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Abstract. The approximate Riemann solver of Roe and the solver of Harten–Lax–van Leer (HLL) and its
variants, such as the HLLC solver, are widely used as building blocks of finite volume Godunov-type methods for
the solution of the Euler equations of gas dynamics and related hyperbolic flow models. The HLLC solver has gained
increasing popularity over the last two decades since it possesses some of the good properties of the Roe solver and
in addition it satisfies important entropy and positivity conditions with no need of special fixes. In this work we
rewrite the classical HLLC Riemann solver in a novel form that highlights the formal mathematical similarity of its
wave structure with the one of the Roe solver. This similarity might be useful to extend to the HLLC method some
numerical techniques devised specifically for the Roe’s method. As an example of application we illustrate the design
of a Turkel-type low Mach number preconditioning technique for the HLLC scheme by exploiting methodologies
proposed in the literature for the Roe’s scheme.
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1. Introduction. Finite volume Godunov-type schemes [14] based of Riemann solvers
are powerful methods to compute solutions to hyperbolic systems of equations, which arise
in numerous areas of science. In the context of Computational Fluid Dynamics, some of the
most popular approximate Riemann solvers are the celebrated solver of Roe [38] (1981) and
the solver of Harten–Lax–van Leer (HLL) [21] (1983) and its variants, such as the HLLEM
and the HLLC solvers. We refer the reader in particular to the monographs [43, 25] for
a comprehensive presentation of Riemann solvers and Godunov-type methods. The HLLC
solver (HLL with Contact restoration) introduced by Toro, Spruce and Speares [44] (1994)
for the Euler equations of gas dynamics has especially gained increasing popularity over the
last two decades. This solver was conceived to improve the original HLL solver by enriching
its approximate wave structure consisting of two waves with an additional intermediate wave
representing the contact wave of the Euler equations. While both the Roe solver and the
HLLC solver have the advantage of embedding the description of the contact wave, the HLLC
solver possesses very important additional properties: it is entropy-satisfying and positivity-
preserving, when suitable definitions of the wave speeds are used. In contrast, it is well
known that the Roe solver needs an entropy fix to converge to the physically relevant entropic
solution and it also requires special fixes to ensure positivity of computed values of densities
and energies (e.g. [34]), which might be difficult to devise for some complex flow models.
Furthermore, the HLLC solver does not need the definition of a special average state to fulfill
conservation as the Roe solver. Thanks to all these desirable properties the HLLC solver has
been widely adopted in recent years for the solution of numerous flow models related to the
basic Euler equations, in particular for applications to multifluid and multiphase compressible
flow models [42, 40, 35, 13, 39, 33]. Let us also recall that the HLLC solver is equivalent to
the Suliciu’s relaxation Riemann solver [6], for which Bouchut has rigorously demonstrated
positivity and entropy conditions.

In the present work we rewrite the classical HLLC Riemann solver in a novel form that
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highlights the formal mathematical similarity of its wave structure with the one of the Roe
solver. In particular, we show that the acoustic waves of the HLLC solver, similar to the
Roe solver, are collinear to vectors corresponding to the eigenvectors of the Euler equations
associated to the acoustic fields evaluated in a special state that is a function of the left and
right Riemann data. The strengths of these waves have also expressions in terms of jumps in
pressure and normal velocity analogous to those of the Roe solver. Our novel reformulation
of the HLLC solver is based on very simple algebraic manipulations, yet it seems that this
form has not been shown in the existing literature. The revealed mathematical similarity of
the wave structure of the two solvers might be useful to extend to the HLLC method some
numerical techniques devised specifically for the Roe’s method. In fact, certain algorithms
exploit the average eigenstructure of the Roe matrix, and they cannot be adapted to the HLLC
solver in a straightforward manner. As an example of application we consider in this work low
Mach number preconditioning techniques aimed to cure the well known difficulty of severe
loss of accuracy of upwind schemes for compressible flows at low Mach number regimes.
These preconditioning strategies have been developed and studied considerably for the Roe’s
scheme [19, 41, 10, 27, 29, 28, 36, 16, 18], but extensions to the HLLC scheme are scarce
[31, 23] and often lack rigorous analyses. Here in particular we will follow closely the work
of Guillard and Viozat [19] and extend the study and strategies therein for the Roe’s method
to the HLLC method. Thanks to the revealed formal analogy of the acoustic waves of the
two considered solvers first we can give an analytical explanation of the loss of accuracy
of the HLLC method at low Mach number, and then we are able to propose a Turkel-type
preconditioning technique to overcome this difficulty that mimics the preconditioned Roe-
Turkel method of Guillard–Viozat [19]. An extension of the proposed HLLC-Turkel method
to a two-phase compressible flow model has been already presented by the author in [33].
Indeed, the work in the present article originated from an investigation of low Mach number
corrections applicable to Roe-type and HLLC-type schemes that the author had developed for
a six-equation two-phase flow model introduced in previous work [35]. Although we have
partially anticipated in [33] the study on the similarity of the Roe and the HLLC solvers, here
we provide a more detailed and extensive analysis, presenting also a unified formulation of
the semi-discrete equations of the two schemes (Appendix B).

This article is organized as follows. We first recall the Euler equations of gas dynamics
in section 2 and the Roe and HLLC Riemann solvers in subsection 3.1 and subsection 3.2,
respectively. The new formulation of the HLLC solver is presented in subsection 3.3. We
illustrate in section 4 an application to low Mach number preconditioning, introducing in
subsection 4.4 a new HLLC-Turkel scheme. Some conclusions are written in section 5.

2. The Euler equations of gas dynamics. The classical Euler equations governing an
inviscid compressible flow can be written in two spatial dimensions in the following conser-
vative form:

(1a) ∂tq + ∂x f (q) + ∂yg(q) = 0,

where

(1b) q =


ρ
ρu
ρv
E

 , f (q) =


ρu

ρu2 + p
ρuv

u(E + p)

 , g(q) =


ρv
ρvu

ρv2 + p
v(E + p)

 .
Here ρ is the fluid density, u and v are the flow velocity components in the x and y direction,
respectively, p is the pressure, and E is the total energy per unit volume, E = E + ρ |~u|
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where E denotes the internal energy per unit volume, and ~u = (u, v). The system is closed
through the specification of a pressure law p = p(E, ρ). The Euler system is hyperbolic
and the eigenvalues associated to the direction ~n = (nx, ny), |~n| = 1, are λ1,4 = ~u · ~n ∓ c
and λl = ~u · ~n for l = 2, 3 (eigenvalue of algebraic multiplicity 2). The speed of sound is
c =

√
κh + χ, where κ =

∂p(E,ρ)
∂E

, χ =
∂p(E,ρ)
∂ρ

, and h denotes the specific enthalpy, h =
E+p
ρ

. In
this wok a stiffened gas equation of state will be assumed, which allows us to use a standard
Roe linearization: p(E, ρ) = (γ− 1)E− (γ− 1)ηρ− γ$, where γ, η, $ are material-dependent
constant parameters. Hence here κ = (γ − 1) and χ = −(γ − 1)η.

