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Abstract

The class of entropy fixes originated by Harten and Hyman, as applied to
Roe’s linearization of convex hyberbolic equations, is reformulated within a
unified framework. By adopting a complementary viewpoint with respect to
that of Harten, the entropy fix is recast in terms of expressions involving either
the propagation speeds or the speed differences. The proposed formulation
allows to analyze and compare several versions of this classof entropy fix
and to elaborate some new variants thereof. In addition, this framework
accommodates an interpretation of the HLL schemes which leads to the
concept of a positivity preserving entropy fix and to a solution-dependent
correction to Roe’s scheme so as to assure positive solutions.

Keywords: Numerical solution of conservation laws, Non-linear hyperbolic
equations, Entropy fix
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1 Introduction

Weak solutions of initial value problems for hyperbolic conservation laws are
nonunique. To select the physically relevant unique solution, additional crite-
ria have to be considered, which are mostly referred to asentropy conditions—a
denomination originated from gas dynamics. In particular,a weak form of the
entropy condition may be used as a mathematical tool to verify that a given nu-
merical method converges necessarily to the physically unique weak solution [12,
p. 39]. As an example, it can be proved that weak solutions obtained by means
of a Godunov type method satisfy the entropy condition, assuming that entropy-
satisfying solutions to the Riemann problems are used [12, p. 143]. This condition
is verified by the original Godunov method [6], which considers the exact solution
of each Riemann problem, but may be violated by one of the mostpopular flux dif-
ference splitting schemes based on Approximate Riemann Solvers (ARS), namely
that formulated by Roe [17]. In order to make this scheme to satisfy the entropy
condition, it must be properly modified: such a correction isusually indicated as
entropy fix.

The first proposals for such an entropy fix were put forward in the mid 80’s
by Harten and co-workers. Their approach is quite general: the entropy fix is
considered as a means to guarantee that the numerical schemeproduces the entropic
solution to the hyperbolic problem, defined as the limit of the solution of the
corresponding viscous problem when the viscosity and the thermal conductivity
vanish (vanishing viscosity solution). This can be accomplished by writing the
upwind scheme so as to put into evidence its numerical dissipation matrix, and by
operating on this matrix to assure a non-zero viscous contribution to the numerical
flux. This viewpoint is not limited to ARS-based schemes, butmay be applied to
any method written in dissipation form [8]. The Harten [8] and Harten-Hyman [9]
formulations of the entropy have been widely accepted by theCFD community,
mainly because of the simplicity of their implementation inexisting codes based
on Roe’s scheme.

A slightly different viewpoint, that has led to a different form of the entropy
fix for Roe’s ARS, has been adopted by LeVeque [12]. Here the entropy fix is
intended as a specific cure for the failure of Roe’s scheme in case of transonic
rarefactions. Roe himself in [17, p. 370] mentioned this kind of difficulty in a final
remark discussing the entropy conditions. LeVeque’s approach, although limited
to Roe’s linearization, develops a physical insight by extending some consider-
ations valid in the scalar case to the general case of hyperbolic systems. In the
scalar case the representation of a rarefaction fan by meansof a single discontinuity
leads to difficulties only under the condition of transonic rarefaction: otherwise
the introduction of rarefaction shocks is admissible, because the resulting scheme
selects the physically relevant solution anyway. According to this viewpoint, the
entropy fix avoids representing a transonic rarefaction in the linearized problem
by means of a single discontinuity and replaces the rarefaction fan by an alterna-
tive description. An advantage of LeVeque’s approach is, inour opinion, that it
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suggests to apply the entropy correction in a selective way,and specifically only
on the acoustic waves. On the contrary, the original Harten and Hyman approach
implicitly suggests to act on all the eigenvalues of the system and therefore to
correct also the contact discontinuity, where the additionof an artificial dissipation
may be detrimental to the accuracy of the results.

To better understand these approaches and appreciate theirdifferences, it seems
worthwhile to establish a general framework encompassing the three aforemen-
tioned versions of the Harten entropy fix as well as the entropy fix due to LeVeque.
In this work we will show that it is possible to develop a unitary setting suitable
for analyzing all these entropy fixes and for clarifying the relationships existing
among them.

The main purpose of this work is to provide an analysis of these widely used
tools so that they may be appreciated in their actual significance, rather than being
used merely as “black boxes” with blind attitude. We do not pretend to make a
complete review of all the entropy fixes proposed in conjunction with different
solvers. In fact, we will concentrate on the Harten’s familyof entropy fix, which
has become very popular for its usefulness in correcting Roe’s scheme. Other
proposals, like for example the one due to Osher [16], are notconsidered herein.

It is worth remarking that such an analysis will prove usefulto unveil the
connection between the idea of entropy fix and some recently proposed positivity
preserving schemes, like the class of HLL methods [10, 2, 3].This will lead to the
concept of positivity preserving entropy fix and to a solution-dependent correction
of Roe’s linearization in Jacobian form that assures positive solutions.

The paper is organized as follows. In Section 2 we briefly recall the main
concepts of Roe’s linearization, as they are used in the subsequent analysis. Then,
in Section 3, we derive a general formulation of the entropy fix starting from
LeVeque’s viewpoint of breaking a single transonic wave into two waves connected
by a linear variation of the unknown. In Section 4 we show how the different
methods belonging to Harten’s family of entropy fix, as well as LeVeque’s method,
fall within the derived general framework, and we propose a new variant of them.
In Section 5 we report some numerical results of 1D test cases. In Section 6 we
show how also the HLL schemes fall within the general formulation presented and
we introduce the concept of positivity preserving entropy fix. We end with some
concluding remarks.

2 Roe’s linearization

As well known, Roe’s method [17] is a Godunov-type scheme based on the ap-
proximate solution of a Riemann problem at each interface separating pair of
neighbouring cells of the spatial discretization.

Let’s consider the hyperbolic problem consisting in the one-dimensional system
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of conservation laws in the form:

∂u
∂ t

+
∂ f (u)
∂x

= 0 , (2.1)

whereu = u(x, t) is the vector of the conservative variables andf (u) is the
corresponding flux vector. We assume that the set of statesu has dimensionp,
with p an integer≥ 1. A Riemann problem with left and right statesuL anduR is
defined by the initial condition:

u(x, 0) =

{

uL if x < 0

uR if x > 0 .
(2.2)

The Roe solver replaces the original Riemann problem with a linearized problem
of the form:

∂u
∂ t

+ Â(uL, uR)
∂u
∂x

= 0 , (2.3)

together with the initial condition (2.2). The matrix̂A(uL, uR) is called a Roe
linearization if it satisfies the following properties [17,p. 358]:

i ) Â(uL, uR) has real eigenvalues and a corresponding set of eigenvectors that
form a basis ofRp,

i i ) Â(u, u) = A(u) and Â(uL, uR) → A(u) smoothly foruL, uR → u,

i i i ) Â(uL, uR)(uR − uL) = f (uR)− f (uL).

We remark that in general such a linearization is not uniquely defined.
The (first order accurate) numerical flux of Roe’s scheme is given by:

FRoe(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

|âk| χ̂k r̂k , (2.4)

whereâk = âk(uL, uR) and r̂k = r̂k(uL, uR) are respectively the eigenvalues and
the eigenvectors of the Roe matrix̂A = Â(uL, uR). The coefficientsχ̂k are the
components of the jumpuR − uL on these eigenvectors, namely,

uR − uL =

p
∑

k=1

χ̂k r̂k , (2.5)

so that, by defining
∣

∣ Â
∣

∣ = R̂
∣

∣Λ̂
∣

∣ R̂
−1

, with
∣

∣Λ̂
∣

∣ = diag(|â1|, |â2|, . . . , |âp|) and

R̂ the matrix of the right eigenvectorsr̂k, we also have

∣

∣ Â(uL, uR)
∣

∣ (uR − uL) =

p
∑

k=1

|âk| χ̂k r̂k . (2.6)

With this notation the numerical flux assumes the standard form:

FRoe(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

∣

∣ Â(uL, uR)
∣

∣ (uR − uL) . (2.7)
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uRuL û1,L = uL
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û2,L
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û3,L
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â1
â2

â3

Figure 1:Solution of the Riemann problem: a) exact; b) Roe’s linearization

2.1 Entropy violations

It is well known that Roe’s linearization may lead to non-entropic weak solutions
of the governing equations, due to the approximation of the exact solution of
the Riemann problem withωRoe( x

t ; uL, uR), made of constant states separated by
discontinuities (Fig. 1) :

ω
Roe
( x

t ; uL, uR

)

=























































û0 = uL if x < â1 t

û1 if â1 t < x < â2 t

. . .

ûk if âk t < x < âk+1 t

. . .

û p = uR if x > âp t .

