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Abstract

The class of entropy fixes originated by Harten and Hyman pafieal to

Roe’s linearization of convex hyberbolic equations, i@rafulated within a
unified framework. By adopting a complementary viewpointhwespect to
that of Harten, the entropy fix is recast in terms of exprassivolving either

the propagation speeds or the speed differences. The gebfmsnulation

allows to analyze and compare several versions of this ofasatropy fix

and to elaborate some new variants thereof. In additios, fltaimework
accommodates an interpretation of the HLL schemes whictisléa the
concept of a positivity preserving entropy fix and to a soltilependent
correction to Roe’s scheme so as to assure positive sadution

Keywords: Numerical solution of conservation laws, Non-linear hyqmdic
equations, Entropy fix
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1 Introduction

Weak solutions of initial value problems for hyperbolic servation laws are
nonunique. To select the physically relevant unique sohytadditional crite-
ria have to be considered, which are mostly referred teraopy conditions-a
denomination originated from gas dynamics. In particudaweak form of the
entropy condition may be used as a mathematical tool toyw#dt a given nu-
merical method converges necessarily to the physicallgueweak solution [12,
p. 39]. As an example, it can be proved that weak solutionaioétl by means
of a Godunov type method satisfy the entropy condition, m&sg that entropy-
satisfying solutions to the Riemann problems are used [1248]. This condition
is verified by the original Godunov method [6], which consglhe exact solution
of each Riemann problem, but may be violated by one of the paysilar flux dif-
ference splitting schemes based on Approximate Riemane&qlARS), namely
that formulated by Roe [17]. In order to make this scheme tisfgahe entropy
condition, it must be properly modified: such a correctionssally indicated as
entropy fix

The first proposals for such an entropy fix were put forwarche mid 80’s
by Harten and co-workers. Their approach is quite genetsad: entropy fix is
considered as a means to guarantee that the numerical sphainees the entropic
solution to the hyperbolic problem, defined as the limit of golution of the
corresponding viscous problem when the viscosity and taartal conductivity
vanish (vanishing viscosity solution). This can be accaosimgld by writing the
upwind scheme so as to put into evidence its numerical diisipmatrix, and by
operating on this matrix to assure a non-zero viscous darttan to the numerical
flux. This viewpoint is not limited to ARS-based schemes,rhay be applied to
any method written in dissipation form [8]. The Harten [8fldtharten-Hyman [9]
formulations of the entropy have been widely accepted byGRB community,
mainly because of the simplicity of their implementatiorekisting codes based
on Roe’s scheme.

A slightly different viewpoint, that has led to a differemtrin of the entropy
fix for Roe’s ARS, has been adopted by LeVeque [12]. Here thpy fix is
intended as a specific cure for the failure of Roe’s schemese ©f transonic
rarefactions. Roe himselfin [17, p. 370] mentioned thiglkefdifficulty in a final
remark discussing the entropy conditions. LeVeque’s aggrpalthough limited
to Roe’s linearization, develops a physical insight by edteg some consider-
ations valid in the scalar case to the general case of hypedystems. In the
scalar case the representation of a rarefaction fan by ne¢arssngle discontinuity
leads to difficulties only under the condition of transoracefaction: otherwise
the introduction of rarefaction shocks is admissible, bseahe resulting scheme
selects the physically relevant solution anyway. Accagdmthis viewpoint, the
entropy fix avoids representing a transonic rarefactiorhélinearized problem
by means of a single discontinuity and replaces the raiefatn by an alterna-
tive description. An advantage of LeVeque’s approach igunopinion, that it
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suggests to apply the entropy correction in a selective wag,specifically only
on the acoustic waves. On the contrary, the original HantehHyman approach
implicitly suggests to act on all the eigenvalues of the aysand therefore to
correct also the contact discontinuity, where the addiicam artificial dissipation
may be detrimental to the accuracy of the results.

To better understand these approaches and appreciatdiffegences, it seems
worthwhile to establish a general framework encompassirghree aforemen-
tioned versions of the Harten entropy fix as well as the egtfixmue to LeVeque.
In this work we will show that it is possible to develop a unytaetting suitable
for analyzing all these entropy fixes and for clarifying tleationships existing
among them.

The main purpose of this work is to provide an analysis ofeéheslely used
tools so that they may be appreciated in their actual sigmte, rather than being
used merely as “black boxes” with blind attitude. We do n@tend to make a
complete review of all the entropy fixes proposed in conjiamctvith different
solvers. In fact, we will concentrate on the Harten’s fanoifyentropy fix, which
has become very popular for its usefulness in correctingsRasheme. Other
proposals, like for example the one due to Osher [16], areoatidered herein.

It is worth remarking that such an analysis will prove usetulunveil the
connection between the idea of entropy fix and some recerdjygsed positivity
preserving schemes, like the class of HLL methods [10, 2T Bis will lead to the
concept of positivity preserving entropy fix and to a solotaependent correction
of Roe’s linearization in Jacobian form that assures pasgolutions.

The paper is organized as follows. In Section 2 we briefly Irébha main
concepts of Roe’s linearization, as they are used in thessutent analysis. Then,
in Section 3, we derive a general formulation of the entrogysfarting from
LeVeque’s viewpoint of breaking a single transonic wave tato waves connected
by a linear variation of the unknown. In Section 4 we show hbw different
methods belonging to Harten’s family of entropy fix, as welLaVeque’s method,
fall within the derived general framework, and we proposew mariant of them.
In Section 5 we report some numerical results of 1D test cdseSection 6 we
show how also the HLL schemes fall within the general forrtiatepresented and
we introduce the concept of positivity preserving entropy We end with some
concluding remarks.

2 Roe’s linearization

As well known, Roe’s method [17] is a Godunov-type schemethas the ap-
proximate solution of a Riemann problem at each interfagarsging pair of
neighbouring cells of the spatial discretization.

Let's consider the hyperbolic problem consisting in the-dimeensional system



of conservation laws in the form:
a_u o f(u) _o.
ot X
whereu = u(x,t) is the vector of the conservative variables ah@) is the
corresponding flux vector. We assume that the set of statess dimensiorp,
with p an integer> 1. A Riemann problem with left and right statesandug, is
defined by the initial condition:

(2.1)

U(x. 0) = u Iif x<0O

2.2
ug Iif x>0. (2:2)

The Roe solver replaces the original Riemann problem witheatized problem
of the form:

ou A Ju
—+ A — =0 2.3
o + A(ug, uR)ax , (2.3)

together with the initial condition (2.2). The matri&(uL, ug) is called a Roe
linearization if it satisfies the following properties [1.,358]:

i) A(u., ug) has real eigenvalues and a corresponding set of eigensebtir
form a basis oRRP,

i) A(u,u) = A(u)andA(u,, ug) — A(u) smoothly foru,, ug — u,

iii) AU, Uup)(Ug — uy) = f(Ug) — f(uy).

We remark that in general such a linearization is not unigdefined.
The (first order accurate) numerical flux of Roe’s schemeuvsrgby:

1 1 . ..
FR(UL, up) = Z[F(U) + FUR)]— 5> Jak] Ak Pk (2.4)
2 2
whereéx = ac(u,, ug) andfy = fk(AuL, Ug) are respectively the eigenvalues and
the eigenvectors of the Roe matx = A(u_, ug). The coefficientsyk are the
components of the jumpg — u, on these eigenvectors, namely,

p
Ur — UL ZZ)A(k i, (2.5)
k=1
so that, by definingA| = R|A| R, with |A| = diag(|ay]. |42]. ... |4pl) and
R the matrix of the right eigenvectofg, we also have
p
|A(uL, up)| (Ug — uL) = Y 1] Rk P (2.6)
k=1

With this notation the numerical flux assumes the standard:fo

Roe, 1 14
FR(uL, ug) = ST (U + f(uR)]—E\A(uL,uR)MuR—uL). (2.7)
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Figure 1:Solution of the Riemann problem: a) exact; b) Roe’s linesitmn

2.1 Entropy violations

It is well known that Roe’s linearization may lead to nonrepic weak solutions

of the governing equations, due to the approximation of tkecesolution of
the Riemann problem WitbR"e(%; u., Ug), made of constant states separated by
discontinuities (Fig. 1) :

o=u, if X< at

01 if 4t <X < éot

O (¥ U up) =1 . ) (2.8)
Uk If &t < X < &1t

This may be easily seen when the initial discontinuity offfemann problem
satisfies the Rankine—Hugoniot condition for some propagapeedr, namely:

f(ug) — f(U) =0o(Ur—uL). (2.9)

In such a case, because of property, the squtiomRoe(§; U_, Ug) Cconsists in
a single discontinuity of speed and strengtiiug — u,), but may not represent
the correct weak solution. Entropy conditions have beemtdated in different
forms as additional conditions to the initial value problenselect the physically
relevant, vanishing viscosity, solution, seeg, [11] and [12]. Following Lax [11,
p. 32], the entropy condition may be expressed as:

Y (Ug) — ¥ (u) —o [n(ug) —n(u )] <0, (2.10)

wheren(u) is a convex entropy function an@(u) the associated entropy flux for
the considered hyperbolic system.