3. Finite Volume Schemes based on Riemann solvers. Finite volume schemes based
on Riemann solvers (Godunov-type schemes) are widely used to approximate solutions to
the Euler equations. Here we recall this class of schemes by adopting the wave propagation
formulation by LeVeque [24, 25]. Let us consider a general hyperbolic system of the form

(2) ∂tq + A(q)∂xq + B(q)∂yq = 0.

Clearly the Euler equations (1) can be written in this quasi-linear form with A(q) = f ′(q) and
B(q) = g′(q), A, B ∈ R4×4. We assume here a spatial discretization on a Cartesian grid with
cells of uniform size ∆x and ∆y in the x and y directions, respectively. We denote by qi, j the
approximate solution of the system at the cell (i, j), i, j ∈ Z. The two-dimensional first-order
wave propagation algorithm [24, 25] has the semi-discrete form

(3)
dqi, j

dt
+

1
∆x

(
A+∆Qi−1/2, j +A−∆Qi+1/2, j

)
+

1
∆y

(
B+∆Qi, j−1/2 + B−∆Qi, j+1/2

)
= 0.

HereA±∆Q and B±∆Q are the so-called fluctuations arising from the solution of local plane-
wave Riemann problems in the x and y directions, respectively [24]. More precisely, the left-
going fluctuationsA−∆Qi+1/2, j and the right-going fluctuationsA+∆Qi+1/2, j are computed by
solving local Riemann problems for the system ∂tq+ A(q)∂xq = 0 at cell interfaces xi+1/2, j for
each pair of data qi, j, qi+1, j corresponding to adjacent cells (i, j) and (i+1, j). In a similar way,
the fluctuations B∓∆Qi, j+1/2 are computed by solving Riemann problems for ∂tq + B(q)∂yq =

0 at cell interfaces xi, j+1/2 between adjacent cells (i, j) and (i, j + 1). A Riemann solver
(cf. [43, 25]) must be provided to compute solutions to local Riemann problems. Let us
now consider with no loss of generality the approximation of a two-dimensional plane-wave
Riemann problem in the x direction for the Euler equations, namely a Riemann problem for
the system ∂tq+∂x f (q) = 0, with initial left and right data q` and qr. The exact solution of this
problem consists of at most four constant states separated by a 1-wave (shock or rarefaction),
a contact discontinuity corresponding to the eigenvalue λ2 = λ3 = u, and a 4-wave (shock or
rarefaction), when a convex equation of state is assumed. The solution structure defined by
an approximate Riemann solver can be expressed in general by a set of M waves Wl and
corresponding speeds sl, M ≥ 2 (e.g. M = 2 for the HLL solver, M = 4 for Roe solver).
The sum of the waves Wl must be equal to the initial jump in the vector q of the system’s
variables:

(4) ∆q ≡ qr − q` =

M∑
l=1

Wl.

Moreover, waves and speeds must satisfy the following conservation condition:

(5) ∆ f (q) ≡ f (qr) − f (q`) =

M∑
l=1

slWl.
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Once the Riemann solution structure {Wl
i+1/2, j, s

l
i+1/2, j}l=1,...,M associated to each cell pair

{(i, j), (i + 1, j)} is defined through a Riemann solver, the fluctuations A∓∆Qi+1/2, j in (3) are
computed as

(6) A∓∆Qi+1/2, j =

M∑
l=1

(sl
i+1/2, j)

∓Wl
i+1/2, j ,

where s+ = max(s, 0) and s− = min(s, 0). The first-order scheme (3) can be extended to
second-order accuracy by adding suitable correction terms, which can be expressed again in
terms of waves and speeds. Here we are mainly interested in studying the performance of
simple first-order methods, however for one test case (Section 4.6.2) we will also present
results obtained with second-order corrections of the form [25]

(7) F̃i+1/2, j =
1
2

M∑
l=1

|sl
i+1/2, j|

(
1 −

∆t
∆x

sl
i+1/2, j

)
W̃l

i+1/2, j .

Here ∆t is the time step and W̃l
i+1/2, j is a limited version of the wave Wl

i+1/2, j , W̃l
i+1/2, j =

φ(θl
i+1/2, j)W

l
i+1/2, j , where φ is a limiter function, and θl

i+1/2, j a measure of the smoothness of
the solution, obtained by comparing Wl

i+1/2, j with Wl
I+1/2, j , I = i − 1 if sl

i+1/2, j > 0, and
I = i + 1 if sl

i+1/2, j < 0. Let us remark that in order to achieve formal second-order accuracy
contributions of transverse fluctuations [24] need also to be included in the two-dimensional
algorithm (3). However transverse corrections are not considered in the present study. Let
us also note that the methods described here can be generalized in a straightforward manner
to logically rectangular quadrilateral grids (curvilinear grids). We refer the reader to [24, 25]
for an exhaustive presentation of these wave propagation algorithms. Omitting for simplicity
from now on j indexes associated to the y direction, let us also recall the relation between
the fluctuations A∓∆Qi+1/2 and interfacial numerical fluxes Fi+1/2 = ϕ(qi, qi+1) used in more
classical formulations of Godunov-type Finite Volume schemes:

(8) Fi+1/2 = f (qi) +A−∆Qi+1/2 = f (qi+1) −A+∆Qi+1/2.

The numerical flux Fi+1/2 can be usually expressed as the sum of a central term and a numer-
ical dissipation termV∆Qi+1/2 :

(9) Fi+1/2 =
1
2

( f (qi) + f (qi+1)) −
1
2
V∆Qi+1/2 .