(2.8)

This may be easily seen when the initial discontinuity of theRiemann problem
satisfies the Rankine–Hugoniot condition for some propagation speedσ , namely:

f (uR)− f (uL) = σ(uR − uL) . (2.9)

In such a case, because of propertyi i i ), the solutionωRoe( x
t ; uL, uR) consists in

a single discontinuity of speedσ and strength(uR − uL), but may not represent
the correct weak solution. Entropy conditions have been formulated in different
forms as additional conditions to the initial value problemto select the physically
relevant, vanishing viscosity, solution, see,e.g., [11] and [12]. Following Lax [11,
p. 32], the entropy condition may be expressed as:

ψ(uR)− ψ(uL)− σ [η(uR)− η(uL)] ≤ 0 , (2.10)

whereη(u) is a convex entropy function andψ(u) the associated entropy flux for
the considered hyperbolic system.
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If uR anduL satisfy both (2.9) and (2.10),ωRoe( x
t ; uL, uR) coincides with the

exact solution. If, however, the pairuR,uL satisfies (2.9) but not the entropy
condition (2.10), the exact solution evolves in time (possibly as a rarefaction fan
and some discontinuities), whileωRoe( x

t ; uL, uR) still consists in the propagation
of the initial discontinuity, and this is not an entropic solution.

We need to observe here that a correct approximationFRoe(uL, uR)may still be
obtained despite thepresenceofentropy violating discontinuities inω

Roe( x
t ; uL, uR).

In particular, it is easily checked in the scalar case that Roe’s numerical flux coin-
cides with the (entropy satisfying) Godunov flux, except when the exact solution
consists of a transonic rarefaction. This consideration was expressed by Roe in
[17, p. 370] with reference to the Euler equations for a polytropic ideal gas.

2.2 Entropy corrections

The above observations lead to a natural way of modifying Roe’s linearization
to ensure entropic solutions: when the exact solutions is a transonic rarefaction,
we need to substitute the entropy violating discontinous approximation with some
other approximation able to satisfy the weak form of the entropy condition. We
denote this viewpoint as LeVeque’s viewpoint, and we will use it in the following
chapter to derive a general form of the Harten and Hyman entropy fix.

A different viewpoint, denoted here as Harten’s one, is suggested by the ex-
pression (2.7) of the numerical flux, where

∣

∣ Â(uL, uR)
∣

∣ can be regarded as the
viscosity matrix

Qε =
∣

∣ Â(uL, uR)
∣

∣ . (2.11)

In the basis of the eigenvectorsr̂k, the viscosity matrix is diagonal, namely,

Q′
ε = diag(|â1|, |â2|, . . . , |âp|) . (2.12)

This way of writing the viscosity matrix indicates that, to obtain a method guar-
anteeing the entropic solution, in the sense of vanishing viscosity solution, it is
necessary to prevent any eigenvalueâk from becoming zero. As a consequence,
the entropy fix must modify the eigenvalues when they become too small.

Both viewpoints lead however to the same result—an easily implementable
modification of Roe’s flux. With the Harten and Hyman entropy fix, Roe’s numer-
ical flux is written in the following form:

F(e.f.)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

q(âk) χ̂k r̂k , (2.13)

where the functionq(âk) is a suitable modification of the function|âk|.
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3 General formulation of the entropy fix

We introduce here a general formulation of the entropy fix applied to Roe’s scheme.
This formulation comprises different versions of entropy fix due to Harten and
Hyman, both the original ones and a version presented by LeVeque: as will be
shown, the latter provides also the guidelines for the physical interpretation of the
former.

The methods proposed by Harten and Hyman are defined as follows:

1. Consider the solution of the linearized Riemann problem (2.3) with left
stateuL and right stateuR: thek-th elementary wave, corresponding to the
eigenvaluêak(uL, uR) for 1 ≤ k ≤ p, separates the constant states

ûk,L = uL +
k−1
∑

j =1

χ̂ j r̂ j and ûk,R = ûk,L + χ̂k r̂k ,

so thatû1,L = uL , ûk+1,L = ûk,R for 1 ≤ k ≤ p−1, andûp,R = uR (Fig. 1).
We have marked all the intermediate states of the linear Riemann problem
by a caret, writingûk,L and ûk,R, to explicitly distinguish all the elements
associated with the Roe matrix̂A.

2. To eachk-th elementary wave we associate two propagation velocitiesak,L

andak,R (Fig. 2). If thek-th wave is approximating a rarefaction,ak,L and
ak,R represent an estimate of the propagation velocity of the first and the last
perturbation component of the fan, going from left to right.As a conse-
quence, the condition identifying the occurrence of a transonic rarefaction
for thek-th wave will be expressed by:

ak,L < 0< ak,R .

3. Once recognized the presence of a transonic rarefaction,it is necessary to
introduce a suitable representation of it which will replace the single dis-
continuity occurring in Roe’s linearized problem. The equivalent substitute
of a transonic rarefaction proposed by Harten and Hyman consists in two
discontinuities with an intermediate state (Fig. 3). In thefollowing we will
consider first the formulation of the entropy fix which results from assum-
ing aconstantintermediate state (Subsection 3.1) and then a more general
formulation based on alinearly variableintermediate state (Subsections 3.2
and 3.3).

Clearly, different choices of the velocitiesak,L andak,R and of the kind of repre-
sentation for the transonic rarefaction lead to different types of entropy fixing.
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a) b)

xx

tt

âk
âkak,L

ak,L

ak,R

ak,R

Figure 2:Propagation velocities: a) caseak,L < ak,R; b) caseak,L > ak,R

a) b)

xx

ttâk

ak,L ak,L

ak,R ak,R

ûk,L
ûk,L

ûk,R
ûk,Ruk

Figure 3:Transonic rarefaction: a) single Roe’s wave; b) equivalenttwo-wave split
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3.1 Constant intermediate state

Whenever for thek-th wave the conditionak,L < 0 < ak,R is satisfied (withak,L

andak,R to be suitably defined), the rarefaction wave is assumed to bereplaced by
two discontinuitiespropagating with velocitiesak,L andak,R, with an intermediate
constant stateuk. We therefore have the solution

uc
k

( x
t

)

=



















ûk,L if x < ak,L t

uk if ak,L t < x < ak,R t

ûk,R if x > ak,R t ,

(3.1)

The stateuk is determined by imposing that the resulting modified Roe’s solver be
consistent with the integral form of the conservation law, namely,

(ak,R − ak,L)uk = (âk − ak,L)ûk,L + (ak,R − âk)ûk,R ,

which gives immediately the intermediate state

uk =
(âk − ak,L)ûk,L + (ak,R − âk)ûk,R

ak,R − ak,L
. (3.2)

Then, the two jumps between the intermediate stateuk, and the left and right states
across thek-th wave are expressed in the form:

uk − ûk,L =
ak,R − âk

ak,R − ak,L
χ̂k r̂k = χk,L r̂k ,

ûk,R − uk =
âk − ak,L

ak,R − ak,L
χ̂k r̂k = χk,R r̂k ,

where we have introduced the coefficients

χk,L =
ak,R − âk

ak,R − ak,L
χ̂k and χk,R =

âk − ak,L

ak,R − ak,L
χ̂k ,

that, once multiplied bŷrk, represent the left and right fraction of the solution jump
χ̂k r̂k associated with thek-th wave. In fact we have

χ̂k r̂k = ûk,R − ûk,L

= (uk − ûk,L)+ (ûk,R − uk)

= χk,L r̂k + χk,R r̂k .

On this basis, we obtain that, when thek-th wave is a transonic rarefaction, in the
expression of Roe’s numerical flux the term|âk| χ̂k r̂k will be replaced by the sum

|ak,L |χk,L r̂k + |ak,R|χk,R r̂k .
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So, forak,L < 0 < ak,R, the quantity|âk| in the term|âk| χ̂k r̂k of Roe’s flux will
be substituted by

−ak,L
ak,R − âk

ak,R − ak,L
+ ak,R

âk − ak,L

ak,R − ak,L
=
(ak,R + ak,L)âk − 2ak,R ak,L

ak,R − ak,L
.

As a consequence, we come to the following expression of the numerical flux, with
a corrected treatment of the transonic rarefaction,

F(c)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

qc(âk) χ̂k r̂k , (3.3a)

where

qc(âk) =







(ak,R + ak,L)âk − 2ak,R ak,L

ak,R − ak,L
if ak,L < 0< ak,R

|âk| otherwise.
(3.3b)

3.1.1 Entropy condition

Following Harten [9] (see also [5]) we want to demonstrate, at least for the scalar
case, that the modified solution (3.1) does satisfy an entropy condition. Let us
consider the scalar equation:

∂u

∂ t
+
∂ f (u)

∂x
= 0 (3.4a)

for a convex fluxf (u), with initial conditions

u(x, 0) =

{

uL if x < 0

uR if x > 0 .
(3.4b)

such asaL = f ′(uL) < 0 < f ′(uR) = aR. The exact solution of the Riemann
problem (3.4) is:

ω
( x

t

)

=



















uL if x < aL t

( f ′)−1 (x) if aL t < x < aR t

uR if x > aR t .