If ug andu, satisfy both (2.9) and (2.10&)R°e(%; U,, Ug) coincides with the
exact solution. If, however, the pairg,u, satisfies (2.9) but not the entropy
condition (2.10), the exact solution evolves in time (pblssas a rarefaction fan
and some discontinuities), white®*(%; u_, ur) still consists in the propagation
of the initial discontinuity, and this is not an entropicsibn.

We need to observe here that a correct approximdi@f(u, , ug) may still be
obtained despite the presence of entropy violating discoities ineR°® %; u., Ug).
In particular, it is easily checked in the scalar case tha'&oumerical flux coin-
cides with the (entropy satisfying) Godunov flux, except whige exact solution
consists of a transonic rarefaction. This consideratios @xpressed by Roe in
[17, p. 370] with reference to the Euler equations for a polyic ideal gas.

2.2 Entropy corrections

The above observations lead to a natural way of modifying'Rlieearization
to ensure entropic solutions: when the exact solutions iaresonic rarefaction,
we need to substitute the entropy violating discontinoys@gmation with some
other approximation able to satisfy the weak form of theamtrcondition. We
denote this viewpoint as LeVeque’s viewpoint, and we wik itsn the following
chapter to derive a general form of the Harten and Hyman pyfig.

A different viewpoint, denoted here as Harten’s one, is sstgd by the ex-
pression (2.7) of the numerical flux, whefA(u,, ug)| can be regarded as the
viscosity matrix A

Q. = |A(UL, UR)| . (2.11)

In the basis of the eigenvectadig, the viscosity matrix is diagonal, namely,

This way of writing the viscosity matrix indicates that, tbtain a method guar-
anteeing the entropic solution, in the sense of vanishisgogity solution, it is
necessary to prevent any eigenvafydrom becoming zero. As a consequence,
the entropy fix must modify the eigenvalues when they becaoasmall.

Both viewpoints lead however to the same result—an easiplamentable
modification of Roe’s flux. With the Harten and Hyman entrogyRoe’s numer-
ical flux is written in the following form:

1 13
FEO(U,, ug) = L) + fup)l =3 > a0 fx i, (2.13)
k=1

where the functiom(ay) is a suitable modification of the functigéy|.



3 General formulation of the entropy fix

We introduce here a general formulation of the entropy fixiago Roe’s scheme.
This formulation comprises different versions of entropydue to Harten and
Hyman, both the original ones and a version presented by du@/eas will be

shown, the latter provides also the guidelines for the maysnterpretation of the
former.

The methods proposed by Harten and Hyman are defined as $ollow

1. Consider the solution of the linearized Riemann probl@m)(with left
stateu, and right stateux: thek-th elementary wave, corresponding to the
eigenvaluey (u,, ug) for 1 < k < p, separates the constant states

k-1
Oke=U.+ Y Rjf  and  Oke= 0k + Rk fx.
=1

sothatly = U, Oks1, = Okrforl <k < p—1,andlpr = ur (Fig. 1).
We have marked all the intermediate states of the linear &menproblem
by a caret, writingdx, andQy g, to explicitly distinguish all the elements

associated with the Roe matrix

2. To eachk-th elementary wave we associate two propagation velséiie
anday r (Fig. 2). If thek-th wave is approximating a rarefactios,, and
ax r represent an estimate of the propagation velocity of thiedird the last
perturbation component of the fan, going from left to riglits a conse-
guence, the condition identifying the occurrence of a arsrarefaction
for thek-th wave will be expressed by:

a, <0< akr.

3. Once recognized the presence of a transonic rarefadti®snecessary to
introduce a suitable representation of it which will reglahe single dis-
continuity occurring in Roe’s linearized problem. The e@lent substitute
of a transonic rarefaction proposed by Harten and Hymanisisns two
discontinuities with an intermediate state (Fig. 3). Infibléowing we will
consider first the formulation of the entropy fix which resulom assum-
ing aconstantintermediate state (Subsection 3.1) and then a more general
formulation based onliearly variableintermediate state (Subsections 3.2
and 3.3).

Clearly, different choices of the velocitieg | andayx r and of the kind of repre-
sentation for the transonic rarefaction lead to differgpes of entropy fixing.
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Figure 2:Propagation velocities: a) casg, < axr; b) caseax | > ar
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Figure 3:Transonic rarefaction: a) single Roe’s wave; b) equivatentwave split
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3.1 Constant intermediate state

Whenever for thé&-th wave the conditiomy , < 0 < & r is satisfied (withey
anda r to be suitably defined), the rarefaction wave is assumed tefdaced by
two discontinuitiepropagating with velocitieay | anday g, with an intermediate
constant statayx. We therefore have the solution

Gk,L |f X < ak,Lt
UE(F) = Tk if at <X < acgt (3.1)

Ok,R if X>ak,Rt,

The stataly is determined by imposing that the resulting modified Roelges be
consistent with the integral form of the conservation laamely,

(B.r — &)Uk = (& — ak. )0k, L + (B r — &)Uk r,
which gives immediately the intermediate state

(& — ak,L)Ok,L + (kR — é‘k)lAJk,R
A r — Ak, .

Uk =

(3.2)

Then, the two jumps between the intermediate Sigtand the left and right states
across th&-th wave are expressed in the form:

A

_ N Akr— Ak . , R

Uk — Uk = ————— Xk 'k = Xk,L Tk
Ak r — Ak, L

N _ A — AL . , N

Ukr — Uk = ——————— Xk 'k = Xk,r k>
Ak r — Ak, L

where we have introduced the coefficients

A

Koo = XRZH o and  yke= %~ 2 Xk
L= R= —— Xk
ak R — Ak,L A r — Ak,

that, once multiplied by, represent the left and right fraction of the solution jump
xk fk associated with thk-th wave. In fact we have

Xk Fk = Ok r — Ok L
= (Uk — Ok..) + (O r — UK)
= Xk,L Ick‘f‘Xk,R?k-

On this basis, we obtain that, when thé¢h wave is a transonic rarefaction, in the
expression of Roe’s numerical flux the tef@q| xk fk will be replaced by the sum

lak, | xk,o Fx + lak.rl XKk,r K-

11



So, forax. < 0 < ax g, the quantityjéy| in the term|éx| xk fk of Roe’s flux will
be substituted by

A

A, r — A & — a1 (et A& — 23R L
—ak,L——— t & = .
ak, R — Ak, L ak R — Ak, L ak R — Ak, L
As a consequence, we come to the following expression ofuthreenical flux, with

a corrected treatment of the transonic rarefaction,

1 1
FO, ug) = <[ f (u)+ fur)l — = ch(ak) Xk Tk, (3.3a)
2 2 &~
where
(B.r + 8,1 )8k — 28y raK,L if a, <0< a
q°(&) = Ak — AL " " (3.3b)

|&k| otherwise

3.1.1 Entropy condition

Following Harten [9] (see also [5]) we want to demonstratéeast for the scalar
case, that the modified solution (3.1) does satisfy an entcopdition. Let us
consider the scalar equation:
u af()
at ax
for a convex fluxf (u), with initial conditions

0 (3.4a)

u if x<0

u(x, 0) = { (3.4b)

ug if x>0.

suchasa, = f’(u) < 0 < f’(ug) = ag. The exact solution of the Riemann
problem (3.4) is:

u, if x<at
w(F) =131 x) if at<x<agt (3.5)
Ug if x> agt.

and represents the case dfansonicarefaction, in which the original Roe scheme
would fail.