For many schemes one can write V∆Qi+1/2 = Θi+1/2(qi+1 − qi), where Θi+1/2 = ϑ(qi, qi+1) is
the numerical dissipation matrix (viscosity matrix). The fluctuations (6) can be then expressed
equivalently in terms of flux differences and numerical dissipation terms as

(10) A±∆Qi+1/2 =
1
2
∆ fi+1/2 ±

1
2
V∆Qi+1/2 ,

where

(11) V∆Qi+1/2 =

M∑
l=1

|sl
i+1/2|W

l
i+1/2 ,

and ∆ fi+1/2 ≡ f (qi+1) − f (qi) is defined in terms of wavesWl
i+1/2 and speeds sl

i+1/2 through
the conservation condition (5).
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x

t

Roe solver

λ̂1 λ̂2 = λ̂3 λ̂4

q`

W1

qr

W2 +W3 W4

HLLC solver

x

t
S ` S rS ?

q` qr

q?rq?`

W1 W2 W3

Fig. 1. Solution structure of the Roe solver (left) and of the HLLC solver (right) approximating the solution of
a plane-wave Riemann problem in the x direction for the two-dimensional Euler equations.

3.1. Roe approximate Riemann solver. The idea of the celebrated approximate Rie-
mann solver of Roe [38] is to define an approximate solution to a Riemann problem for the
Euler equations ∂tq + ∂x f (q) = 0, with q and f (q) as in (1), by the exact solution of a Rie-
mann problem for a linearized system ∂tq + Â(q`, qr)∂xq = 0. The constant coefficient matrix
Â = Â(q`, qr) (Roe matrix) is defined locally by evaluating the Jacobian A(q) = f ′(q) of the
original system in a suitable average state q̂ = q̂(q`, qr). This average state must be chosen
so that the Roe matrix Â satisfies the conservation consistency relations (5), which can be
equivalently written as f (qr)− f (q`) = Â(qr − q`). The Riemann solution structure of the Roe
solver consists of M = 4 waves and speeds that correspond to the eigenstructure of the Roe
matrix (see Figure 1). Denoting with r̂l and λ̂l the right eigenvectors and eigenvalues of Â,
respectively, we have

(12) Wl = ζ̂lr̂l and sl = λ̂l , l = 1, · · · , 4,

where ζ̂l are the coefficients of the projection of the jump ∆q ≡ qr − q` onto the basis of the
Roe eigenvectors, qr − q` =

∑4
l=1 ζ̂lr̂l. The definition of the Roe eigenstructure is reported in

Appendix A. Considering now q` = qi, qr = qi+1, and denoting Âi+1/2 = Â(qi, qi+1), we can
write the numerical dissipation term (11) of the Roe’s scheme as

(13) V∆Qi+1/2 =

4∑
l=1

(|λ̂l|ζ̂lr̂l)i+1/2 = R̂i+1/2|Λ̂i+1/2|R̂−1
i+1/2(qi+1 − qi) = |Âi+1/2|(qi+1 − qi),

where R̂ = [r̂1 . . . r̂4] and Λ̂ = diag(λ̂1, . . . , λ̂4). The viscosity matrix is Θ = |Â|.

3.2. HLLC approximate Riemann solver. The Riemann solution structure of the
HLLC solver of Toro et al. [44] consists of three wavesWl, l = 1, 2, 3 (M = 3), moving at
speeds

(14) s1 = S ` , s2 = S ? , and s3 = S r,

which separate four constant states q`, q?`, q?r and qr (see Figure 1). In the following we
will indicate with (·)` and (·)r quantities corresponding to the states q` and qr, respectively.
Moreover, we will indicate with (·)?` and (·)?r quantities corresponding to the states q?` and
q?r adjacent, respectively on the left and on the right, to the middle wave propagating at speed
S ?. With this notation, the waves of the HLLC solver are

(15) W1 = q?` − q`, W2 = q?r − q?`, and W3 = qr − q?r.
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Then, the following conservation conditions are imposed (sufficient to satisfy (5)):

f (q?`) − f (q`) = S `(q?` − q`),(16a)

f (q?r) − f (q?`) = S ?(q?r − q?`),(16b)

f (qr) − f (q?r) = S r(qr − q?r).(16c)

Additionally, invariance of the pressure p and of the normal velocity u is assumed across the
2-wave, in analogy with the exact Riemann solution. Then the speed S ? is determined as [43]

(17) S ? =
∆p + ρ`u`(S ` − u`) − ρrur(S r − ur)

ρ`(S ` − u`) − ρr(S r − ur)
,

where ∆p ≡ pr − p`. The middle states q?`, q?r are obtained by using the conditions above:

(18) q?ι = ρι
S ι − uι
S ι − S ?


1

S ?

vι
Eι

ρι
+ (S ? − uι)

(
S ? +

pι
ρι(S ι−uι)

)
 ,

ι = `, r. Finally, a definition for the wave speeds must be provided, see e.g. [43, 3]. For
the numerical experiments presented in this article we have adopted the following classical
simple definition proposed by Davis [9]:

(19) S ` = min(u` − c` , ur − cr) and S r = max(u` + c` , ur + cr).

3.3. A new formulation of the HLLC solver. We illustrate in this Section a novel
formulation of the HLLC solver that allows us to highlight a mathematical similarity with
the Roe solver. First we introduce two quantities č `, č r representing the speeds of sound
associated to the external acoustic waves by defining:

(20) S ` = u` − č ` and S r = ur + č r.

For any given choice of the estimates of the wave speeds S ` and S r (for example Davis’
estimates [9] or Einfeldt’s estimates [12]) the relations above determine č ` and č r. Note that
the Davis’ choice of S ` and S r in (19) implies:

(21) č ` = max(c` , cr − ∆u) and č r = max(cr , c` − ∆u),

where ∆u ≡ ur − u`. The speed S ? can be easily rewritten in terms of č ` and č r:

(22) S ? =
ρ`č `u` + ρrč rur − ∆p

ρ`č ` + ρrč r .

The densities ρ?ι, ι = `, r, corresponding to the middle states can be expressed as

(23) ρ?` = ρ`
č `

S ? − u` + č `
and ρ?r = ρr

č r

ur − S ? + č r .