(3.5)

and represents the case of atransonicrarefaction, in which the original Roe scheme
would fail.

The scalar (p = 1) version of the approximate solution (3.1), based on a
constant intermediate stateu, is:

uc
( x

t

)

=



















uL if x < a1,L t

u if a1,L t < x < a1,R t

uR if x > a1,R t .

(3.6)
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The entropy condition may be satisfied by (3.6) provided we chosea1,L ,a1,R such
as:

a1,L ≤ f ′(uL) = aL ; a1,R ≥ f ′(uR) = aR .

Therefore, let us assumea1,L = aL , a1,R = aR and rewrite (3.6) as:

uc
( x

t

)

=



















uL if x < aL t

u if aL t < x < aR t

uR if x > aR t .

(3.7)

We need to show that (3.7) is consistent with the integral form of the entropy
condition [12, p. 38]:

∫ τ

0

∫ h
2

− h
2

[

∂η(u)

∂ t
+
∂ψ(u)

∂x

]

dx dt ≤ 0 , (3.8)

whereη(u) is a convex entropy function andψ(u) is the associated flux function
for equation (3.4a),h andτ being the space and time discretization intervals. For
u = uc

( x
t

)

this inequality is equivalent to

∫ h
2

− h
2

η
(

uc
( x
τ

) )

dx ≤
h

2
[η(uL)+ η(uR)] − τ [ψ(uR)− ψ(uL)] . (3.9)

Considering the piecewise constant function (3.7), we may first write the integral
on the left side of (3.9) as:

∫ h
2

− h
2

η
(

uc
( x
τ

) )

dx =
(

aL τ +
h

2

)

η(uL)

+ (aR − aL)τ η(u)+
(h

2
− aRτ

)

η(uR) .

(3.10)

We may then observe thatu has been obtained imposing the consistency with
the integral form of the conservation law. This implies, since aL andaR are the
limiting physical propagation speeds, thatu is equal to the average value of the
exact solution (3.5) in the interval(aLτ, aRτ):

u =
1

(aR − aL)τ

∫ aRτ

aLτ

ω
( x
τ

)

dx . (3.11)

By (3.11) Jensen’s inequality gives:

η(u) = η

(

1

(aR − aL)τ

∫ aRτ

aLτ

ω
( x
τ

)

dx

)

≤
1

(aR − aL)τ

∫ aRτ

aLτ

η
(

ω
( x
τ

))

dx .

(3.12)
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Combining (3.10) and (3.12) we obtain:

∫ h
2

− h
2

η
(

uc
( x
τ

))

≤
(

aL τ +
h

2

)

η(uL)+

∫ aRτ

aLτ

η
(

ω
( x
τ

))

dx +
(h

2
− aRτ

)

η(uR) =

≤

∫ h
2

− h
2

η
(

ω
( x
τ

))

dx .

where in the last passage we have used the properties of the solution (3.5). From
this last relation, considering that the exact solutionω

( x
t

)

satisfies the integral
form of the entropy condition:

∫ h
2

− h
2

η
(

ω
( x
τ

))

dx ≤
h

2
[η(uL)+ η(uR)] − τ [ψ(uR)− ψ(uL)] ,

we immediately obtain (3.9).

2

3.2 Linearly variable intermediate state

Supposing that a transonic rarefaction occurs for thek-th wave, we now introduce
a linearly variable intermediate state in the rangeak,L <

x
t < ak,R as follows:

ul
k

( x
t

)

= uk +

(

x

t
−

ak,L + ak,R

2

)

σk

ak,R − ak,L
(ûk,R − ûk,L) , (3.13)

whereuk is given by (3.2) and the parameterσk has to be suitably defined. It is
easy to check that the solutionul

k(
x
t ) satisfies the consistency with the integral

form of the conservation law.
The linear solutionul

k(
x
t ) given by (3.13) leads to the following expression of

q(âk):

ql(âk) =
(ak,R + ak,L)âk − 2ak,R ak,L

ak,R − ak,L
+

ak,R ak,L

ak,R − ak,L
σk . (3.14)

In fact, let’s assume that for a given Riemann problem the velocitiesak,L andak,R

satisfy the condition identifying the transonic rarefaction for thek-th wave,namely,
ak,L < 0 < ak,R. We now define a new approximate Riemann solver by means
of a functionω

l( x
t ; uL, uR) which is obtained by introducing the linearly variable

solutionul
k(

x
t ) between the propagation wavesak,L andak,R in the standard Roe

solver,i.e. we have:

ω
l
( x

t ; uL, uR

)

= ul
k

( x
t

)

, ak,L <
x
t < ak,R . (3.15)
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(Here we assume that̂ak−1<ak,L and ak,R< âk+1.) We can compute the corre-
sponding numerical flux by means of:

F(l)(uL, uR) = f (uL)−
1

τ

∫ 0

− h
2

ω
l
( x
τ
; uL, uR

)

dx +
h

2τ
uL , (3.16)

whereτ is the time step andh is the spatial mesh size. First, let’s consider the
integral appearing in the last relation:

∫ 0

− h
2

ω
l
( x
τ
; uL, uR

)

dx =

∫ â1τ

− h
2

uL dx +
k−2
∑

j =1

(

∫ â j +1τ

â j τ

û j dx

)

+

∫ ak,L τ

âk−1τ

ûk−1 dx +

∫ 0

ak,L τ

ul
k

( x
τ

)

dx ,

(3.17)

where, for 1≤ j ≤ p, û j = uL +
∑ j −1

i=1 χ̂i r̂ i denotes thej-th Roe’s state. An
easy computation gives, for the second term appearing in (3.17):

k−2
∑

j =1

(

∫ â j +1τ

â j τ

û j dx

)

= τ(âk−1 − â1) uL + τ

k−2
∑

j =1

(âk−1 − â j ) χ̂ j r̂ j . (3.18)

From (3.17) and (3.18) we get:
∫ 0

− h
2

ω
l
( x
τ
; uL, uR

)

dx

=
(

â1τ +
h

2

)

uL + τ(âk−1 − â1) uL + τ âk−1

k−2
∑

j =1

χ̂ j r̂ j − τ

k−2
∑

j =1

â j χ̂ j r̂ j

+ τ(ak,L − âk−1) ûk−1 +

∫ 0

ak,L τ

ul
k

( x
τ

)

dx

=
h

2
uL + τ âk−1

(

uL +
k−2
∑

j =1

χ̂ j r̂ j − ûk−1

)

− τ

k−2
∑

j =1

â j χ̂ j r̂ j

+ τ ak,L ûk−1 +

∫ 0

ak,L τ

ul
k

( x
τ

)

dx .

(3.19)

Introducing the last relation in (3.16) we have:

F(l)(uL, uR) = f (uL)+ âk−1 χ̂k−1 r̂k−1 +
k−2
∑

j =1

â j χ̂ j r̂ j

− ak,L ûk−1 −
1

τ

∫ 0

ak,L τ

ul
k

( x
τ

)

dx .

(3.20)
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Now, by adding and subtracting the quantity

1

2
[ f (uR)− f (uL)] =

1

2

p
∑

j =1

â j χ̂ j r̂ j

from (3.20) we obtain:

F(l)(uL, uR) =
1

2
[ f (uL)+ f (uR)] +

k−1
∑

j =1

â j χ̂ j r̂ j − ak,L ûk−1

−
1

τ

∫ 0

ak,L τ

ul
k

( x
τ

)

dx −
1

2

p
∑

j =1

â j χ̂ j r̂ j .

(3.21)

Finally, taking into account that

â j < 0 if j < and â j > 0 if j > k ,

we have:

F(l)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

k−1
∑

j =1

|â j | χ̂ j r̂ j

− ak,L ûk−1 −
1

τ

∫ 0

ak,L τ

ul
k

( x
τ

)

dx −
1

2
âk χ̂k r̂k

−
1

2

p
∑

j =k+1

|â j | χ̂ j r̂ j .

(3.22)

Let’s now evaluate the integral appearing in (3.22), using the definition (3.13) and
reminding that̂uk,R − ûk,L = χ̂k r̂k:

−
1

τ

∫ 0

ak,L τ

ul
k

( x
τ

)

dx = ak,L uk +

(

a2
k,L

2
−

ak,L + ak,R

2
ak,L

)

σk

ak,R − ak,L
χ̂k r̂k

= ak,L uk −
ak,R ak,L

2

σk

ak,R − ak,L
χ̂k r̂k .