The scalar p = 1) version of the approximate solution (3.1), based on a
constant intermediate stdieis:

u. if X < a1,|_t
UC(%) =31 if a1,|_t < X< al,Rt (36)

ug Iif X > agrt.

12



The entropy condition may be satisfied by (3.6) provided weseh; | ,a; g such
as:
ap < fl(u) =a; air > f'(Ur) = ar.

Therefore, let us assunag | = a,, aj r = ar and rewrite (3.6) as:
u Iif x<at
uw(¥) =430 if ait <x <art (3.7)
ug Iif x> art.

We need to show that (3.7) is consistent with the integrahfof the entropy
condition [12, p. 38]:

h
tfz[on(u)  oy(u)
/0/_2{ T ]dxdtfo, (3.8)

wheren(u) is a convex entropy function anfd(u) is the associated flux function
for equation (3.4a)h andt being the space and time discretization intervals. For
u = u®(}) this inequality is equivalent to

/

Considering the piecewise constant function (3.7), we may\irite the integral
on the left side of (3.9) as:

/

We may then observe that has been obtained imposing the consistency with
the integral form of the conservation law. This implies,ceia, andag are the
limiting physical propagation speeds, tftais equal to the average value of the
exact solution (3.5) in the intervéh, t, agt):

g— /aRtw (%) dx. (3.11)

(@r—a)T Ja

NIz

h
7 (U(%)) dx < S () +nUR] = Tl (U =YWl (3.9)

NI

NI

n (u(3)) dx = (aL T+ g)n(uL)

NIz

(3.10)
_ h
+ (@ —ay)Tn) + (E — aRr)n(UR) .

By (3.11) Jensen’s inequality gives:

_ 1 artT «
= ((aR —a )T /aLr “ (?) dX)

5 o) o

T (ar—a)T Ja o

(3.12)

X
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Combining (3.10) and (3.12) we obtain:

artT

< (aLr—I—g)n(uL)—I—fa n(a)(é)) dx + (g—aRr)n(uR):

LT

NIT

[A
I\
NIz

=
—

S
—~
<X
~
~
o

X

where in the last passage we have used the properties ofltli®msd3.5). From
this last relation, considering that the exact solutim(‘i[ﬁ) satisfies the integral
form of the entropy condition:

/

we immediately obtain (3.9).

NIT

h
n(w (%)) dx < 5 (U0 + 17U = 7[Y (Up) — ¥ (U],

NIT

3.2 Linearly variable intermediate state

Supposing that a transonic rarefaction occurs fokttie wave, we now introduce
a linearly variable intermediate state in the raage < % < & r as follows:

_ X akL +a, Ok N N
) =mer (-2 2 b, (19

whereUy is given by (3.2) and the parametgr has to be suitably defined. It is
easy to check that the solutiary(¥) satisfies the consistency with the integral
form of the conservation law.

The linear solutioru}((%) given by (3.13) leads to the following expression of
a&0): .

q (&) = (8, r + 8,1 )ak — 28K R &K, L n ak,r A, L - (3.14)
ak,r — S, AR — L

In fact, let's assume that for a given Riemann problem thecreésay | anday r
satisfy the condition identifying the transonic rarefantfor thek-th wave, namely,
a. < 0 < ar. We now define a new approximate Riemann solver by means
of a functionw'(%; u., Ug) which is obtained by introducing the linearly variable
solution uL(%) between the propagation wavag, anday i in the standard Roe
solver,i.e. we have:

S U =) A <fcan (19
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(Here we assume that,_1 < ax, and ax r < &x+1.) We can compute the corre-
sponding numerical flux by means of:

FOu, up) = f(uy) — %/

_h
2

0

h
@ (%5 uc, Ug) dx+ZuL, (3.16)

wherert is the time step and is the spatial mesh size. First, let's consider the
integral appearing in the last relation:

0 T k—2 aj 1t
fhw'(é;uL,uR) dx=f ude+Z f 0j dx
-2 j=1 \V&j7

LT 0
+/ Ok_ldx+/ u (%) dx,
&_17

LT

NIz

(3.17)

where, for 1< j < p, 0j = u. + Zijz_ll xi fi denotes thg-th Roe’s state. An
easy computation gives, for the second term appearing 17)3.
k—2

aj417 k=2
> / Ojdx | =t@-1-a)u +7) (A1-48)%f. (3.18)
j=1 \Y&7 =1
From (3.17) and (3.18) we get:

0
f @' (%; u,, ug) dx

NIz

A h A A = k2
= (@t + H)u +r@ci—a)u T ) Aifi -t &Rl
j=1 j=1
0
o - 8enen+ [ (%) dx
aLT

h k—2 k—2
= U +taci|u+) R —0c1)—1t) & Rjf
SuL - . it - . i Xi T

]:1 ]:1

0
+ 78 Ok-1 +/ ui(%) dx
LT
(3.19)
Introducing the last relation in (3.16) we have:

k—2

F(I)(UL’ Ug) = f(U) +8k—1 Xk-1Fk-1+ Z aj Xj fj
=1 (3.20)
A 1 0 I (X
—ak,Luk_l—? u(2) dx.

LT

15



Now, by adding and subtracting the quantity
1 1, L,
5L (up) — fuyl = 51_221 & 2 f)

from (3.20) we obtain:

1 ket A
FOuL, up) = S 1F )+ FuRl+ Y &) &) fj — a Okt
=1
: (3.21)
1% 1~ 5 5
TJaLr =1
Finally, taking into account that
a <0if j < and a >0if j>Kk,
we have:
FOuL up) = 5 [f(u) + f(uro]—éjg1 11 %j f;
N 1 ° | (X 1, ..
—a, Og1 — = U (2) dx — = & Xk fi (3.22)
T Ja o 2
1 & ..,
3 PORETP IR

j=k+1

Let’'s now evaluate the integral appearing in (3.22), usimgdefinition (3.13) and
reminding thatly g — Ok = X« fk:

1 (° (L A+ o .,
EYOFTRINENT S

TJaLt 2 2 A r — Ak,
— .U _ak,Rak,L Ok -
= ay,. Uk 7 ma—ag K

(3.23)

Noticing thatQyx, = 0Ok—1 and Oy g = 0k, by substituting (3.23) in (3.22) we
obtain:

NI -

1 k-1 o
FOUL up) = S1F )+ Ful = 5> 181 % F
j=1

1 + ay,)é — 2 R
__[(ak,R A% — 2 r Ak | ArB Gk] Sefi (3.24)
2 Ak r — Ak, L ak r — Ak, L

16



The last equation proves that, if we introduce in Roe’s gdlve linearly variable
solution (3.13) forax |, < % < akr, beingax, < 0 < ak g, the function|a|
appearing in the expression of Roe’s numerical flux is regglday the function
q'(&) given by (3.14).

O
On the basis of the above result, we can now write a generalfiation of the

entropy fix in terms of propagation velocities, expressethieyfollowing form of
the numerical flux:

1 IS .
FOWL, up) = S[F ) + FuRl— > gh(@) ik k. (3.25a)
2 2k=1
where
(ak,R+ak,L)ék_2ak,Rak,L+ A raAK, L
Ak R — Ak, Ak r — Ak,L
| A
0a(ak) = | if a, <0< ayr (3.25b)
EN otherwise

Of course, if we set, = 0 we recover the formulation (3.3) based on the assump-
tion of a constant intermediate state as a particular case.

The subscripta’ used in the above relations has been introduced to disshgu
the expression (3.25) from the one to be introduced in thé swbsection.

