_{i}}{n} - \mathbb{E}[\boldsymbol{C}_{1}]\Big) \Longrightarrow G \sim \mathcal{N}(0, \textit{Var}[\boldsymbol{C}_{1}]) \; ,$$

where the convergence is in law.

In practice it is often used in the following way.
 Asymptotically,

$$\mathbb{P}\Big(\mathbb{E}\big[C_1\big] \in \Big[\bar{\boldsymbol{C}}_n - \frac{1.96\boldsymbol{\sigma}_n}{\sqrt{n}}, \bar{\boldsymbol{C}}_n + \frac{1.96\boldsymbol{\sigma}_n}{\sqrt{n}}\Big]\Big) \simeq 95\%,$$

where $\bar{C}_n = \frac{\sum_{i=1}^n C_i}{n}$ is the empirical mean and $\sigma_n = \sqrt{\frac{\sum_{i=1}^n (C_i - \bar{C}_n)^2}{n-1}}$ the empirical standard deviation.

32 / 46

Bounds

- Exact lower bound on the value of the problem: $\underline{V}_0^{(k)}(x_0)$.
- Exact upper bound on the value of the problem:

$$\mathbb{E}\Big[\sum_{t=0}^{T-1} c_t(\boldsymbol{x}_t^{(k)}, \boldsymbol{x}_{t+1}^{(k)}, \boldsymbol{\xi}_{t+1}) + K(\boldsymbol{X}_T)\Big]$$

where $X_t^{(k)}$ is the trajectory induced by $\underline{V}_t^{(k)}$.

- This bound cannot be computed exactly, but can be estimated by Monte-Carlo method as follows
 - Draw *N* scenarios $\{\xi_1^n, \dots, \xi_T^n\}$.
 - Simulate the corresponding N trajectories $x_t^{(k),n}$, and the total cost for each trajectory $C^{(k),n}$.
 - Compute the empirical mean $\bar{C}^{(k),N}$ and standard dev. $\sigma^{(k),N}$.
 - Then, with confidence 95% the upper bound on the problem is

$$[\bar{C}^{(k),N} - \frac{1.96\sigma^{(k),N}}{\sqrt{N}}, \underbrace{\bar{C}^{(k),N} + \frac{1.96\sigma^{(k),N}}{\sqrt{N}}}_{UB_k}$$

• One stopping test consist in fixing an a priori relative gap ε , and stopping if

$$\frac{UB_k - V_0^{(k)}(x_0)}{V_0^{(k)}(x_0)} \le \varepsilon$$

in which case we know that the solution is ε -optimal with probability 97.5%.

- It is not necessary to evaluate the gap at each iteration.
- To alleviate the computational load, we can estimate the upper bound by using the trajectories of the recent forward phases.
- Another more practical stopping rule consists in stopping after a given number of iterations or fixed computation time.

Contents

- 1 Kelley's algorithm
- 2 Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
 - 4 Conclusion

Non-independent inflows

- In most cases the stagewise independence assumption is not realistic.
- One classical way of modelling dependencies consists in considering that the inflows l_t follow an AR-k process

$$I_t = \alpha_1 I_{t-1} + \dots + \alpha_k I_{t-k} + \theta_t + \xi_t$$

where ξ_t is the residual, forming an independent sequence.

• The state of the system is now $(X_t, I_{t-1}, \dots, I_{(t-k)})$.

Implementations and numerical tricks

- We can play with the number of forward / backward pass.
 Classically we do 200 forward passes in parallel, before computing cuts.
- Instead of averaging the cuts, we can keep one cut per alea, for a multicut version. In other word instead of representing V_t we represent \hat{V}_t .
- Early forward passes are not really usefull, selecting (randomly or by hand) a few trajectory can save some workload.
- Cut pruning (eliminating useless cuts) is easy to implement and pretty efficient.
- Adding some regularization term in the forward pass has shown some numerical improvement but is not yet fully understood.

Cut Selection methods

- Let $V_t^{(k)}$ be defined as $\max_{\ell \le k} C_t^{(\ell)}$
- For i < k, if

$$\min_{x,\alpha} \quad \alpha - \mathcal{C}_t^{(j)}(x)
s.t. \quad \alpha \ge \mathcal{C}_t^{(\ell)}(x) \qquad \forall \ell \ne j$$

is non-negative, then cut j can be discarded without modifying $V_{+}^{(k)}$

• this technique is exact but time-consuming.

Cut Selection methods

- Instead of comparing a cut everywhere, we can choose to compare it only on the already visited points.
- The Level-1 cut method goes as follow:
 - keep a list of all visited points $x_t^{(\ell)}$ for $\ell < k$.
 - for ℓ from 1 to k, tag each cut that is active at $x_{\ell}^{(\ell)}$.
 - Discard all non-tagged cut.

Contents

- Melley's algorithm
- 2 Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
- 4 Conclusion

Coherent Risk Measure

To take into account some risk aversion we can replace the expectation by a risk measure. A risk measure is a function giving to a random cost **X** a determinitic equivalent $\rho(\mathbf{X})$ A Coherent Risk Measure $\rho: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ is a functionnal satisfying

- Monotonicity: if $X \geq Y$ then $\rho(X) \geq \rho(Y)$,
- Translation equivariance: for $c \in \mathbb{R}$ we have $\rho(\mathbf{X}+\mathbf{c})=\rho(\mathbf{X})+\mathbf{c}$
- Convexity: for $t \in [0, 1]$, we have

$$\rho(t\mathbf{X} + (1-t)\mathbf{Y}) \le t\rho(\mathbf{X}) + (1-t)\rho(\mathbf{Y}),$$

• Positive homogeneity: for $\alpha \in \mathbb{R}^+$, we have $\rho(\alpha X) = \alpha \rho(X)$.