(3.23)

Noticing that ûk,L = ûk−1 and ûk,R = ûk, by substituting (3.23) in (3.22) we
obtain:

F(l)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

k−1
∑

j =1

|â j | χ̂ j r̂ j

−
1

2

[

(ak,R + ak,L)âk − 2ak,R ak,L

ak,R − ak,L
+

ak,R ak,L

ak,R − ak,L
σk

]

χ̂k r̂k

−
1

2

p
∑

j =k+1

|â j | χ̂ j r̂ j .

(3.24)
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The last equation proves that, if we introduce in Roe’s solver the linearly variable
solution (3.13) forak,L <

x
t < ak,R, beingak,L < 0 < ak,R, the function|âk|

appearing in the expression of Roe’s numerical flux is replaced by the function
ql(âk) given by (3.14).

2

On the basis of the above result, we can now write a general formulation of the
entropy fix in terms of propagation velocities, expressed bythe following form of
the numerical flux:

F(l)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

ql
a(âk) χ̂k r̂k , (3.25a)

where

ql
a(âk) =



























(ak,R + ak,L)âk − 2ak,R ak,L

ak,R − ak,L
+

ak,R ak,L

ak,R − ak,L
σk

if ak,L < 0< ak,R

|âk| otherwise.

(3.25b)

Of course, if we setσk = 0 we recover the formulation (3.3) based on the assump-
tion of a constant intermediate state as a particular case.

The subscript ‘a’ used in the above relations has been introduced to distinguish
the expression (3.25) from the one to be introduced in the next subsection.

3.3 General formulation in terms of velocity differences

The general scheme (3.25), comprising both a linearly variable and a constant (for
σk = 0) intermediate state, is expressed in terms of propagationspeedsa, but it
can also be reformulated in terms of velocitydifferencesas follows. Let us first
define the two (always nonnegative) quantities:

δk,L = max{0, âk − ak,L} and δk,R = max{0, ak,R − âk} . (3.26)

Assuming that̂ak belongs to the interval(ak,L, ak,R) with ak,L < ak,R, definition
(3.26) implies that the conditionak,L < 0 < ak,R is equivalent to the condition
−δk,R < âk < δk,L . In such a situation we haveδk,L = âk − ak,L andδk,R =

ak,R − âk, so that we can write:

ak,L = âk − δk,L and ak,R = âk + δk,R .

Introducing these relations in the expression ofql(âk) given by (3.14), we have:

ql(âk) =
σk â2

k − (1 − σk)(δk,R − δk,L)âk + (2 − σk)δk,L δk,R

δk,L + δk,R
. (3.27)
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It follows that the general formulation (3.25b) of the entropy fix with a linearly
variable intermediate state can be recast in terms of the velocity differencesδk,L
andδk,R, as:

F(l)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

ql
δ(âk) χ̂k r̂k , (3.28a)

where

ql
δ(âk) =



























σk â2
k − (1 − σk)(δk,R − δk,L)âk + (2 − σk)δk,L δk,R

δk,L + δk,R
,

if − δk,R < âk < δk,L

|âk| otherwise.

(3.28b)

The expression (3.27) allows us to recognize, better than (3.25b), the type of mod-
ification of the function|âk| accomplished by an entropy fix in the neighbourhood
of the origin. As we have already said, each entropy fix has to modify the eigen-
valueâk when it becomes too small, so as to prevent its vanishing. Formulation
(3.28) helps regarding the entropy fix as a means to select thevanishing viscosity
solution, in the spirit of Harten’s original interpretation.

We can easily see from (3.27) that for−δk,R < âk < δk,L the function|âk|

is replaced by a parabolic function, which degenerates in a straight line when the
intermediate state is constant,i.e. for σk = 0. We also notice that the function
ql
δ(âk) is continuous. The parameterσk must satisfy the conditionσk ≥ 0 in order

to have a curve under the straight line corresponding to the case of a constant inter-
mediate state, and therefore to reduce the amount of artificial numerical viscosity.
Moreover, we require that the slope ofql

δ(âk) in âk = δk,L is ≤ 1 and the slope in
âk = −δk,R is ≥ −1. From (3.27) it follows immediately the condition forσk:

σk ≤
2 min(δk,L, δk,R)

δk,L + δk,R
.

4 Review of entropy fixes

In this section we recall the different versions of Harten and Hyman entropy fix
and we show how they fit within the general framework derived above.
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4.1 First entropy fix of Harten and Hyman

In [9] Harten and Hyman present an entropy fix formulated as follows1:

F(HH1)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

qHH1(âk) χ̂k r̂k , (4.1a)

where

qHH1(âk) =







δk if |âk| < δk

|âk| if |âk| ≥ δk ,
(4.1b)

with
δk = max{0, âk − ak(uL), ak(uR)− âk} , (4.1c)

ak(u) being thek-th eigenvalue of the matrixA(u) =
∂ f (u)
∂u .

Wheneverak(uL) ≥ âk ≥ ak(uR), i.e., if the k-th elementary wave is a
substitute for a wave that cannot be a rarefaction, we observe thatδk = 0 and
qHH1(âk) = |âk|.

The Harten and Hyman scheme (4.1) may be shown equivalent to aparticular
case of the general formulations presented in the previous section. It is convenient
to consider the form (3.28b) in terms of velocity differences: by inspection, scheme
(4.1) is equivalent to (3.28b) provided we setσk = 0 and

δk,L = δk,R = δk . (4.2a)

This corresponds to the choice

ak,L = âk − δk and ak,R = âk + δk (4.2b)

to be used in form (3.25b). Beingσk = 0, the intermediate state introduced in the
transonic rarefaction situation for thek-th wave is given by the constant solution
uk expressed by (3.2). Moreover, due to definitions (4.2b),uk is equal to the
arithmetic mean of the left and right statesûk,L andûk,R:

uk =
ûk,L + ûk,R

2
, (4.3)

since(âk − ak,L) = (ak,R − âk) = δk and (ak,R − ak,L) = 2δk. It should be
emphasized that this method does not require to evaluate thestatesûk,L andûk,R

explicitly.
From expression (4.1b) the type of modification performed onthe eigenvalues

âk is realized immediately: for|âk| < δk the function|âk| is replaced by a constant
function equal toδk, as shown in Figure 4.

1Here we assume suitable convexity hypothesis which in the scalar case consist in adopting a
convex flux functionf (u). For a system of equations of a problem which requires the specification
of an equation of state, we expect aconvexequation of state, as occurs for the Euler equations. In
this connection, see also [4] and [15].
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HH1

HH2

q(âk)

âk−δk δk

Figure 4:First and second entropy fix of Harten and Hyman

Remark 4.1 We observe that the choice (4.2b) forak,L andak,R may produce a
simultaneous action on several waves, in the case of systemsof equations,i.e. the
conditionak,L < 0 < ak,R can be verified for more than one value ofk, while in
the exact solution of the given Riemann problem only onetransonicrarefaction is
possible at most.

4.2 LeVeque entropy fix

LeVeque in [12, Chap. 14, Sec. 2.2] presents a formulation ofthe entropy fix which
explicitly recognizes the occurence of a transonic rarefaction. LeVeque attributes
the method to Harten and Hyman, but it is slightly different and therefore we prefer
to denote it as LeVeque’s method.

LeVeque entropy fix acts only when a situation of transonic rarefaction is
detected for thek-wave of Roe method,i.e., when:

ak(ûk,L) < 0< ak(ûk,R) (4.4)

where we have, for 1≤ k ≤ p,

ûk,L = uL +
k−1
∑

j =1

χ̂ j r̂ j and ûk,R = ûk,L + χ̂k r̂k , (4.5)

so that, in particular,̂u1,L = uL and û p,R = uR, as usual in Roe scheme. When
condition (4.4) is satisfied for wavek = r , the original Roe method is modified by
the following numerical flux:

F(LV)(uL, uR) = f (uL)+
∑

k 6=r

N(âk) χ̂k r̂k + ar (ûr,L)
ar (ûr,R)− âr

ar (ûr,R)− ar (ûr,L)
χ̂r r̂r

= f (uR)−
∑

k 6=r

P(âk) χ̂k r̂k − ar (ûr,R)
âr − ar (ûr,L)

ar (ûr,R)− ar (ûr,L)
χ̂r r̂r ,

(4.6)
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where we introduced the operatorsP(·) andN(·), defined as follows2:

P(α)
∆
= positive part ofα ,

N(α)
∆
= negative part ofα ,

for any realα, which will be used throughout. We prefer using the operators
P(·) andN(·) instead of employing the notation with the superscripts ‘+’ or ‘ −’,
appended to a variable to represent respectively the maximum or the minimun
between zero and the value of the considered variable. The notation adopted in
this work represents a given quantity as the result of the action of an operator upon
an argument.