3.3 General formulation in terms of velocity differences

The general scheme (3.25), comprising both a linearly kgiand a constant (for
ok = 0) intermediate state, is expressed in terms of propagapeadsa, but it
can also be reformulated in terms of veloaiyferencesas follows. Let us first
define the two (always nonnegative) quantities:

Sk, = maxo, & — ax .} and Sk.r = Max0, ax r — &} - (3.26)

Assuming tha#y belongs to the intervala , , ax r) With ax | < ax r, definition
(3.26) implies that the conditioa, < 0 < ax r IS equivalent to the condition
—8kr < & < k.- Insuch a situation we havy | = & — ax,. anddxr =
ak r — &, So that we can write:
aL=a&—. and ar=3a+kr-

Introducing these relations in the expression'@éy) given by (3.14), we have:
ok8?2 — (1 — 0 ) Bk.r — k)& + (2 — 018k L Sk r

Sk.L + Sk r .

q'(&) = (3.27)
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It follows that the general formulation (3.25b) of the eiplydix with a linearly
variable intermediate state can be recast in terms of trexigldifferencesiy
andéy g, as:

1 1< L
FOUL, ug) = Z[f(U) + fF U — 5> g5(a) A k., (3.28a)
2 2
where
ok 82 — (1 — oK) (Bk.r — Ok,L) 8 + (2 — 0¥)8k 1 Ok R
k.. + Ok r ’
o (&) = S n < A < S (3.28b)

EN otherwise

The expression (3.27) allows us to recognize, better tha53, the type of mod-
ification of the functiorjax| accomplished by an entropy fix in the neighbourhood
of the origin. As we have already said, each entropy fix hasddify the eigen-
valuedy when it becomes too small, so as to prevent its vanishingmélation
(3.28) helps regarding the entropy fix as a means to selewatishing viscosity
solution, in the spirit of Harten’s original interpretatio

We can easily see from (3.27) that fex r < &k < dk,. the function|ay|
is replaced by a parabolic function, which degenerates treggbt line when the
intermediate state is constant. for ox = 0. We also notice that the function
d; (&) is continuous. The parameter must satisfy the conditiosy > 0 in order
to have a curve under the straight line corresponding todke of a constant inter-
mediate state, and therefore to reduce the amount of atifiaimerical viscosity.
Moreover, we require that the slopquf(ék) in & = 8. is < 1 and the slope in
& = —ék ris> —1. From (3.27) it follows immediately the condition fog:

2 min(d,. , 8k.r)
dk,L + Ok r

Ok =
4 Review of entropy fixes

In this section we recall the different versions of Harted &tyman entropy fix
and we show how they fit within the general framework derivieove.
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4.1 First entropy fix of Harten and Hyman

In [9] Harten and Hyman present an entropy fix formulated devis!:

1 g o
FH DU, ug) = SIFUD + fuRl -3 I;q”“l(ak) Xk Pi, (4.1a)

where
Sk I Jak] < &k
QM@ =4 (4.1b)
EN =
with
8k = max{0, & — ax(u,), ak(ug) — &}, (4.1c)

ax(u) being thek-th eigenvalue of the matriA(u) = %

Wheneverag(u, ) > & > ak(ug), i.e, if the k-th elementary wave is a
substitute for a wave that cannot be a rarefaction, we obsatsy = 0 and
q" (&) = &

The Harten and Hyman scheme (4.1) may be shown equivalergddiaular
case of the general formulations presented in the prevextgs. Itis convenient
to consider the form (3.28b) in terms of velocity differescky inspection, scheme
(4.1) is equivalent to (3.28b) provided we sgt= 0 and

Sk.L = Ok.r = Ok - (4.2a)
This corresponds to the choice
L =& -0 and  ar=a+ (4.2b)

to be used in form (3.25b). Being = 0, the intermediate state introduced in the
transonic rarefaction situation for thketh wave is given by the constant solution
Uk expressed by (3.2). Moreover, due to definitions (4.21)js equal to the
arithmetic mean of the left and right staigg, andly r:

Ok, + Ok r
— 5
since(@x — ax) = (akr — &) = 8k and (ax r — a,.) = 25«. It should be
emphasized that this method does not require to evaluatgdtesiy , and U r
explicitly.

From expression (4.1b) the type of modification performethereigenvalues
ay is realized immediately: fgéx| < &k the function|ay| is replaced by a constant
function equal t&, as shown in Figure 4.

Uk = (4.3)

IHere we assume suitable convexity hypothesis which in thlscase consist in adopting a
convex flux functionf (u). For a system of equations of a problem which requires theifsgagion
of an equation of state, we expeat@nvexequation of state, as occurs for the Euler equations. In
this connection, see also [4] and [15].
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Figure 4:First and second entropy fix of Harten and Hyman

Remark 4.1 We observe that the choice (4.2b) &, anday r may produce a
simultaneous action on several waves, in the case of systeeggiationsi.e. the
conditionax . < 0 < ax g can be verified for more than one valuelkgfwhile in
the exact solution of the given Riemann problem only waesonicrarefaction is
possible at most.

4.2 LeVeque entropy fix

LeVequein[12, Chap. 14, Sec. 2.2] presents a formulatidineoéntropy fix which
explicitly recognizes the occurence of a transonic ratefac LeVeque attributes
the method to Harten and Hyman, but it is slightly differemd éherefore we prefer
to denote it as LeVeque’'s method.

LeVeque entropy fix acts only when a situation of transonrefeation is
detected for thé&-wave of Roe method,e., when:

ak(Ok,) < 0 < ax(Ok r) (4.4)
where we have, for ¥ k < p,
k—1
Oy = UH—Z)?;‘ fi and  Ogr= Ok + xk k. (4.5)

i=1

so that, in particularfi;;, = u_ andlp r = Ug, as usual in Roe scheme. When
condition (4.4) is satisfied for wade= r, the original Roe method is modified by
the following numerical flux:

ar(or,R)—ér A &

FY WU, up) = fu) + ) ~NE&) xk fr+a (Or,) — —— %
©oR ) ; nt ar (Ur,r) — ar (Ur,) rr
A\ A & N & —ar (Or,)
= f(ur) — > P& xk fk — & (Ur.r) — —— Xr fr,
" ér: nR ar (Ur,r) —ar (Ur,) rr

(4.6)
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where we introduced the operatars) andn (), defined as follows

P(a) 2 positive part ofx ,
N() 2 negative part of ,

for any reala, which will be used throughout. We prefer using the opesator
P(-) andn(-) instead of employing the notation with the superscriptsor * —’,
appended to a variable to represent respectively the mawioruthe minimun
between zero and the value of the considered variable. Ttaiow adopted in
this work represents a given quantity as the result of themof an operator upon
an argument.

Avearging the two alternative equivalent expressionseftimerical flux given
by (4.6), we get:

1 1 A
FE e, up) =50 () + FuR)] = 5 ) 1Al i fi

2 k#£r
. . N . . 4.7)
_ }[ar (Or,r) +ar (Or, )18 —2a (Grr) & (Or,L) .
2 ar (Orr) —ar (Or,) T
or, in more compact form,
(V) 1 1 § WV, a1\ 2 2
FY UL, ug) = SEFUD) + FURl— 5> 0™ (@0 f . (4.82)
2 24

with
[ax (Ok r) + ax(Ok )] 8k — 2ak (O r) ak(Ok.1)
ax(Ox r) — (k1)
Ga () = if ak(0.) < 0 < a(Qir) (4.8b)

EN otherwise

This function is coincident with that given by (3.25b) with = 0, provided in the
latter we define

ax. = ak(Ok,) and  acr= a(lkr). (4.9)

The intermediate state is constant and is now given by:

[ — ax(Ok. )]0k, + [ax(Ok r) — &0k r

Uk = — n
ak (U, r) — ak(Ok )

2Strictly speakingp(«) is thenonnegativgpart ofa anda () is thenonpositivepart ofa.
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Figure 5:LeVeque’s entropy fix

Using the definitionsy , andax r above, LeVeque’s entropy fix can also be ex-
pressed in terms of velocity differences, which gives théowang equivalent
expression of the functiog (ax):

Ok, — 5k,R)ék + 20k, Ok r
s’ (&) = Sk, + Ok,r
|| otherwise

|f _8k,R<ék<8k,L

with
8k,. = max{0, ax — ax(Ok )} and  dk.r = maxo, ax(lx r) — ax} .