Then, after some manipulations, we easily see that the HLLC waves for the Euler equations
(based on (18)) can be equivalently rewritten as

(24a) W1 = ζ̌1ř1, W2 = W̌2 + W̌2
s , W̌

2
s = ζ̌2sř2s, W3 = ζ̌3ř3,
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where
(24b)

ζ̌1 =
ρ?`

ρ`č ` + ρrč r

(
∆p
č `
− ρr

č r

č `
∆u

)
, ζ̌3 =

ρ?r

ρ`č ` + ρrč r

(
∆p
č r + ρ`

č `

č r ∆u
)
, ζ̌2s = ρ̌∆v,

ρ̌ ≡ ρ?`+ ρ?r

2 , ∆v ≡ vr − v`, and

(24c) ř1 =


1

u` − č `

v`
H` − S ?č `

 , ř3 =


1

ur + č r

vr

Hr + S ?č r

 , W̌2 =


ζ̌2

ζ̌2 S ?

ζ̌2v̄
∆E?

n

 , ř2s =


0
0
1
v̄

 ,
with

(24d) ζ̌2 = ρ?r − ρ?` = ∆ρ −

((
ρ?`

č `
+
ρ?r

č r

)
∆p +

(
ρ`ρ

?r č `

č r − ρrρ
?` č r

č `

)
∆u

)
1

ρ`č ` + ρrč r ,

and

(24e) ∆E?
n = ρ?rhr − ρ

?`hl − ∆p + ζ̌2

 (S ?)2

2
+

(
v2

2

) +
1
2
ρ?r(ur − S ?)2 −

1
2
ρ?`(u` − S ?)2.

Above we have denoted with H = h +
|~u|2

2 the total specific enthalpy and we have used
the average operator ¯(·) ≡ (·)`+(·)r

2 . The expressions of the HLLC waves in this novel form
reveal analogies with the waves of the Roe solver (see Roe eigenstructure in Appendix A). In
particular, the vectors ř1,3 and ř2s, like the Roe eigenvectors r̂1,4 and r̂3, have the form of the
eigenvectors of the Euler system associated to the acoustic fields, r1,4(q) = [1, u∓c, v,H∓uc]T,
and to the shear wave, r3(q) = [0, 0, 1, v]T, evaluated in a special state that is a function of
the left and right Riemann data (although not in the form r̂k = rk(q̂) as for the Roe solver).
The strengths of the waves ζ̌1,3 and ζ̌2s have also expressions in terms of pressure and velocity
jumps ∆p, ∆u, ∆v, similar to the Roe wave strengths ζ̂1,4 and ζ̂3, respectively. See also the
structure of the two solvers written in a common framework in Appendix B. We may also
write the second wave of the HLLC solver as

(25) W̌2 = ζ̌2ř2, where ř2 =


1

S ?

v̄

∆e? +
(S ?)2

2 +
(

v2

2

)
 ,

with

(26) ∆e? =
1

ρ?r − ρ?`

(
ρ?rhr − ρ

?`hl − ∆p +
1
2
ρ?r(ur − S ?)2 −

1
2
ρ?`(u` − S ?)2

)
.

We can observe an analogy of the vector ř2 with the Roe eigenvector r̂2 and with the eigen-
vector of A(q) associated to the contact wave, r2(q) = [1, u, v, u2+v2

2 −
χ
κ
]T, except for the last

component of the vector. If q` = qr = q then there is a singularity for the quantity ∆e?

in (26), so that we can have consistency of ř2 with the eigenvector r2(q) only if we assume
that ∆e? → ∂E(p,ρ)

∂ρ
= −

χ
κ

as q`,r → q. Note that clearly if q` = qr = q the HLLC waves
Wl, l = 1, . . . , 3 are simply zero, so that the HLLC Riemann solution structure is always
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well determined, as well as the fluctuations of the algorithm. The singularity associated to ř2

computationally does not pose any problem if we use directly the wave W̌2 in (24c). We can
also compare the density jump ζ̌2 of the HLLC solver across the contact wave with the den-
sity jump ζ̂2 of the Roe solver, and notice for the solvers analogous terms in ∆ρ and ∆p, but a
dependence on ∆u only for the HLLC coefficient ζ̌2. If the matrix Ř = [ř1, ř2, ř2s, ř3] is nonsin-
gular we can also observe that we can interpret the Riemann solution of the HLLC solver as
the Riemann solution of a linearized system with a constant coefficient matrix Ǎ = Ǎ(q`, qr).
The matrix Ǎ can be identified as Ǎ = ŘΛ̌Ř−1, where Λ̌ = diag(u` − č `, S ?, S ?, ur + č r). The
viscosity matrix of the HLLC scheme is then identified as Θ = |Ǎ|.

To conclude this section, let us note that the reformulation of the HLLC solver presented
here for the Euler equations can be also obtained in a similar form for related flow models.
In particular in [33] we have shown an analogous reformulation of a HLLC-type solver for a
two-phase compressible flow model belonging to the class of models stemming from the one
of Baer–Nunziato [1].

4. Application: low Mach number preconditioning techniques. As indicated in the
Introduction, the new formulation of the HLLC solver might be advantageous to extend to
the HLLC method some algorithms conceived for the Roe’s method. Here we provide as an
example the design of low Mach number preconditioning techniques for the HLLC scheme
on the basis of ideas proposed for the Roe’s scheme.

First, let us recall that it is well known that upwind schemes for compressible flow models
experience several difficulties as the Mach number vanishes. Here we consider in particular
the problem of loss of accuracy of standard schemes at low Mach number related to the spatial
discretization of the convective terms of the model equations. This problem has been studied
in depth by Guillard and co-workers in a series of papers [19, 17, 16, 18]. Guillard and Viozat
in [19] explain via an asymptotic analysis that the loss of accuracy at low Mach number is
linked to the generation in the discrete solutions of pressure fluctuations of the wrong order
of magnitude in the Mach number, with respect to the behavior of the continuous flow model.
The analysis employs a classical procedure based on the non-dimensionalization of the Euler
equations and expansions in powers of a reference Mach number M∗ for all the variables, of
the form:

(27) (·) = (·)[0] + (·)[1]M∗ + (·)[2]M2
∗ + . . . .

Well-prepared initial conditions are assumed, that is p(~x, 0) = p0 + O(M2
∗ )(~x) and ~u(~x, 0) =

~u0(~x) + O(M∗)(~x), with ∇ · ~u0 = 0. Then one obtains that for solutions of the continuous
flow model the pressure can be written as a thermodynamic pressure constant in space plus
perturbations of order M2

∗ :

(28) p(~x, t) = P[0](t) + p[2](~x, t)M2
∗ + . . . .