Avearging the two alternative equivalent expressions of the numerical flux given
by (4.6), we get:

F(LV)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

∑

k 6=r

|âk| χ̂k r̂k

−
1

2

[ar (ûr,R)+ ar (ûr,L)] âr − 2ar (ûr,R) ar (ûr,L)

ar (ûr,R)− ar (ûr,L)
χ̂r r̂r ,

(4.7)

or, in more compact form,

F(LV)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

qLV(âk) χ̂k r̂k , (4.8a)

with

qLV
a (âk) =



























[ak(ûk,R)+ ak(ûk,L)] âk − 2ak(ûk,R) ak(ûk,L)

ak(ûk,R)− ak(ûk,L)

if ak(ûk,L) < 0< ak(ûk,R)

|âk| otherwise.

(4.8b)

This function is coincident with that given by (3.25b) withσk = 0, provided in the
latter we define

ak,L = ak(ûk,L) and ak,R = ak(ûk,R) . (4.9)

The intermediate state is constant and is now given by:

uk =
[âk − ak(ûk,L)]ûk,L + [ak(ûk,R)− âk]ûk,R

ak(ûk,R)− ak(ûk,L)
.

2Strictly speaking,P(α) is thenonnegativepart ofα andN (α) is thenonpositivepart ofα.
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LeVeque

q(âk)

âkδk,L−δk,R

Figure 5:LeVeque’s entropy fix

Using the definitionsak,L andak,R above, LeVeque’s entropy fix can also be ex-
pressed in terms of velocity differences, which gives the following equivalent
expression of the functionqLV(âk):

qLV
δ (âk) =











(δk,L − δk,R)âk + 2δk,L δk,R
δk,L + δk,R

if − δk,R < âk < δk,L

|âk| otherwise

with

δk,L = max{0, âk − ak(ûk,L)} and δk,R = max{0, ak(ûk,R)− âk} .

For −δk,R < âk < δk,L the function|âk| is replaced by a straight line with slope
δk,L −δk,R
δk,L +δk,R

, and passing through
(

0, 2δk,L δk,R
δk,L +δk,R

)

. See Figure 5.

Original form of LeVeque entropy fix

It is worth noting that, with the aim of generalizing the computation of wave speed
for algorithmic easiness, LeVeque [12] expressed his entropy fix in the following
form:

F(LV)(uL, uR) = f (uL)+

p
∑

k=1

aNeg(âk) χ̂k r̂k

= f (uR)−

p
∑

k=1

aPos(âk) χ̂k r̂k ,

(4.10)
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where negative and positive wave speeds have been introduced in the form:

aNeg(âk) = N(ak(ûk,L))
P(ak(ûk,R))− âk

P(ak(ûk,R))− N(ak(ûk,L))
,

aPos(âk) = P(ak(ûk,R))
âk − N(ak(ûk,L))

P(ak(ûk,R))− N(ak(ûk,L))
.

Averaging again the two alternative equivalent expressions of the numerical flux,
we get:

F(LV)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

qLV(âk) χ̂k r̂k , (4.11a)

where

qLV(âk) =
[P(ak(ûk,R))+ N(ak(ûk,L))] âk − 2P(ak(ûk,R))N(ak(ûk,L))

P(ak(ûk,R))− N(ak(ûk,L))
.

(4.11b)
Actually, this relation must be completed by adding the condition that prevents the
vanishing of denominator,P(ak(ûk,R)) 6= N(ak(ûk,L)), a situation that can happen
only if P(ak(ûk,R)) = N(ak(ûk,L)) = 0, i.e. if (ak(ûk,L) ≥ 0) ∧ (ak(ûk,R) ≤ 0),
hence never in the transonic rarefaction case. We can therefore imposeqLV(âk) =

|âk| if P(ak(ûk,R)) = N(ak(ûk,L)).
The expression ofqLV(âk) taking into account the last comment assumes the

explicit form:

qLV
a (âk) =































[P(ak(ûk,R))+ N(ak(ûk,L))] âk − 2P(ak(ûk,R))N(ak(ûk,L))

P(ak(ûk,R))− N(ak(ûk,L))

if P(ak(ûk,R)) 6= N(ak(ûk,L))

|âk| if P(ak(ûk,R)) = N(ak(ûk,L)) .

(4.12)
It can be shown easily that expression (4.12) is still equivalent to the general form
(3.25b) with the choice (4.9) andσk = 0.

Comparison of the first method of Harten and Hyman
with LeVeque’s method

As we have seen, both the first entropy fix of Harten and Hyman and the entropy
fix of LeVeque introduce a constant intermediate state, while they use different
definitions of the propagation velocitiesak,L andak,R. This implies a different
kind of intervention criterion and a different action on themodification of the
function |âk|. The differences between the two methods can be summarized as
follows:
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• The intervention criterion of the first entropy fix of Hartenand Hyman is
based only on the extreme statesuL anduR, while LeVeque’s method uses
also the information of the intermediate statesûk,L and ûk,R, which are
different, in general, fromuL anduR.

• The action of the entropy fix of Harten and Hyman introduces ahigher numer-
ical viscosity than LeVeque’s method. This is illustrated clearly in Figures 4
and 5, which show the modifications of the function|âk| accomplished by
the two methods and by a second entropy fix due to Harten and Hyman to
be described below.

4.3 Second entropy fix of Harten and Hyman

In [9, p. 266], in a note, Harten and Hyman present an entropy fix formulated as
follows:

F(HH2)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

qHH2(âk) χ̂k r̂k , (4.13a)

where

qHH2(âk) =











1

2

(

â2
k

δk
+ δk

)

if |âk| < δk

|âk| if |âk| ≥ δk ,

(4.13b)

with
δk = max{0, âk − ak(uL), ak(uR)− âk} . (4.13c)

This second method of Harten and Hyman differs from the first one (scheme (4.1))
only in the type of variation of the intermediate state, which here consists in a linear
transition between̂uk,L andûk,R for ak,L <

x
t < ak,R, matching continuously with

the end valueŝuk,L andûk,R; the linearly variable intermediate state is defined by
Harten and Hyman as follows:

ul
k

(x

t

)

= ûk,L +
x
t − ak,L

ak,R − ak,L
(ûk,R − ûk,L) . (4.14)

Exactly as in the first method HH1, the limiting velocities inthe second method
HH2 are defined by:

ak,L = âk − δk and ak,R = âk + δk , (4.15)

and we haveδk,L = δk,R = δk. Moreover, also in this method, there is no need to
calculate the stateŝuk,L andûk,R explicitly.

It is an easy computation to see that scheme (4.13) is equivalent to (3.25),
provided we use definitions (4.15) and we setσk = 1.

Expression (4.13b) shows that, in the second Harten and Hyman entropy fix,
the function|âk| for −δk < âk < δk is replaced by a parabolic function with vertex
in
(

0, δk2
)

, as seen in Figure 4.
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Harten

q(âk)

âk−2ǫk 2ǫk

Figure 6:Harten’s entropy fix

4.4 Harten entropy fix

In [8] Harten proposes the following entropy fix:

F(H)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

qH(âk) χ̂k r̂k , (4.16a)

where

qH(âk) =











â2
k

4εk
+ εk if |âk| < 2εk

|âk| if |âk| ≥ 2εk .

(4.16b)

The parameterεk is, for eachk, a positive constant value, which Harten suggests
to choose in general in the interval(0, 1

2).
We notice that the functionqH(âk) has the form of the functionqHH2(âk) given

by (4.13b), the difference between the two schemes consisting in the definition of
δk: the functionδk = ϕ(âk, ak(uL), ak(uR)) defined in (4.13c) is replaced here by
a constant value given by 2εk: δk = 2εk. On the basis of the second method of
Harten and Hyman described in 4.3, we can interpret Harten’sscheme as the result
of the introduction of a linear transition betweenûk,L andûk,R for ak,L <

x
t < ak,R,

if ak,L < 0 < ak,R. For this entropy fix the intervention criterion and the linearly
variable intermediate state are defined by means of the relations:

ak,L = âk − 2εk and ak,R = âk + 2εk . (4.17)

Choosing the above definition ofak,L andak,R, and settingσk = 1, allows us to
obtain scheme (4.16) from the general formulation (3.25).