V. Leclère Introduction to SDDP 17/11/2020 38 / 46

Coherent Risk Measure

From convex analysis we obtain the main theorem over coherent risk measure.

Theorem

Let ρ be a coherent risk measure, then there exists a (convex) set of probability $\mathcal P$ such that

$$\forall \boldsymbol{X}, \qquad \rho(\boldsymbol{X}) = \sup_{\mathbb{O} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[\boldsymbol{X}].$$

Average Value at Risk

One of the most practical and used coherent risk measure is the Average Value at Risk at level α . Roughly, it is the expectation of the cost over the α -worst cases. For a random variable \boldsymbol{X} admitting a density, we define de value at risk of level α , as the quantile of level α , that is

$$VaR_{\alpha}(\mathbf{X}) = \inf\Big\{t \in \mathbb{R} \mid \mathbb{P}\big(\mathbf{X} \geq t\big) \leq \alpha\Big\}.$$

And the average value at risk is

$$AVaR_{\alpha}(\mathbf{X}) = \mathbb{E}\left[\mathbf{X} \mid \mathbf{X} \geq VaR_{\alpha}(\mathbf{X})\right]$$

Average Value at Risk

One of the best aspect of the AVaR, is the following formula

$$AVaR_{lpha}(\mathbf{X}) = \min_{\mathbf{t} \in \mathbb{R}} \Big\{ \mathbf{t} + \frac{\mathbb{E}\big[X - \mathbf{t}\big]^+}{lpha} \Big\}.$$

Indeed it allow to linearize the AVaR.

V. Leclère Introduction to SDDP 17/11/2020 41 / 46

Deterministic case

- The problem studied was risk neutral
- However a lot of works has been done recently about how to solve risk averse problems
- Most of them are using AVAR, or a mix between AVAR and expectation either as objective or constraint
- Indeed AVAR can be used in a linear framework by adding other variables
- Another easy way is to use "composed risk measures"
- Finally a convergence proof with convex costs (instead of linear costs) exists, although it requires to solve non-linear problems

Contents

- - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule

Deterministic case

- Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result

Assumptions

- Noises are time-independent, with finite support.
- X_t is convex compact, P_t is closed convex.
- Costs are convex and lower semicontinuous.
- We are in a strong relatively complete recourse framework.

- stage-independence of noise is not required to have theoretical

Assumptions

- Noises are time-independent, with finite support.
- X_t is convex compact, P_t is closed convex.
- Costs are convex and lower semicontinuous.
- We are in a strong relatively complete recourse framework.

Remark, if we take the tree-view of the algorithm

- stage-independence of noise is not required to have theoretical convergence
- node-selection process should be admissible (e.g. independent, SDDP, CUPPS...)

Theorem

With the preceding assumption, we have that the upper and lower bound are almost surely converging toward the optimal value, and we can obtain an ε -optimal strategy for any $\varepsilon > 0$.

More precisely, if we call $\underline{V}_t^{(k)}$ the outer approximation of the Bellman function V_t at step k of the algorithm, and $\pi_t^{(k)}$ the corresponding strategy, we have

$$\underline{V}_0^{(k)}(x_0) \to_k V_0(x_0)$$

and

$$\mathbb{E}\left[c_t\left(\boldsymbol{x}_t^{(k)},\boldsymbol{x}_{t+1}^{(k)},\boldsymbol{\xi}_t\right)+\underline{V}_{t+1}^{(k)}(\boldsymbol{x}_{t+1}^{(k)})\right]-V_t(\boldsymbol{x}_t^{(k)})\rightarrow_k 0.$$

Contents

- Melley's algorithm
- 2 Deterministic case
 - Problem statement
 - Some background on Dynamic Programming
 - SDDP Algorithm
 - Initialization and stopping rule
 - Convergence
- Stochastic case
 - Problem statement
 - Computing cuts
 - SDDP algorithm
 - Complements
 - Risk
 - Convergence result
 - Conclusion

Conclusion

SDDP is an algorithm, more precisely a class of algorithms, that

 exploits convexity of the value functions (from convexity of costs...)

Stochastic case

- does not require state discretization
- constructs outer approximations of V_t , those approximations being precise only "in the right places"
- gives bounds:
 - "true" lower bound $V_0^{(k)}(x_0)$
 - estimated (by Monte-Carlo) upper bound
- constructs linear-convex approximations, thus enabling to use linear solver like CPLEX
- can be shown to display asymptotic convergence

Bibliography

- M. PEREIRA, L.PINTO (1991).

 Multi-stage stochastic optimization applied to energy planning

 Mathematical Programming
- A. Shapiro (2011).

 Analysis of stochastic dual dynamic programming method.

 European Journal of Operational Research.
- P.GIRARDEAU, V.LECLÈRE, A. PHILPOTT (2014).

 On the convergence of decomposition methods for multi-stage stochastic convex programs.

 Mathematics of Operations Research.