For —d8k r < & < 8k . the function|é| is replaced by a straight line with slope

kL —8k.R : 25k, Ldk.R ;
E L and passing througfo, ak’LMk’R). See Figure 5.

Original form of LeVeque entropy fix

It is worth noting that, with the aim of generalizing the camgttion of wave speed
for algorithmic easiness, LeVeque [12] expressed his pwytfia in the following
form:

p
FO Uy, up) = f(uy) + ) a“%(&) fx f
k=1
(4.10)

p
= f(Up) — ) a™ &) fx fk.,
k=1
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where negative and positive wave speeds have been intrddutee form:

P(ax(Ok,r)) — &
P(ak(Ok,r) — M (ak(Ok,)) ’

a"*%(&y) = N (@ (O 1))

a — N(ak(ok,L))
P(ax(lk,r)) — N(@k(Ok )

Averaging again the two alternative equivalent expressafrthe numerical flux,
we get:

a™¥&) = P(ak(lk r))

1 1L
F™ (UL, ug) = SLfw) + fupl =3 k;qw(ék) fic Pics (4.11a)
where
o (&) = [P(ak(Ok,r)) + N (ak(Ok )] &k — 2P (ak(Ok r)) M (ak(Ok 1))

P(ak(Uk,r)) — N (ak(Ok,L))
(4.11b)

Actually, this relation must be completed by adding the ¢towlthat prevents the
vanishing of denominator,(ax(0k r)) # N (ak(Qk..)), a situation that can happen
only if P(ak(Uk,r)) = N(@k (k1)) = 0,i.e. if (ak(lk.) = 0) A (a(lk,r) < 0),
hence never in the transonic rarefaction case. We can thenefiposa™ (&) =
&k If P(ak(Ok.r)) = N (ak(Uk, ).

The expression af" (&) taking into account the last comment assumes the
explicit form:

[P(ak(Ok,r) + N (ak(Ok, )] &k — 2P(ak(Ok r)) MV (ak(Ok 1))
P(ak(Ok,r)) — N (ak(Ok,))

)’ (&) = | if P(ak(lk r) # N(@k(lk )

A

EN if P(ak(lk,r) = V(& (li,0)) -

(4.12)
It can be shown easily that expression (4.12) is still edaiveto the general form
(3.25b) with the choice (4.9) ang = 0.

Comparison of the first method of Harten and Hyman
with LeVeque’s method

As we have seen, both the first entropy fix of Harten and Hymalrtlaa entropy

fix of LeVeque introduce a constant intermediate state, evtiey use different
definitions of the propagation velocitieg , anday r. This implies a different
kind of intervention criterion and a different action on thmedification of the
function |&|. The differences between the two methods can be summarized a
follows:
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* The intervention criterion of the first entropy fix of Hartand Hyman is
based only on the extreme statgsandug, while LeVeque’s method uses
also the information of the intermediate stafes, and Oy r, which are
different, in general, fronu, anduk.

» The action of the entropy fix of Harten and Hyman introdudeigher numer-
ical viscosity than LeVeque’s method. This is illustratézbely in Figures 4
and 5, which show the modifications of the functi@Q| accomplished by
the two methods and by a second entropy fix due to Harten andakHym
be described below.

4.3 Second entropy fix of Harten and Hyman

In [9, p. 266], in a note, Harten and Hyman present an entropipfmulated as
follows:

1 1& o
F™(u,, ug) = S[F(u) + fFUu]l— =Y g™ (&0 fx k. (4.13a)
2 2~
where )
1/4 ) .
==+ if |ax] <48
9" (&) = 2<5k “ =< % (4.13b)
|| if |&| > Sk,
with
8k = max{0, & — ax(u,), ak(ug) — &} . (4.13c)

This second method of Harten and Hyman differs from the finst(@@cheme (4.1))
only in the type of variation of the intermediate state, wtiere consistsin a linear
transition betweefy | andly i forax | < % < ak g, Matching continuously with
the end value§x . andQy g; the linearly variable intermediate state is defined by
Harten and Hyman as follows:

X _

(X N T — AL
i (2) = O+ e
t Ak r — Ak, L
Exactly as in the first method HH1, the limiting velocitiestire second method
HH2 are defined by:

aL=&—8& and  ar=ak+ 5, (4.15)

and we havéy | = dx.r = Sk. Moreover, also in this method, there is no need to
calculate the stata®, | and(y r explicitly.

It is an easy computation to see that scheme (4.13) is eguivéd (3.25),
provided we use definitions (4.15) and we set= 1.

Expression (4.13b) shows that, in the second Harten and Hm#opy fix,
the function|dy| for —8k < éx < Jk is replaced by a parabolic function with vertex
in (0, %), as seen in Figure 4.

(Ok,r — Ok,1) - (4.14)
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Figure 6:Harten’s entropy fix
4.4 Harten entropy fix
In [8] Harten proposes the following entropy fix:
) 1 I a s s
FOWL, up) = S () + Rl = 5 > 0@ P, (4.16a)
k=1
where .
= .
— + ek If |&| < 2¢
@) =] dex % “ (4.16D)

|&| if |&| > 2ek.

The parametesy is, for eachk, a positive constant value, which Harten suggests
to choose in general in the interv@, %).

We notice that the functioq™(ax) has the form of the functiog""?(ax) given
by (4.13b), the difference between the two schemes congistithe definition of
Sk: the functiondy = ¢(&x, ak(u,), ak(ug)) defined in (4.13c) is replaced here by
a constant value given by Sk = 2s¢. On the basis of the second method of
Harten and Hyman described in 4.3, we can interpret Harsahisme as the result
of the introduction of a linear transition betwe@pn, andly g forayx . < % < & R,
if ax. < 0 < ax r. For this entropy fix the intervention criterion and the anlg
variable intermediate state are defined by means of theaesat

L = &k — 28k and A r= &+ 2. (4.17)

Choosing the above definition ak , andag g, and settingrx = 1, allows us to
obtain scheme (4.16) from the general formulation (3.25).

As easily seen from (4.16b), like in the second method oféteaind Hyman,
the function|éx| is modified by introducing a parabolic function f#| < 2sx,
with minimum value in(0, ex). See Figure 6.
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It is worth noticing that, differently from all the other niietds presented so
far, in the Harten method there is no condition aimed at amgithe action of the
entropy fix in the case of shocks. This feature follows froefirct that the value
of ek is aconstantindependent of the solution. On the contrary, in the second
method of Harten and Hyman, as well as in the first one, themcti the entropy
fix is prevented if a shock is estimated to occur in correspand to thé-th wave,
since in this caséx = 0. Therefore, it is concluded that for Harten’s method it
IS necessary an explanation coming from the second intetpe of the role of
the entropy fix, as Harten pointed out in [8] introducing tiieme as a means to
prevent the vanishing of the numerical viscosity.