As easily seen from (4.16b), like in the second method of Harten and Hyman,
the function|âk| is modified by introducing a parabolic function for|âk| < 2εk,
with minimum value in(0, εk). See Figure 6.
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It is worth noticing that, differently from all the other methods presented so
far, in the Harten method there is no condition aimed at avoiding the action of the
entropy fix in the case of shocks. This feature follows from the fact that the value
of εk is a constantindependent of the solution. On the contrary, in the second
method of Harten and Hyman, as well as in the first one, the action of the entropy
fix is prevented if a shock is estimated to occur in correspondence to thek-th wave,
since in this caseδk = 0. Therefore, it is concluded that for Harten’s method it
is necessary an explanation coming from the second interpretation of the role of
the entropy fix, as Harten pointed out in [8] introducing thisscheme as a means to
prevent the vanishing of the numerical viscosity.

4.5 An extension of LeVeque entropy fix

The general formulation of the entropy fix presented in section 3 allows us to derive
an extension of LeVeque’s method. Assuming the same definitionsak,L = ak(ûk,L)

andak,R = ak(ûk,R) introduced by LeVeque, we consider a linear intermediate
state in the general form (3.13), rewritten here for convenience, forak(ûk,L) <
x
t < ak(ûk,R),

ul
k

(x

t

)

= uk +

(

x

t
−

ak(ûk,L)+ ak(ûk,R)

2

)

σk (ûk,R − ûk,L)

ak(ûk,R)− ak(ûk,L)
, (4.18)

with now the slopeσk subjected to the condition:

0 ≤ σk ≤
2 min(δk,L, δk,R)

δk,L + δk,R
, (4.19)

whereδk,L = max{0, âk − ak(ûk,L)} andδk,R = max{0, ak(ûk,R)− âk}.
The formulation of this extended LeVeque entropy fix is givenby the func-

tion ql
a(âk) appearing in (3.25) under the definitionsak,L = ak(ûk,L) andak,R =

ak(ûk,R), andσk satisfying (4.19). The corresponding form in terms of velocity
differences (3.28b) is rewritten here

qLVM
δ (âk) =



























σk â2
k − (1 − σk)(δk,R − δk,L)âk + (2 − σk)δk,L δk,R

δk,L + δk,R

if − δk,R < âk < δk,L ,

|âk| otherwise.

(4.20)

Clearly, forσk = 0 we recover the original LeVeque entropy fix. In order to min-
imize the introduction of numerical viscosity, we suggest the following definition
of σk:

σk =
2 min(δk,L, δk,R)

δk,L + δk,R
, (4.21)
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LeVeque

LeVeque modif.

q(âk)

âkδk,L−δk,R

Figure 7:Modification of LeVeque’s entropy fix

which is always≤ 1. Assuming the above choice ofσk means imposing continuity
for the first derivative ofq(âk) at âk = δk,L , if δk,L ≥ δk,R, or at âk = −δk,R, if
δk,R ≥ δk,L. See Figure 7.

Remark 4.2 In the scalar case, definition (4.21) is equivalent to selecta slope
for the linear variation of the intermediate state corresponding to the minimum
between|u − uL | and|uR − u|.

All the entropy fixes examined so far fit nicely in the general formulation 3.25.
Their differences may be better appreciated looking at Table 1 which summarizes
the various fixes.

4.6 The scalar case

The comparison between the different methods just described is particularly simple
in the scalar case, since there is only one eigenvalue. We assume a convex function
f (u) and we consider a Riemann problem whose exact solution consists in a
transonic rarefaction. The propagation velocities of the boundary waves of the
rarefaction fan area(uL) anda(uR), wherea(u) = f ′(u). Roe’s scheme represents
any solution, including the rarefaction of interest here (Fig. 8), by means of a single
discontinuity propagating at a velocity given by:

â =
f (uR)− f (uL)

uR − uL

.

As already seen, the entropy fix replaces the exact rarefaction by an artificial
rarefaction based on some estimated valuesaL andaR for the propagation velocity
of the bounding waves. Let us consider first in some detail thetwo methods based
on a constant intermediate state, here recalled for convenience. We have:

27



F(l)(uL, uR) = 1
2[ f (uL)+ f (uR)] − 1

2

p
∑

k=1

ql
a(âk) χ̂k r̂k

where

ql
a(âk) =











(ak,R + ak,L)âk − 2ak,R ak,L

ak,R − ak,L
+

ak,R ak,L

ak,R − ak,L
σk if ak,L < 0< ak,R

|âk| otherwise

SCHEME ak,L ak,R σk Notes

HH1 âk − δk âk + δk 0 δk = max{0, âk−ak(uL ),ak(uR)−âk}

HH2 âk − δk âk + δk 1 as above

Harten âk − 2εk âk + 2εk 1 0< εk < 0.5

LeVeque ak(ûk,L) ak(ûk,R) 0

LeVeque m. ak(ûk,L) ak(ûk,R)
2 min(δk,L ,δk,R)
δk,L +δk,R

δk,L = max{0, âk − ak(ûk,L)}

δk,R = max{0, ak(ûk,R)− âk}

Table 1:Summary of different entropy fixes

a) b)

xx

tt

uL uLuR uR

a(uL) a(uR) â

Figure 8:Transonic rarefaction in the scalar case: a) exact solution; b) Roe’s linearization
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First method of Harten and Hyman:

qHH1(â) =







δ if |â| < δ

|â| if |â| ≥ δ ,

with δ = max{0, â − a(uL), a(uR)− â} .

LeVeque’s method:

qLV(â) =











(δL − δR) â + 2δL δR

δL + δR

if − δR < â < δL

|â| otherwise,

with δL = max{0, â − a(uL)} andδR = max{0, a(uR)− â}.

LeVeque’s method (Fig. 9) assumes an artificial rarefactionwith a constant
intermediate state but of the same spread of the exact one by defining:

aL = a(uL) and aR = a(uR) .

In this method the modification of the wavespeedâ (eigenvalue) occurs only in
connection with an actual transonic rarefaction and the intermediate stateubetween
the two discontinuitiesaL andaR is defined by imposing the conservation, to give:

u =
[â − a(uL)]uL + [a(uR)− â]uR

a(uR)− a(uL)
.

By contrast, the first method of Harten and Hyman (fig. 10) constructs an arti-
ficial rarefaction which is symmetrical with respect to the discontinuity of velocity
â, taking from both sides of this discontinuity an angle equalto the bigger of the
two that is formed by the bounding waves of the fan and the discontinuity itself,
according to the following definitions:

aL = â − δ and aR = â + δ ,

with
δ = max{0, â − a(uL), a(uR)− â} .

Again, when the entropy fix acts, it introduces two discontinuities, one coincident
with a boundary wave of the fan, while the other external to the fan, in the gen-
eral case. Here, as we have already seen, the definition ofaL andaR leads to a
particularly simple expression of the intermediate stateu:

u =
(â − aL)uL + (aR − â)uR

aR − aL

=
(â − â + δ)uL + (â + δ − â)uR

â + δ − â + δ

=
uL + uR

2
.
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a) b)

xx

t
t

uL uLuR uR

â

u

aL = a(uL) aL = a(uL)aR = a(uR) aR = a(uR)
δL

δR

Figure 9:LeVeque’s entropy fix applied to a transonic rarefaction in the scalar case

a) b)

xx

t
t

uL uLuR uR

â

u

aL = â − δaL = â − δ
aR = â + δ aR = â + δδ

δ

Figure 10:First entropy fix of Harten and Hyman applied to a transonic rarefaction in the
scalar case
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a) b)

xx

t tââ
aL

aL aRaR

Figure 11: Action of the first entropy fix of Harten and Hyman in the case ofa non
transonic rarefaction

As anticipated, the first entropy fix of Harten and Hyman can make transonic a
nontransonic rarefaction, introducing an error which, on the contrary, never occurs
in LeVeque’s entropy fix. The transformation of a nontransonic rarefaction in a
transonic one occurs either when (Fig. 11a):















a(uL) > 0

â > a(uL)

a(uR) > 2 â

(a)

so thataL = â − δ < 0, or when (fig. 11b):














a(uR) < 0

â < a(uR)

a(uL) > 2 â

(b)

so thataR = â + δ > 0.

Let us consider now all the other schemes, namely:

Second method of Harten and Hyman:

qHH2(â) =











1

2

(

â2

δ
+ δ

)

if |â| < δ

|â| if |â| ≥ δ ,

with δ = max{0, â − a(uL), a(uR)− â} .
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LeVeque modif.

LeVeque
HH2

HH1q(â) q(â)

ââ −δ−δ −δR−δR δ = δLδ = δL

Figure 12:Comparison of different entropy fixes in the scalar case

Modified LeVeque’s method:

qLVM (â) =











σ â2 − (1 − σ)(δR − δL) â + (2 − σ) δL δR

δL + δR

if − δR < â < δL

|â| otherwise,

with δL = max{0, â − a(uL)}, δR = max{0, a(uR)− â} and

σ =
2 min(δL, δR)

δL + δR

.