In contrast with this result for the continuous model, upwind space discretizations of the
Euler equations generate pressure fluctuations of order M∗. This can be shown by using an
analogous procedure as for the continuous model, by using asymptotic expansions of the
variables in the discrete equations. This analysis is presented in Guillard–Viozat [19] for the
Roe’s scheme. In the next section we generalize it to the HLLC scheme, by exploiting the
reformulation of the HLLC solver introduced in subsection 3.3.

4.1. Roe and HLLC discrete equations at low Mach number. We consider the semi-
discrete equations in two dimensions (3) on a Cartesian grid. For simplicity we assume
∆x = ∆y ≡ δ. To write the discrete equations in a more compact form as in [19] we use the
index J = (i, j) to indicate the grid cell (i, j), and we introduce the index set for neighboring
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cells ν(J) = {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}. Moreover, we define the jump operator
∆JK(·) ≡ (·)J − (·)K that expresses the difference between values at the reference cell J and its
neighboring cell K, and we denote with (·)JK quantities corresponding to interfaces between
cells J and K. We use ~nJK = (nx, ny)JK to denote the unit normal vector to the interface JK,
from cell J to cell K, and the transverse unit vector is then ~n⊥JK = (−ny, nx)JK . We indicate the
normal and transverse components of ~u = (u, v) with U = ~u · ~n and V = ~u · ~n⊥, respectively.
As a first step we write the non-dimensionalized semi-discrete equations for both the two-
dimensional Roe’s scheme and the HLLC scheme in a unified formulation. The equations are
reported in Appendix B. Next, we expand all the variables in powers of the reference Mach
number M∗, as for the continuous case (27). Collecting terms with equal powers of M∗, one
obtains at order M−2

∗ from the momentum equation (51):

(29)
∑

K∈ν(J)

p[0]
K ~nJK +

1
2

cK[0]
JK

c̃K[0]
JK

−
cJ[0]

JK

c̃J[0]
JK

~nJK∆JK p[0]

 = 0,

where the interfaces quantities (·)J,K
JK for the Roe and HLLC solvers are specified in Ap-

pendix B in (47), (48), (49). At order M−1
∗ from the mass equation (50) we have

(30)
∑

K∈ν(J)

 1

c̃J[0]
JK

+
1

c̃K[0]
JK

∆JK p[0] = 0,

and from the energy equation (52):

(31)
∑

K∈ν(J)

HJ[0]
JK

c̃J[0]
JK

+
HK[0]

JK

c̃K[0]
JK

∆JK p[0] = 0.

We notice that p[0]
J = constant ∀J is a common solution of the equations (29), (30), (31). We

also observe that the coefficients multiplying ∆JK p[0] in (30) and (31) are positive, hence a
discrete maximum principle applies, and the extrema of the pressure field p[0] must be on the
boundary. Assuming suitable boundary conditions we can conclude that the solution p[0] =

constant is also unique. This is the case in particular if we assume that the pressure on the
boundary is a constant p0 (up to fluctuations of order M2

∗ ) [19]. Now, let us consider this case
p[0]

J = constant ∀J, and let us use this result in the next order equations. In particular, the
momentum equation (51) at order M−1

∗ gives

∑
K∈ν(J)

p[1]
K ~nJK +

1
2

cK[0]
JK

c̃K[0]
JK

−
cJ[0]

JK

c̃J[0]
JK

~nJK∆JK p[1] +
1
2

ρJ[0]
JK (cJ[0]

JK )2

c̃J[0]
JK

+
ρK[0]

JK (cK[0]
JK )2

c̃K[0]
JK

~nJK∆JKU[0]


(32)

= 0.

In general this equation admits non-constant solutions for the order 1 pressure p[1] [19, 37].
Therefore we conclude that solutions of the discrete equations for the Roe and HLLC solvers
contain perturbations of order M∗: p(~x, t) = p0 + p[1](~x, t)M∗ + . . ., in contrast with the results
for the continuous model (28). Nonetheless, we have to recall that for the special case of
triangular meshes the solution of the discrete equations of the Roe solver for the pressure p[1]

can be indeed p[1]
J = constant ∀J, and for such grids the accuracy problem might not appear.

We refer the reader to [37, 11, 16] for details.
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4.2. Preconditioning of the numerical dissipation term. A well known strategy to
cure the loss of accuracy of finite volume Godunov-type schemes for the Euler equations
as the Mach number approaches zero consists in correcting the numerical dissipation term
V∆Qi+1/2 in the numerical fluxes (9). This approach alters the order of magnitude of the
entries of this term with respect to the Mach number so that the resulting discrete scheme
recovers a low Mach number asymptotic behavior consistent with the one of the continuous
model. For several methods proposed in the literature the low Mach number correction is
obtained by applying a preconditioning matrix P to the viscosity matrix Θi+1/2 of the scheme
[8, 45, 47, 46, 19]. We will denote withVP∆Qi+1/2 the corrected (preconditioned) dissipation
term that replaces the original one V∆Qi+1/2 in the numerical fluxes (9), or, equivalently,
in the fluctuations (10). Note that the class of preconditioning strategies that we consider
here alters only dissipative contributions, while the temporal term and the centered flux are
unchanged. Therefore, as noted in [19], the preconditioned numerical scheme remains a
conservative time-consistent approximation of the Euler equations. As we will see in the next
subsections, for the preconditioning schemes considered in the present work, we can interpret
the low Mach number correction as a modification of the waves and speeds of the Riemann
solver that contribute to the numerical viscosity term, and the preconditioned dissipation term
has the form (cf. (11))

(33) VP∆Qi+1/2 =

M∑
l=1

|slP
i+1/2|W

lP
i+1/2 ,

where slP and WlP, l = 1, . . . ,M , are preconditioned waves and speeds. Preconditioning
techniques have been extensively developed especially for the Roe’s scheme [19, 41, 10, 27,
29, 28, 36, 16, 18]. These techniques typically correct at low Mach number the acoustic waves
and/or speeds of the Roe solver, see in particular some reviews in [28, 18]. For instance the
simple low Mach number fix of Rieper (LMRoe scheme) [36] corrects the Roe wave strengths
ζ̂1,4 by replacing the jump of the normal velocity ∆u as:

(34) ∆u → ∆uP = min(M̃, 1)∆u,

where M̃ is a local Mach number computed by using the data of the local Riemann problem.
The All-speed Roe scheme of Li and Gu [27] consists in a correction of the Roe eigenvalues,
while the Roe-Turkel scheme of Guillard–Viozat [19], recalled more in detail below, modifies
the Roe eigenvalues λ̂1,4, the Roe eigenvectors r̂1,4 and the corresponding wave strengths ζ̂1,4.
Preconditioned techniques for the HLLC scheme are more scarce, e.g. [31, 23]. Existing
methods typically modify the speeds S `, S r of the standard solver by employing corrections
analogous to those used in some of the preconditioning methods for the Roe solver. The
corrected values of S `, S r are used in all the formulas of the HLLC Riemann structure, this
implying a correction of the speed S ∗ and of all the waves of the solver. Although these
preconditioned methods for HLLC-type schemes have been shown to produce good numerical
results, they seem to lack rigorous asymptotic analyses. The novel form of the HLLC solver
that we have highlighted allows us to easily extend strategies and analysis methods used
for the Roe solver to the family of HLLC-type solvers. For instance, the fix of Rieper is
immediately extended to the HLLC method by using the modified velocity jump in (34) to
correct the strengths ζ̌1,3 (24b) of the acoustic waves of the HLLC solver. Here we will detail
in particular the application of our idea to the Roe-Turkel method of Guillard–Viozat [19] and
illustrate a new HLLC-Turkel scheme. Indeed, based on our experience, and also for instance
on the review [18], the method of Guillard–Viozat is one of the most effective.

4.3. The Roe-Turkel method for the Euler equations. The Roe-Turkel scheme of [19]
is a correction of the classical Roe’s method obtained by applying Turkel’s preconditioner
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[45, 46] to the Roe dissipation term in (13). Here the Roe viscosity matrix Θi+1/2 = |Âi+1/2| is
replaced by the preconditioned version

(35) ΘP
i+1/2 = P−1

i+1/2|Pi+1/2Âi+1/2|,

where P is Turkel’s preconditioning matrix. This matrix for the Euler equations is defined on
the basis of the entropic variables ϕ = [p, ~u, s]T, where s denotes the entropy, as

(36) Pϕ = diag(β2, Id, 1).

Here Id denotes the identity matrix ∈ Rd×d, and d indicates the spatial dimension. The pa-
rameter β ≤ 1 is of the order of the local Mach number Mi+1/2 if Mi+1/2 ≤ 1, and equal to
1 otherwise. It can be set for instance at each interface as βi+1/2 = min(max(ε,Mi+1/2), 1),
where 0 < ε � 1. The tolerance ε is used to avoid the singularity of the preconditioned
quantities that may occur for |~u| = 0. More efficient definitions of β can be used to deal with
stagnation points, see e.g. [7]. The local Mach number Mi+1/2 can be computed by using the
Roe averages as Mi+1/2 = M`r =

|~̂u|
ĉ . Turkel’s preconditioner in terms of the conserved vari-

ables q is then obtained as P(q) =
∂q
∂ϕ

Pϕ ∂ϕ
∂q . For the plane-wave Riemann problem considered

here we have d = 2, and ϕ = [p, u, v, s]T. The resulting numerical dissipation term of the
Roe-Turkel scheme is found as (cf. [19])

(37) VP∆Qi+1/2 = P−1
i+1/2|Pi+1/2Âi+1/2|(qi+1 − qi) =

4∑
l=1

(ζ̂P
l |λ̂

P
l |

˜̂rP
l )i+1/2 ,

where ˜̂rP
l = P−1r̂P

l , and λ̂P
l , r̂P

l , l = 1, . . . , 4, are the eigenvalues and eigenvectors, respectively,
of the matrix PÂ. The coefficients ζ̂P

l are obtained by projecting the jump ∆q onto the basis
of the eigenvectors r̂P

l as ∆q =
∑4

l=1 ζ̂
P
l r̂P

l . The preconditioned waves and speeds of the Roe-
Turkel scheme to be used in (33) are thenWlP = ζ̂P

l
˜̂rP
l and slP = λ̂P

l , l = 1, · · · , 4. Based
on the results derived in [19], the acoustic waves, which correspond to the first and fourth
characteristic fields, are modified as follows when Turkel’s preconditioning is applied to the
Roe’s scheme:

λ̂1,4 = û ∓ ĉ → λ̂P
1,4 = 1

2 (1 + β2)û ∓ 1
2

√
Xβ,(38a)

r̂1,4 =


1

û ∓ ĉ
v̂

Ĥ ∓ ûĉ

 → ˜̂rP
1,4 =


1

û + (λ̂P
1,4 − ûβ2)
v̂

Ĥ + û(λ̂P
1,4 − ûβ2)

 ,(38b)

ζ̂1,4 = 1
2ĉ

(
∆p
ĉ ∓ ρ̂∆u

)
→ ζ̂P

1,4 = 1√
Xβ

(
∆p

∓(λ̂P
1,4−ûβ2)

∓ ρ̂∆u
)
,(38c)

with

(38d) Xβ = ((1 − β2)û)2 + (2βĉ)2.

As a consequence of the form of the preconditioner (36), the wave structure corresponding
to the second and third characteristic fields associated to the eigenvalue λ̂2 = λ̂3 = û (contact
wave) is unchanged with respect to the method with no preconditioning (see Roe wave struc-
ture in Appendix A): λ̂P

l = λ̂l = û, ˜̂rP
l = r̂l, ζ̂P

l = ζ̂l, l = 2, 3, hence slP = sl andWlP = Wl

for l = 2, 3.
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4.4. A novel HLLC-Turkel method for the Euler equations. We present in this sec-
tion a new preconditioning technique for the HLLC scheme for the Euler equations, which
extends the strategy of the Roe-Turkel scheme of Guillard–Viozat [19]. The idea is to exploit
the formal similarity of the wave structure of the HLLC Riemann solver with the one of the
Roe solver, which we have highlighted in subsection 3.3. By analogy with the preconditioned
wave structure of the Roe-Turkel method (38) we propose the following low Mach number
correction of the acoustic waves and speeds of the HLLC method:

S ` = u` − č ` → S `P = 1
2 (1 + β2)u` − 1

2

√
Xβ`(39a)

S r = ur + č r → S rP = 1
2 (1 + β2)ur + 1

2

√
Xβr(39b)

ř1 =


1

u` − č `

v`
H` − S ?č `

 → řP
1


1

u` + (S `P − u`β2)
v`

H` + S ?(S `P − u`β2)

(39c)

ř3 =


1

ur + č r

vr

Hr + S ?č r

 → řP
3 =


1

ur + (S rP − urβ
2)

vr

Hr + S ?(S rP − urβ
2)

(39d)

ζ̌1 =
ρ?`

ρ`č `+ρrč r

(
∆p
č `
− ρr

č r

č `
∆u

)
→ ζ̌P

1 =
ρ?`

ρ`

√
Xβ`
2 +ρr

√
Xβr

2

(
∆p

−(S `P−u`β2)
− ρr

č r

č `
∆u

)(39e)

ζ̌3 =
ρ?r

ρ`č `+ρrč r

(
∆p
č r + ρ`

č `

č r ∆u
)
→ ζ̌P

3 =
ρ?r

ρ`

√
Xβ`
2 +ρr

√
Xβr

2

(
∆p

S rP − urβ2 + ρ`
č `

č r ∆u
)(39f)

where

(39g) Xβ` = ((1 − β2)u`)2 + (2βč `)2 and Xβr = ((1 − β2)ur)2 + (2βč r)2.

The parameter β is defined as indicated in the previous section by using a local Mach number
that can be computed for instance as Mi+1/2 = M`r = min

(
|~u` |
č ` ,

|~ur |

č r

)
. The preconditioned

acoustic waves and speeds to be used in (33) are thenW1,3P = ζ̌P
1,3řP

1,3, s1,3P = S `,rP. As for
the Roe-Turkel method, we maintain unaltered the contact wave:

(40) s2P = S ?, W2P = W̌2 + W̌2
s .

This correction of the HLLC method produces a rescaling of contributions to the numerical
dissipation term with respect to the Mach number that is analogous to the one of the Roe-
Turkel method. This is discussed further in the next section.

Before proceeding, let us remark, as we pointed out in the Introduction, that we have
extended in [33] the HLLC-Turkel scheme presented here to a two-phase compressible flow
model, and indeed the present investigation originated from our interest in computational
multiphase flow models applicable to a wide range of Mach number regimes.

4.5. Roe and HLLC preconditioned discrete equations. From the form of the precon-
ditioned waves and speeds of the Roe solver (38) and of the HLLC solver (39) we observe that
the speed of sound appearing in the original acoustic waves is replaced by quantities that are
of the order of the flow velocity. This alters the order of the contributions of these waves to the
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numerical dissipation term. As noted in [19] for the Roe-Turkel scheme, with respect to the
original semi-discrete equations reported in Appendix B, the application of preconditioning
leads to dissipation terms of order M−2

∗ in the mass and energy equations, and the dissipative
terms of order M−1

∗ disappear in all the equations. The preconditioned waves are written in a
unified formulation for the Roe and HLLC solvers in (53), (54) in Appendix B. By employing
these waves and by using as before expansions in powers of M∗ in the non-dimensionalized
discrete equations, we find at order M−2

∗ for the mass, momentum and energy equations:

∑
K∈ν(J)

 1

c̃J P[0]
JK

+
1

c̃K P[0]
JK

∆JK p[0] = 0,

(41a)

∑
K∈ν(J)

p[0]
K ~nJK +

1
2

2~uJ[0]
JK +U J[0]

JK ~nJK

c̃J P[0]
JK

+
2~uK[0]

JK +UK[0]
JK ~nJK

c̃K P[0]
JK

+

cK P[0]
JK

c̃K P[0]
JK

−
cJ P[0]

JK

c̃J P[0]
JK

~nJK

∆JK p[0]

= 0,

(41b)

∑
K∈ν(J)

 HJ[0]
JK

c̃J P[0]
JK

+
HK[0]

JK

c̃K P[0]
JK

∆JK p[0] = 0,

(41c)

where, based on the definition of c̃J,K P
JK in (54), c̃J,K P[0]

JK = cJ,K P[0]
JK for the Roe solver, and

c̃J,K P[0]
JK =

ρ[0]
J cJ P[0]

JK +ρ[0]
K cK P[0]

JK

2ρ?J,K[0]
JK

for the HLLC solver, and we have, based on (53),

(41d) cJ,K P[0]
JK =

1
2

√
XJ,K[0]
β̃,JK

=
1
2

√(
U J,K[0])2

+
(
2β̃cJ,K[0]

)2
,

with β̃ =
β

M∗
. Non-preconditioned interface quantities (·)J,K

JK are specified in (48), (49). We can
now use the arguments detailed in [19] to conclude that under reasonable assumptions on the
boundary conditions, and specifically under the assumption of pressure equal to a constant
p0 (up to fluctuations of order M2

∗ ), the discrete equations with preconditioned dissipation of
the Roe-Turkel and HLLC-Turkel schemes support pressure perturbations of order M2

∗ . The
proof is based on the observation that p[0] = constant is a common solution of the equations
(41) above, and that the coefficients multiplying ∆JK p[0] in (41a), (41c) are positive, hence
a discrete maximum principle applies and an interior point cannot be an extremum. More-
over, since there are no terms of order M−1

∗ in the discrete equations with preconditioned
dissipation, the equations that we obtain at order M−1

∗ when we use asymptotic expansions of
the variables have the form (41) with p[0] replaced by p[1] [19]. Hence, at the discrete level
p(~x, t) = p0 + p[2](~x, t)M2

∗ + . . ., as for the continuous model.

4.6. Numerical experiments. We present in this Section several numerical experiments
aimed at showing the effectiveness of the proposed preconditioned HLLC method. Since here
we focus on the problem of loss of accuracy at low Mach number related to the spatial dis-
cretization of convective terms, we use a simple explicit scheme for integration in time of (3).
Note that this implies an extremely severe time step restriction [5] and computationally it is
highly expensive. For practical applications time-implicit integrations should be employed,
e.g. [4].