4.5 An extension of LeVeque entropy fix

The general formulation of the entropy fix presented in se@iallows us to derive
an extension of LeVeque’s method. Assuming the same defisai , = ax(0k )
andax r = ak(0k r) introduced by LeVeque, we consider a linear intermediate

state in the general form (3.13), rewritten here for coreeoe, forax (O ) <
X

1 < ak(l’.]k’ R)1

X X a a Ok r— 0
UL(‘) T+ (_ (k) + ax( k,R)) ok Okr — Ok (4.18)
t t 2 ak (Uk,r) — ax(Uk,.)
with now the sloperk subjected to the condition:
2min(dk, ., 6
0<op < IN(8k, L, Ok, r) (4.19)

Sk.L + Ok.r

wheredy . = max0, ax — ax(Uk )} anddy g = maxo0, ax(lk,r) — &}

The formulation of this extended LeVeque entropy fix is giwgnthe func-
tion qg(ék) appearing in (3.25) under the definitioag, = ax(lx, ) andayx r =
ax(Ok r), andoy satisfying (4.19). The corresponding form in terms of véioc
differences (3.28Db) is rewritten here

ok 82 — (1 — 01 (Bk.r — 8k, )& + (2 — 018k, Sk
Sk.L + Ok r

LvM

Qs (4.20)

@) if — Sk < Ak < Sk,

EN otherwise

Clearly, forox = 0 we recover the original LeVeque entropy fix. In order to min-
imize the introduction of numerical viscosity, we suggést following definition

of ox:
2min(dk ., 8
ok = ( k,L> k,R) ’ (4.21)
Sk.L + Sk r
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Figure 7:Modification of LeVeque’s entropy fix

which is always< 1. Assuming the above choice®@f means imposing continuity
for the first derivative ofj(&x) at&x = &k ., if Sk.. > Sk r, OF At = —dk g, If
Sk.r > Ok.L. See Figure 7.

Remark 4.2 In the scalar case, definition (4.21) is equivalent to sedesibpe
for the linear variation of the intermediate state corresiiog to the minimum
betweenu — u, | and|ug — U.

All the entropy fixes examined so far fit nicely in the geneoahiulation 3.25.
Their differences may be better appreciated looking atelabihich summarizes
the various fixes.

4.6 The scalar case

The comparison between the different methods just destisiparticularly simple
in the scalar case, since there is only one eigenvalue. \We&ss convex function
f(u) and we consider a Riemann problem whose exact solution stsnsi a
transonic rarefaction. The propagation velocities of tbargary waves of the
rarefaction fan ara(u, ) anda(uy), wherea(u) = f’(u). Roe’s scheme represents
any solution, including the rarefaction of interest herig (B), by means of a single
discontinuity propagating at a velocity given by:

f(ugr) — f(uy)
Ug — U,

a=

As already seen, the entropy fix replaces the exact rarefabir an artificial
rarefaction based on some estimated valyesnday for the propagation velocity
of the bounding waves. Let us consider first in some detaiitioanethods based
on a constant intermediate state, here recalled for coemeai We have:
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P
FOL, up) = 30F(u) + FURT— 3 dh(@0) ik fk
k=1

where
A — 2
- (ak,r + Ak, )ak ak R Ak, L n Ak R Ak, L o if ac <0< an
Oa(k) = kR — AL Ak r— Ak,
|&k| otherwise
SCHEME ax. L . R ok Notes
HH1 8 — Ok | ak + ok 0 8k = max(0, &—ak(uL), ak(Ur)—&)
HH2 A — Sk | &k + 5k 1 as above
Harten A — 2¢k | &k + 2¢k 1 O<e <05
LeVeque ax(Ok,1) | a(Ok r) 0
i Sk = max0, ax — ax(O
LeVeque m.| ax(Ok,) | ak(Ok.r) 2 ik L3 ) ”}'Q(figk’i“) o X0, & R A k’i)}
' ' Sk,r = Max0, ax(lk r) — ak}
Table 1: Summary of different entropy fixes
a(U‘L) t a(Ug) t a
\ /
\ /
\ II
/
u. \ ,/ Ur e UL Ur
\ /
\ /
v\
\ 7/
v
X X
a) b)

Figure 8:Transonic rarefaction in the scalar case:
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First method of Harten and Hyman:

s if|al<$
q"(@) =
|a| if |al >4,

with § = max0, a — a(u,), a(ug) — a}.

LeVeque’'s method:
(8L —dr) A+ 26, 3
qVv@) = 5L + 6r
|al otherwise

if —5R<é<5|_

with §, = max0, & — a(u,)} andsgr = max0, a(ug) — a}.

LeVeque’s method (Fig. 9) assumes an artificial rarefaciwith a constant
intermediate state but of the same spread of the exact onefioyd):

a, =a(u) and ag = a(ug) .

In this method the modification of the wavespee(eigenvalue) occurs only in
connection with an actual transonic rarefaction and treximédiate stat@ébetween
the two discontinuitiegs, andag is defined by imposing the conservation, to give:

[& —a(u))]u. + [a(ur) — &Jug
a(ug) —a(uy)
By contrast, the first method of Harten and Hyman (fig. 10) troiess an arti-
ficial rarefaction which is symmetrical with respect to thgodntinuity of velocity
4, taking from both sides of this discontinuity an angle eqodhe bigger of the

two that is formed by the bounding waves of the fan and theodisicuity itself,
according to the following definitions:

u=

a =a-=4 and ar=4a-+34,
with

s =maxo0, a—a(u,), a(ug) — aj}.
Again, when the entropy fix acts, it introduces two discauties, one coincident
with a boundary wave of the fan, while the other external ®ftdn, in the gen-
eral case. Here, as we have already seen, the definitian @fday leads to a
particularly simple expression of the intermediate state

0= (&—a )u. + (ar — &)ug

ar — A
_(@—-a+Hu +(@+3s—aug
B a+s6—a+s

U + Ug

2
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ar = a(Ug)
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Figure 9:LeVeque’s entropy fix applied to a transonic rarefactiorhim ¢calar case

R a
a=4a-94 5
\ A
ar=4a+3s
1 ) R
\ /
\ /\//
\ /
\ /
ug \ s Ugr [
\ /
\ ,
Vif
\f/
X
a)

o

b)

Figure 10:First entropy fix of Harten and Hyman applied to a transoniefeaction in the

scalar case
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Figure 11: Action of the first entropy fix of Harten and Hyman in the caseaafon
transonic rarefaction

As anticipated, the first entropy fix of Harten and Hyman cakerteansonic a

nontransonic rarefaction, introducing an error which,f@dontrary, never occurs
in LeVeque’s entropy fix. The transformation of a nontransearefaction in a

transonic one occurs either when (Fig. 11a):
a(UL) >0
a>a(u) (a)
sothata, = & — § < 0, or when (fig. 11b):

a(UR) <0
a < a(ur)

(b)
a(u) > 2a
sothatar=a-+4§ > 0.
Let us consider now all the other schemes, namely:

Second method of Harten and Hyman:

! é2+5 if |al <&
== <
qHHZ(é) — 2 8
El if 1a] >34,
with § = max{0, a — a(u,), a(ug) — a}.
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q(a)

HHL q(é) —nmnmnen LeVeque

...... HH2 =====- LeVeque modif,

=8 —dr §=04, a —§ —8: 8=204, a

Figure 12:Comparison of different entropy fixes in the scalar case

Modified LeVeque’s method:

cd2—-(1-0)Pr—8)a+ (2—0)8, 68
qM@) = S, + O
|a otherwise

if —5R<é.<8|_

with §,. = maxX0, & — a(u,)}, g = max0, a(ug) — a} and

2min(é., 5g)
o=——.
S + 0r

We can easily compare the modification of the funct&mccomplished by the
various methods (Fig. 12), and, as a consequence, theathiffievel of numerical
viscosity introduced. It is clear that the minimum amounaudifficial viscosity is
introduced by the entropy fixes in which the rarefaction gesented by a linearly
variable intermediate state.

Remark 4.3 In the particular case of the inviscid Burgers’ equatiorg tinst
entropy fix of Harten and Hyman is coincident with the origin@Veque scheme.
This fact is due to the expression of Burgers’ fllixu) = %uz, which leads
to a(u) = u. It follows that any rarefaction is symmetrical with respex the

discontinuity representing the fan in Roe’s scheme andagagng with velocity

1,2 1,2

A A f(ug) — f(u) Suz—3u Ur + U

a=a(u,ug) = =2R 271 _ .
Ug — U, Ug — U, 2

In fact we have:

A A Ur + UL Ur — UL
a— f'(u)=a—-a() = —u =
(uy) O > L >
u u
=UR— R;— L =a(UR)—é= f/(UR)—é
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Furthermore, with Burgers’ flux the second entropy fix of ldarand Hyman is
coincident with the modified LeVeque entropy fix, for which¢arding to (4.21),
o = 1. In this case, both fixes make the Roe scheme equivalent doiree
method.