We can easily compare the modification of the function|â| accomplished by the
various methods (Fig. 12), and, as a consequence, the different level of numerical
viscosity introduced. It is clear that the minimum amount ofartificial viscosity is
introduced by the entropy fixes in which the rarefaction is represented by a linearly
variable intermediate state.

Remark 4.3 In the particular case of the inviscid Burgers’ equation, the first
entropy fix of Harten and Hyman is coincident with the original LeVeque scheme.
This fact is due to the expression of Burgers’ fluxf (u) = 1

2u2, which leads
to a(u) = u. It follows that any rarefaction is symmetrical with respect to the
discontinuity representing the fan in Roe’s scheme and propagating with velocity

â = â(uL, uR) =
f (uR)− f (uL)

uR − uL

=
1
2u2

R − 1
2u2

L

uR − uL

=
uR + uL

2
.

In fact we have:

â − f ′(uL) = â − a(uL) =
uR + uL

2
− uL =

uR − uL

2

= uR −
uR + uL

2
= a(uR)− â = f ′(uR)− â .

2
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Furthermore, with Burgers’ flux the second entropy fix of Harten and Hyman is
coincident with the modified LeVeque entropy fix, for which, according to (4.21),
σ = 1. In this case, both fixes make the Roe scheme equivalent to Godunov
method.

Remark 4.4 If the exact solution consists in a shock,i.e. if we havea(uR) ≤ â ≤

a(uL) (assuming a convex functionf (u)), thenδ = δL = δR = 0. In such a case,
the condition identifying the transonic rarefaction, namely |â| < δ for the first and
second method of Harten and Hyman, and−δR < â < δL for LeVeque’s method,
cannot be satisfied. Therefore we deduce that the entropy fixes considered here
don’t act in the case of shock.

5 Numerical results

We present in this section two test problems showing the action of the different
entropy fixes.

Problem 1

This numerical experiment consists in the solution of a Riemann problem for the
inviscid Burgers’ equation with initial data:

uL = −0.5 and ur = 1.0 .

The domainx = (0, 1) is discretized with 100 intervals. The solutions are com-
puted with a constant time step of 0.5× 10−2, corresponding to a maximum CFL
number of 0.5, and are shown att = 0.3.

Figure 13 shows the failure of Roe’s scheme when no entropy fixis used.
For Burgers’ equation, as we proved in Subsection 4.6, the results obtained

with the first entropy fix of Harten and Hyman (HH1) and with LeVeque entropy
fix (LV) are the same. Both schemes adequately compute the transonic rarefaction
of this test case (Figure 14).

The schemes based on a linearly variable intermediate state, namely the second
entropy fix of Harten and Hyman (HH2) and the modified LeVeque entropy fix
(LVm), shown in the right part of Figure 14, coincide for Burgers’ flux with the
original Godunov method making use of an exact Riemann solver (Figure 15, left),
as already observed. They all feature a “dog-leg” or “entropy glitch” at the sonic
point [7]. This behavior implies an incorrect spreading rate of the rarefaction, in
spite of the fact that the entropy condition is satisfied in this case (as may be proved
for Godunov scheme), because these schemes lack sufficient numerical viscosity
when the wave speed is close to zero. The small expansion shock visible near
x = 0.5 is however of magnitudeO(h) and vanishing as the grid is refined, cf.
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−0.1 0 1 1.1
−0.65

0
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1.15

Roe, no entropy fix

−0.65

0

1

1.15

Figure 13:Problem 1. Burgers’ equation solved by Roe method with no entropy fix.

−0.1 0 1 1.1
−0.65

0

1

1.15

HH1/LV entropy fixes

−0.65

0

1

1.15

−0.1 0 1 1.1
−0.65

0

1

1.15

HH2/LVm entropy fixes

−0.65

0

1

1.15

Figure 14:Problem 1: Burgers’ equation solved by Roe method. Left: first Harten and
Hyman entropy fix = LeVeque entropy fix. Right: second Harten and Hyman entropy fix
= modified LeVeque entropy fix.
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−0.1 0 1 1.1
−0.65

0

1

1.15

Godunov method

−0.65

0

1

1.15

−0.1 0 1 1.1
−0.65

0

1

1.15

HH2 entropy fix − 400 intervals

−0.65

0

1

1.15

Figure 15:Problem 1: Burgers’ equation. Left: Godunov method. Right:second Harten
and Hyman entropy fix with 400 discretization intervals.

also [13]: the right part of Figure 15 shows the results obtained with HH2 using
400 discretization intervals.

Finally, Figure 16 shows the results obtained with Harten entropy fix (4.16) for
several values ofε. We observe that this method fails ifε is not sufficiently high,
while a greaterε leads to a larger numerical dissipation. This fact comes from
the fixed valueε, no modulation dependent on the specific local Riemann problem
being allowed.

Problem 2

This numerical experiment is proposed by LeVeque in [14]. Weresolve a Riemann
problem for the one-dimensional Euler equations for a polytropic ideal gas. The
initial dataw = (ρ, v, P)T, expressing the values of density, velocity and pressure,
are:

wL =













3.0

0.9

3.0













and wR =













1.0

0.9

1.0













We use again 100 discretization intervals, a constant time step of 0.2 × 10−2

(maximum CFL of 0.52) and report the solutions att = 0.14.

35



−0.1 0 1 1.1
−0.65

0

1

1.15

Harten entropy fix (eps = 0.05)
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−0.1 0 1 1.1
−0.65

0
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Harten entropy fix (eps = 0.1)

−0.65

0
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1.15

−0.1 0 1 1.1
−0.65

0

1
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Harten entropy fix (eps = 0.25)

−0.65

0
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1.15

−0.1 0 1 1.1
−0.65

0

1

1.15

Harten entropy fix (eps = 0.5)

−0.65

0

1

1.15

Figure 16:Problem 1: Burgers’ equation solved by Roe method with Harten entropy fix
and severalε values
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Roe, no entropy fix
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3.1

Figure 17:Problem 2. Density distribution: Roe’s method without entropy fix.

The solution of this problem consists in atransonicrarefaction, a contact dis-
continuity, and a shock, as shown in Figure 17 where the results obtained with
Roe’s scheme without entropy fix are compared with the exact solution. We will
concentrate the analysis on the transonic rarefaction, which appears enlarged in
the right of Figure 17 and in all the remaining figures.

For the Euler system observations similar to the scalar casecan be done. Only
HH1 and LeVeque’s entropy fixes (Figure 18) are able to avoid the generation of a
spurious expansion shock. All the other schemes (Figure 19)yield an entropy glitch
of the same magnitude of that computed with Godunov method. However, this
unphysical discontinuity represents only an error ofO(h), as shown in Figure 20
for the particular case of the LVm method.

6 Entropy fix in presence of strong rarefactions

When solving the Euler equations in presence of strong rarefactions, which im-
ply low density regions, the classical Roe linearization based Jacobian matrix
Â(uL, uR) = A(û(uL, uR)) = A(r)(v̂, ĥt), wherev̂ and ĥt are the Roe-averaged
velocity and total entalpy, may fail. In fact nonphysical states, with negative den-
sity or internal energy or both, can be computed. The original Roe scheme has not
enough degrees of freedom to impose together positivity andconsistency with the
conservation laws, as demonstrated in [3], at least for a certain class of symmetrical
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Figure 18:Problem 2. Density distribution: HH1 and LV entropy fixes.
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HH2 entropy fix
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LVm entropy fix
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Figure 19:Problem 2. Density distribution: HH2 and LVm entropy fixes.
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Figure 20: Problem 2. Density distribution on a grid with 400 points: Roe’s method
without entropy fix and with LVm entropy fix.

Riemann problems. The difficulty is avoided by resorting to apositivity preserving
approximation, as the HLLE scheme [2, 3]. Unfortunately theHLLE method is
characterized by a numerical dissipation larger than in Roe’s scheme, particularly
near contact discontinuities. To overcome this drawback inrecent years some
modifications of the original HLLE scheme have been proposed[3, 18]. An alter-
native approach is suggested by Dubroca [1], that introduces the required degrees
of freedom by modifying the classical Jacobian-based Roe’slinearization .