Remark 4.4 If the exact solution consists in a shock, if we havea(ug) < a <
a(u,) (assuming a convex functiof(u)), thens = §, = 6z = 0. In such a case,
the condition identifying the transonic rarefaction, n&mé| < § for the first and
second method of Harten and Hyman, antk < & < §, for LeVeque’s method,
cannot be satisfied. Therefore we deduce that the entropy ¢xesidered here
don't act in the case of shock.

5 Numerical results

We present in this section two test problems showing the@madf the different
entropy fixes.

Problem 1

This numerical experiment consists in the solution of a Riemproblem for the
inviscid Burgers’ equation with initial data:

The domainx = (0, 1) is discretized with 100 intervals. The solutions are com-
puted with a constant time step abx 10~2, corresponding to a maximum CFL
number of 0.5, and are showntat 0.3.

Figure 13 shows the failure of Roe’s scheme when no entropy fised.

For Burgers’ equation, as we proved in Subsection 4.6, theltseobtained
with the first entropy fix of Harten and Hyman (HH1) and with lezNe entropy
fix (LV) are the same. Both schemes adequately compute thedanéc rarefaction
of this test case (Figure 14).

The schemes based on a linearly variable intermediate stateely the second
entropy fix of Harten and Hyman (HH2) and the modified LeVegu&opy fix
(LVm), shown in the right part of Figure 14, coincide for Barg’ flux with the
original Godunov method making use of an exact Riemann s@fgure 15, left),
as already observed. They all feature a “dog-leg” or “entrglich” at the sonic
point [7]. This behavior implies an incorrect spreadingerat the rarefaction, in
spite of the fact that the entropy condition is satisfied is tlase (as may be proved
for Godunov scheme), because these schemes lack sufficierarical viscosity
when the wave speed is close to zero. The small expansiork stible near
x = 0.5 is however of magnitud®(h) and vanishing as the grid is refined, cf.

33



Roe, no entropy fix
1.15

-0.65 — : .
-01 0 111

Figure 13:Problem 1. Burgers’ equation solved by Roe method with nmeptfix.

HHZ1/LV entropy fixes HH2/LVm entropy fixes

1.15 — . ; 1.15

-0.65 — . . -0.65 — : :
-01 0 111 -01 0 111

Figure 14:Problem 1: Burgers’ equation solved by Roe method. Leftt Fierten and
Hyman entropy fix = LeVeque entropy fix. Right: second Harted Hyman entropy fix
= modified LeVeque entropy fix.
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Godunov method HH2 entropy fix — 400 intervals

1.15 — . ; 1.15

-0.65 — . . -0.65 — : :
-01 0 111 -01 0 111

Figure 15:Problem 1: Burgers’ equation. Left: Godunov method. Rigetond Harten
and Hyman entropy fix with 400 discretization intervals.

also [13]: the right part of Figure 15 shows the results o@diwith HH2 using
400 discretization intervals.

Finally, Figure 16 shows the results obtained with Hartenogay fix (4.16) for
several values of. We observe that this method failsiis not sufficiently high,
while a greatek leads to a larger numerical dissipation. This fact comesifro
the fixed value, no modulation dependent on the specific local Riemann gnobl
being allowed.

Problem 2

This numerical experimentis proposed by LeVeque in [14].r¥¥®lve a Riemann
problem for the one-dimensional Euler equations for a popit ideal gas. The
initial dataw = (p, v, P)T, expressing the values of density, velocity and pressure,
are:

3.0 1.0
w.=|009 and wr= 109
3.0 1.0

We use again 100 discretization intervals, a constant tireg ef Q2 x 1072
(maximum CFL of 0.52) and report the solutiong at 0.14.
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Harten entropy fix (eps = 0.05) Harten entropy fix (eps = 0.1)

1.15 T 1.15
1 4 1 4
0 4 04 —
-065— ‘ -0.65 ‘
-01 0 1 11 -01 0 1 11
Harten entropy fix (eps = 0.25) Harten entropy fix (eps = 0.5)
1.15 115
1 4 1 4
0 4 01 4
-0.65 T T T -0.65 T T T
-01 0 1 11 -01 0 1 11

Figure 16:Problem 1: Burgers’ equation solved by Roe method with heetgropy fix
and severat values
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Roe, no entropy fix Roe, no entropy fix

3.2 T 31

0.8 T 16 T T T T T T T T T T T
0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 17:Problem 2. Density distribution: Roe’s method without eptr fix.

The solution of this problem consists irtransonicrarefaction, a contact dis-
continuity, and a shock, as shown in Figure 17 where the tesbitained with
Roe’s scheme without entropy fix are compared with the exaatien. We will
concentrate the analysis on the transonic rarefactiongiwéppears enlarged in
the right of Figure 17 and in all the remaining figures.

For the Euler system observations similar to the scalarcasée done. Only
HH1 and LeVeque’s entropy fixes (Figure 18) are able to avmdyeneration of a
spurious expansion shock. All the other schemes (Figurgié@)an entropy glitch
of the same magnitude of that computed with Godunov methoalvender, this
unphysical discontinuity represents only an erro€gh), as shown in Figure 20
for the particular case of the LVm method.

6 Entropy fix in presence of strong rarefactions

When solving the Euler equations in presence of strongaetiehs, which im-

ply low density regions, the classical Roe linearizatiosdtaJacobian matrix
Au., up) = Al(u, ug)) = AN, Ay, where?d andht are the Roe-averaged
velocity and total entalpy, may fail. In fact nonphysicaitss, with negative den-
sity or internal energy or both, can be computed. The orldgrae scheme has not
enough degrees of freedom to impose together positivitycandistency with the

conservation laws, as demonstrated in [3], at least fortaicerlass of symmetrical
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3.1

HH1 entropy fix

1.6

0.8

LV entropy fix
3.1
3
2
16 T T T T T
0.2 0.3 0.4 0.5 0.6 0.7

Figure 18:Problem 2. Density distribution: HH1 and LV entropy fixes.

3.1

HH2 entropy fix

16

0.8

LVm entropy fix

16

Figure 19:Problem 2. Density distribution: HH2 and LVm entropy fixes.
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Roe with 400 intervals LVm with 400 intervals

3.1 T T T T T T T T T T T 31

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 20: Problem 2. Density distribution on a grid with 400 points: e®omethod
without entropy fix and with LVm entropy fix.

Riemann problems. The difficulty is avoided by resorting positivity preserving
approximation, as the HLLE scheme [2, 3]. Unfortunately ltid E method is
characterized by a numerical dissipation larger than indfRsheme, particularly
near contact discontinuities. To overcome this drawbaciegent years some
modifications of the original HLLE scheme have been prop¢3eti8]. An alter-
native approach is suggested by Dubroca [1], that intrasltteerequired degrees
of freedom by modifying the classical Jacobian-based Ro®srization .

We suggest here a different approach. The starting poititeiobservation
that the lack of positivity of Roe’s scheme has been expth[Bep. 285] as the
consequence of the underestimation of the physical valubeominimum and
maximum signal velocity by the approximate Riemann sol¥@om the general
formulation presented in Section 3, the entropy fix may be seeoperating a
correction of the propagation velocities: therefore it ntagome cases act also
to maintain the positivity of the solution. In other wordsisi possible to increase
the degrees of freedom of the Roe method through the gemenailifation of the
entropy fix, so as to enforce the positivity of the scheme. illtve shown in the
next subsection that the proposed general formulationmapasses also the HLLE
scheme, that may then interpreted gmoaitivity preservingentropy fix.
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6.1 The HLLE scheme revisited

The HLLE Riemann solver, as proposed in [2], may be formdlateonservation
form, with the numerical flux function given by:

f(u) if b, >0,
bs f(u) —b, f(u b.b :
FHLE (Y, ug) = { PR ( gi_bt (Ug) n bRL_ IE)L (ug—uy) if by <0< bg
f (Ug) if bg <O,

(6.1)
whereb, andbg are approximations to the smallest and the largest physigpadl
velocities. As proposed in [3], these velocities can be éefiy:

b, = min (&1, v. — ¢,) and  bg = max(as, vr + Cr) (6.2)

whered; andag are the smallest and largest eigenvalues of the standanch&oe,
while v andc denotes respectively the fluid velocity and the sound speed.

By definingb™ = max(0, bg) = »(bg) andb™ = min(0, b)) = A(b,) to
retain the original Einfeldt’s notation, the above flux ftioa may be rewritten in
the more compact form:

b* fu) b~ f(ug) , bb*

F(HLLE)(UL, UR) = b—l— — b— b—l— — b—

(Ur —Uyp) . (6.3)
Alternatively, the HHLE scheme may rewritten so as to pub ieNidence its vis-
cosity matrix, as [2]:

1 1
FOMO UL, up) = S1F U0 + F(UR] = 5 QUL Up) (U —u) . (6.4)

where b* + b- b b+
Q(u, ug) = br—b-'' b —b-
Notice that wherb, andbg have the same sign (supersonic flow on both the left
and right states), the HHLE flux reduces to Roe’s flux.
Pushing forward the connection between Roe’s and HLLE flmetion, from
(6.4) and (6.5) the latter may be finally written as:

I (6.5)

1 13
F(HLLE)(UL, Ugr) = E[ f(u) + fug)]— 2 Z q(HLLE)(ék) Xk Fk, (6.6)
k=1

where the functiom 5 (&) is given by:

(b* +b~) & —2b~ bt
bt —b- '

HLLE
qHHe —

(6.7)
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It may be clear now the connection between the HLLE schemérengkeneral
formulation of the entropy fix presented in section 3. In faetflux (6.6) is written
as a Roe flux modified by an entropy fix, and the modification) (@duces to the
general formulation (3.25) if we sef = 0 and

g, =b" and aggr=Db" vk . (6.8)

Remark 6.1 Fromthe general formulation (3.25) we may recover also thiefv
scheme [3, p. 284] if we set; = o3 = 0 ando, = 2§, with § = 5=, being

A el
¢ = c(ht, §) andv = 2L3PR,

6.2 A positivity preserving entropy fix with low dissipation

Placing the HLLE scheme in the same setting of the classitadgy fix formu-
lations supports the introduction of the ideapufsitivity preservingentropy fix
and also suggests how to correct Roe’s scheme to impose shizvipp The gen-
eral formulation (3.25) is found to be a useful and simplé todenefit from the
properties of the different methods considered here inrdodguarantee:

i) consistency with the entropy condition,
i) positivity,
lii) low numerical dissipation.

Indeed, we can suitably define the quantigs, ax r andoyk depending on the
local solution to assure the aforementioned properties.

For fixed values oy | andag g, an increase in the slopg implies a lower
numerical dissipation. Nevertheless, it cannot be prowatthe entropy condition
will be satisfied for values afy different than zero. Therefore, in the following
we restrict our analysis to the case= 0, VK, for simplicity.

We start distinguishing the case in which Roe’s intermedsétesi; = u, +
x1f1andl2 = u_ + x1f1 + x2f2 are physically admissible from the case in
which one of them or both are not. The condition discrimimgtine two cases
consists in checking the positivity of the density and ingrenergy of stateg;
andis.

If the two computed intermediate states are physical, tis#tipidy of the so-
lution is naturally preserved, and we correct Roe’s nunaéflox by means of
(3.25) only to avoid entropy violations, as usual. In suclaseg forax |, andak g
we use the definitions (4.9), as in LeVeque’s method. Accgydo the physical
interpretation of the entropy fix suggested by LeVeque,dhace of the propagat-
ing velocities allows a better approximation of the exadtison of the Riemann
problem and is found to introduce the lowest level of nunangscosity, with
respect to the other possible definitionspf anday g, for ox = 0.

If on the contrary negative values of density or internalrgneor both are
detected, definition (4.9) for the propagation velocitiasrot be used, since they

41



depend at least on one not physically admissible state. &erein this case we
need to definey , anday r SO as to force a suitable enlargement of the numer-
ical signal velocities, thus avoiding the underestimabémhe limiting physical
velocities caused by Roe’s approximate solver. FollowirggHiLLE idea, we use
definition (6.8) for the propagation velocities. This cleguarantees both con-
sistency with entropy condition and positivity, as demaoatstd in [3]. We remark
that, if we use a nonzero value for the parametgrstill havingo; = o3 = 0

and the same definition (6.8) af | anday , it is in principle possible to find out
sufficient conditions om, guaranteeing positivity. These conditions are presently
under investigation.

The proposed version of entropy fix proves to be a positivigsprving cor-
rection of Roe’s scheme that allows an easy implementahdir@quires an addi-
tional computation of no relevant cost with respect to Ragthod augmented by
LeVeque’s entropy fix [12].

0.24

exact

file
11

— HLLEM
exact 0.2 .

o positive Roe
HLLE

HLLEM

xx
positive Roe

0.1+

0.4 0.5 0.6

Figure 21: Strong rarefaction test problem [3]. Computed densitiesRioe method
augmented with the proposed entropy fix in comparison wighekact solution and the
solutions by HLLE/M methods.

6.3 Numerical results

Figure 21 compares the first order numerical results obdawith the presented
method and the HLLE/M methods for a Riemann problem propas¢g8], con-
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sisting in two symmetric rarefactions. The initial data are

1.0 1.0
w.=|-20 and wr= |20
0.4 0.4

withw = (p, v, P)T.

The computation is run with 100 discretization intervald arconstant time step of
0.2 x 1072 (maximum CFL of 0.54), while the solutions are reportet2t0.05.

The proposed entropy fix allows resolving without difficedithis strong rar-
efaction test, which causes the failure of Roe’s classida¢sie, and is found to
be slightly less dissipative than the HLLE scheme.

A slightly different test case was also considered, thassis of a Riemann
problem obtained from the former, by replacing the valuehef pressure of the
left state withP, = 2. In such a case the problem is non-symmetric.

Figure 22 shows the solutions computed with the same digatiein as in
the previous case. The HLLEM method and — to a lesser exten¢ priesent
method, being less dissipative than the HLLE scheme, featgmall undershoot
with respect to the exact solution, which does not preveswidver, to compute a
positive solution.

In solving Riemann problems different from those implyiogvldensity re-
gions, the presented method preserves all the propertiReai$ scheme.

7 Conclusions

Different versions of the Harten and Hyman entropy fix, adiegpo Roe’s scheme,
are analysed in this work from two complementary viewpoil@s the one side,
assuming the original Harten approach, which considersritrepy fix as a means
to select the physically relevant weak solution, corresiog to the vanishing
viscosity solution, we were able to easily compare the difiemethods in terms
of the numerical viscosity they introduce. On the other sad®pting the approach
suggested by LeVeque we may look at the action of the entramsfia specific
correction to Roe’s linearization in case of a transoniefetion: the single wave
that represents the rarefaction fan in Roe’s method isisglito waves connected
by an intermediate solution state. In this way it has beesiptesto derive a very
general formulation that encompasses all the differensioas of this class of
entropy fix.

Furthermore, the general formulation has allowed to dgvalmew scheme:
motivated by the appeal of symmetry, LeVeque’s formulatbihe entropy fix
has been extended to the case of a linearly variable inteateestate.
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Figure 22: Strong rarefaction problem [3] modified so as to obtain a symmetric
solution.

Finally, we take advantage of the introduced unitary frawrwo reconsider
the HLLE scheme as special kind of entropy fix as applied tdfxheme. This
leads to the concept of a positivity preserving entropy fi tmthe formulation of
a mixed scheme that automatically switches from the clasBoe scheme with
entropy fix to the HLLE scheme by simply choosing the form dfepy fix ap-
plied. The proposed hybrid scheme is positivity preseraymgonstruction, when
applied to a first-order method, as it has also been provenbsimple numerical
experiments. It allows an easy implementation and reqainesdditional compu-
tation of practically no cost with respect to Roe’s methamiporating LeVeque’s
entropy fix.
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