We suggest here a different approach. The starting point is the observation
that the lack of positivity of Roe’s scheme has been explained [3, p. 285] as the
consequence of the underestimation of the physical value ofthe minimum and
maximum signal velocity by the approximate Riemann solver.From the general
formulation presented in Section 3, the entropy fix may be seen as operating a
correction of the propagation velocities: therefore it mayin some cases act also
to maintain the positivity of the solution. In other words, it is possible to increase
the degrees of freedom of the Roe method through the general formulation of the
entropy fix, so as to enforce the positivity of the scheme. It will be shown in the
next subsection that the proposed general formulation encompasses also the HLLE
scheme, that may then interpreted as apositivity preservingentropy fix.
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6.1 The HLLE scheme revisited

The HLLE Riemann solver, as proposed in [2], may be formulated in conservation
form, with the numerical flux function given by:

F(HLLE)(uL, uR) =



























f (uL) if bL > 0 ,

bR f (uL)− bL f (uR)

bR − bL

+
bL bR

bR − bL

(uR − uL) if bL < 0< bR

f (uR) if bR < 0 ,
(6.1)

wherebL andbR are approximations to the smallest and the largest physicalsignal
velocities. As proposed in [3], these velocities can be defined by:

bL = min
(

â1, vL − cL

)

and bR = max
(

â3, vR + cR

)

, (6.2)

whereâ1 andâ3 are the smallest and largest eigenvalues of the standard Roematrix,
while v andc denotes respectively the fluid velocity and the sound speed.

By definingb+ = max(0, bR) = P(bR) andb− = min(0, bL) = N(bL) to
retain the original Einfeldt’s notation, the above flux function may be rewritten in
the more compact form:

F(HLLE)(uL, uR) =
b+ f (uL)− b− f (uR)

b+ − b−
+

b− b+

b+ − b−
(uR − uL) . (6.3)

Alternatively, the HHLE scheme may rewritten so as to put into evidence its vis-
cosity matrix, as [2]:

F(HLLE)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2
Q(uL, uR) (uR − uL) , (6.4)

where

Q(uL, uR) =
b+ + b−

b+ − b−
Â −

2b− b+

b+ − b−
I . (6.5)

Notice that whenbL andbR have the same sign (supersonic flow on both the left
and right states), the HHLE flux reduces to Roe’s flux.

Pushing forward the connection between Roe’s and HLLE flux function, from
(6.4) and (6.5) the latter may be finally written as:

F(HLLE)(uL, uR) =
1

2
[ f (uL)+ f (uR)] −

1

2

p
∑

k=1

q(HLLE)(âk) χ̂k r̂k , (6.6)

where the functionq(HLLE)(âk) is given by:

q(HLLE) =

(

b+ + b−
)

âk − 2b− b+

b+ − b−
. (6.7)
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It may be clear now the connection between the HLLE scheme andthe general
formulation of the entropy fix presented in section 3. In factthe flux (6.6) is written
as a Roe flux modified by an entropy fix, and the modification (6.7) reduces to the
general formulation (3.25) if we setσk = 0 and

ak,L = b− and ak,R = b+ ∀k . (6.8)

Remark 6.1 From the general formulation (3.25) we may recover also the HLLEM
scheme [3, p. 284] if we setσ1 = σ3 = 0 andσ2 = 2δ̂, with δ̂ = ĉ

ĉ+|v̄|
, being

ĉ = c(ĥt, v̂) andv̄ = bL+bR
2 .

6.2 A positivity preserving entropy fix with low dissipation

Placing the HLLE scheme in the same setting of the classical entropy fix formu-
lations supports the introduction of the idea ofpositivity preservingentropy fix
and also suggests how to correct Roe’s scheme to impose the positivity. The gen-
eral formulation (3.25) is found to be a useful and simple tool to benefit from the
properties of the different methods considered here in order to guarantee:

i) consistency with the entropy condition,

ii ) positivity,

iii ) low numerical dissipation.

Indeed, we can suitably define the quantitiesak,L , ak,R andσk depending on the
local solution to assure the aforementioned properties.

For fixed values ofak,L andak,R, an increase in the slopeσk implies a lower
numerical dissipation. Nevertheless, it cannot be proved that the entropy condition
will be satisfied for values ofσk different than zero. Therefore, in the following
we restrict our analysis to the caseσk = 0, ∀k, for simplicity.

We start distinguishing the case in which Roe’s intermediate stateŝu1 = uL +

χ̂1 r̂1 and û2 = uL + χ̂1 r̂1 + χ̂2 r̂2 are physically admissible from the case in
which one of them or both are not. The condition discriminating the two cases
consists in checking the positivity of the density and internal energy of stateŝu1

andû2.
If the two computed intermediate states are physical, the positivity of the so-

lution is naturally preserved, and we correct Roe’s numerical flux by means of
(3.25) only to avoid entropy violations, as usual. In such a case, forak,L andak,R

we use the definitions (4.9), as in LeVeque’s method. According to the physical
interpretation of the entropy fix suggested by LeVeque, thischoice of the propagat-
ing velocities allows a better approximation of the exact solution of the Riemann
problem and is found to introduce the lowest level of numerical viscosity, with
respect to the other possible definitions ofak,L andak,R, for σk = 0.

If on the contrary negative values of density or internal energy or both are
detected, definition (4.9) for the propagation velocities cannot be used, since they
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depend at least on one not physically admissible state. Moreover, in this case we
need to defineak,L andak,R so as to force a suitable enlargement of the numer-
ical signal velocities, thus avoiding the underestimationof the limiting physical
velocities caused by Roe’s approximate solver. Following the HLLE idea, we use
definition (6.8) for the propagation velocities. This choice guarantees both con-
sistency with entropy condition and positivity, as demonstrated in [3]. We remark
that, if we use a nonzero value for the parameterσ2, still havingσ1 = σ3 = 0
and the same definition (6.8) ofak,L andak,R, it is in principle possible to find out
sufficient conditions onσ2 guaranteeing positivity. These conditions are presently
under investigation.

The proposed version of entropy fix proves to be a positivity preserving cor-
rection of Roe’s scheme that allows an easy implementation and requires an addi-
tional computation of no relevant cost with respect to Roe’smethod augmented by
LeVeque’s entropy fix [12].
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Figure 21: Strong rarefaction test problem [3]. Computed densities for Roe method
augmented with the proposed entropy fix in comparison with the exact solution and the
solutions by HLLE/M methods.

6.3 Numerical results

Figure 21 compares the first order numerical results obtained with the presented
method and the HLLE/M methods for a Riemann problem proposedin [3], con-
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sisting in two symmetric rarefactions. The initial data are

wL =













1.0

−2.0

0.4













and wR =













1.0

2.0

0.4













with w = (ρ, v, P)T.

The computation is run with 100 discretization intervals and a constant time step of
0.2× 10−2 (maximum CFL of 0.54), while the solutions are reported att = 0.05.

The proposed entropy fix allows resolving without difficulties this strong rar-
efaction test, which causes the failure of Roe’s classical scheme, and is found to
be slightly less dissipative than the HLLE scheme.

A slightly different test case was also considered, that consists of a Riemann
problem obtained from the former, by replacing the value of the pressure of the
left state withPℓ = 2. In such a case the problem is non-symmetric.

Figure 22 shows the solutions computed with the same discretization as in
the previous case. The HLLEM method and – to a lesser extent – the present
method, being less dissipative than the HLLE scheme, feature a small undershoot
with respect to the exact solution, which does not prevent, however, to compute a
positive solution.

In solving Riemann problems different from those implying low density re-
gions, the presented method preserves all the properties ofRoe’s scheme.

7 Conclusions

Different versions of the Harten and Hyman entropy fix,as applied to Roe’s scheme,
are analysed in this work from two complementary viewpoints. On the one side,
assuming the original Harten approach, which considers theentropy fix as a means
to select the physically relevant weak solution, corresponding to the vanishing
viscosity solution, we were able to easily compare the different methods in terms
of the numerical viscosity they introduce. On the other side, adopting the approach
suggested by LeVeque we may look at the action of the entropy fix as a specific
correction to Roe’s linearization in case of a transonic rarefaction: the single wave
that represents the rarefaction fan in Roe’s method is splitin two waves connected
by an intermediate solution state. In this way it has been possible to derive a very
general formulation that encompasses all the different versions of this class of
entropy fix.

Furthermore, the general formulation has allowed to develop a new scheme:
motivated by the appeal of symmetry, LeVeque’s formulationof the entropy fix
has been extended to the case of a linearly variable intermediate state.
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Figure 22: Strong rarefaction problem [3] modified so as to obtain a non-symmetric
solution.

Finally, we take advantage of the introduced unitary framework to reconsider
the HLLE scheme as special kind of entropy fix as applied to Roe’s scheme. This
leads to the concept of a positivity preserving entropy fix and to the formulation of
a mixed scheme that automatically switches from the classical Roe scheme with
entropy fix to the HLLE scheme by simply choosing the form of entropy fix ap-
plied. The proposed hybrid scheme is positivity preservingby construction, when
applied to a first-order method, as it has also been proven by our simple numerical
experiments. It allows an easy implementation and requiresan additional compu-
tation of practically no cost with respect to Roe’s method incorporating LeVeque’s
entropy fix.
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