4.6.1. Low Mach number channel flow. We perform a channel flow numerical test
similar to the one presented in [10] (see also [22] p. 590). We simulate a two-dimensional
flow (~u = (u, v), ~x = (x, y)) in a channel of length = 4 m and height = 1 m with a bump
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Fig. 2. Channel flow numerical test. Results for the Mach number obtained with the standard HLLC scheme
(left column) and the preconditioned HLLC-Turkel scheme (right column) for the three considered values of the inlet
Mach number M0.
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Fig. 3. Channel flow numerical test. Left: Mach number at the top and bottom boundaries computed by the
Roe-Turkel and HLLC-Turkel schemes for the test with M0 = 10−3, average Mach number over the channel section
computed by the HLLC-Turkel scheme, and exact quasi-one-dimensional steady solution. Right: log-log graph of
the maximum pressure fluctuations δpmax versus the Mach number M∗ = M0 for the HLLC-Turkel and Roe-Turkel
schemes. The reference curve f (M0) = CM2

0 , which is a straight line of slope 2 in the log-log graph, is also drawn to
observe more easily the behavior of the fluctuations with respect to M0. The constant C is determined so that f passes
through the point corresponding to results obtained with the HLLC-Turkel method for the test with M0 = 10−2.

defined by y = (1 − cos((x − 1)π))/10, if x ∈ [1, 3], and y = 0 otherwise. The fluid is a
perfect gas with γ = 1.4 and η = $ = 0. The computational domain is [0, 4] × [0, 1] m2.
Initially, we set the pressure and the temperature values to p0 = 105 Pa and T0 = 288 K,
respectively. The initial specific enthalpy is then h0 = 2.8930 × 105 J/kg. We impose a
velocity ~uin = (uin, 0), where the horizontal velocity component uin is defined such that the
initial Mach number M0 =

| ~u0 |√
γp0/ρ0

is equal to a desired value M0. Here we will perform tests
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with M0 = 10−1, 10−2, 10−3. Note that initial data are well-prepared, in the sense defined in
section 4. At the left inlet boundary we impose the values h0, u0. At the right outlet boundary
we set the pressure value p0, while the other flow variables are extrapolated from the interior
solution. Top and bottom boundaries are solid walls (slipping boundary condition). We solve
the Euler equations by using the standard HLLC scheme, the preconditioned Roe-Turkel
scheme of [19] and our new preconditioned HLLC-Turkel scheme. We use a quadrilateral
curvilinear grid with 100 × 25 cells. Pseudo-color plots of the results for the Mach number
obtained with the standard HLLC scheme and with the preconditioned HLLC-Turkel scheme
are displayed in Figure 2 at a time at which stationary conditions are approximately attained.
We can observe the accuracy and convergence difficulties of the HLLC method for these low
Mach number tests. The application of Turkel’s preconditioning allows us to recover the
correct behavior of the solution and good accuracy. In Figure 3 we display the profiles of
the Mach number at the top and bottom boundaries obtained with both the Roe-Turkel and
the HLLC-Turkel scheme (left plot) for the test case with M0 = 10−3, and we also show the
average value of the Mach number over the channel section as computed by the HLLC-Turkel
scheme and the exact quasi-one-dimensional steady solution. The results for the Roe-Turkel
and HLLC-Turkel method are not distinguishable. This is indeed not surprising considering
the similar wave structure of the two solvers (47)-(48)-(49) and the small variations that
characterize the solution of these tests. Following [19], to assess the accuracy of the HLLC-
Turkel method at low Mach number we compute the maximum pressure fluctuations in the
whole flow domain δpmax =

pmax−pmin
p0

for the set of considered experiments. We display in
Figure 3 (right plot) a log-log plot of the values of δpmax versus M0 for the Roe-Turkel and
HLLC-Turkel schemes. We can observe that pressure fluctuations produced by the HLLC-
Turkel scheme, like those of the Roe-Turkel scheme, correctly scale with the square of the
inlet Mach number M0, consistently with the theoretical results for the continuous flow model.

4.6.2. Gresho vortex problem. We employ here our HLLC-Turkel scheme to simulate
the Gresho vortex, a rotating vortex that is a stationary solution of the incompressible Euler
equations [15, 30, 32]. The objective is to assess the accuracy of the scheme in maintaining
the vortex solution for a low Mach number flow on the discrete grid as time evolves. The
problem setup is taken from [32] (see also [20]). The rotating vortex is centered at the point
~xC = (0.5, 0.5) of the computational domain [0, 1] × [0, 1]. Initially, at t = 0, the density is
uniform and equal to ρ(~x, 0) = ρ0 = 1. The initial conditions for the pressure and the velocity
are specified as follows as a function of the distance r = |~x − ~xC | from the vortex center:

p(~x, 0) =


p0 + 12.5r2 if 0 ≤ r < 0.2,
p0 + 4 − 4 log 0.2 + 12.5r2 − 20r + 4 log r if 0.2 ≤ r < 0.4,
p0 − 2 + 4 log 2 if 0.4 ≤ r,

(42a)

u(~x, 0) = −uφ(r) sin φ, v(~x, 0) = uφ(r) cos φ, uφ(r) =


5r if 0 ≤ r < 0.2,
2 − 5r if 0.2 ≤ r < 0.4,
0 if 0.4 ≤ r,

(42b)

with tan φ =
y−yC
x−xC

. The parameter p0 =
ρ0

γM2
∗

, where γ = 1.4, depends on the desired maximum
Mach number M∗ of the rotating flow. Here we consider two cases: M∗ = 0.1, as in [32],
and M∗ = 0.01. We use a grid with 80 × 80 cells with periodic boundary conditions. We
perform computations with the standard HLLC scheme and the HLLC-Turkel scheme. We
have also performed several tests with the Roe-Turkel scheme, and no relevant differences
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were found with respect to the HLLC-Turkel scheme. Only for this problem we include
second-order corrections both to be able to compare our results with those in the literature
[32, 20], and to provide an example that indicates that second-order terms alone do not suf-
fice to overcome low Mach number difficulties, cf. also [19]. Second-order corrections in
the numerical scheme are expressed in terms of the waves of the Riemann solver, as indi-
cated in (7) (cf. [25]), and a Monotonized Centered (MC) limiter function φ is applied. For
the HLLC-Turkel and Roe-Turkel methods preconditioned waves are used to define second-
order terms. Let us note that instabilities were observed with the wave propagation scheme
(3) with second-order corrections (7) if unlimited waves are used (φ = 1) with a ∆t for which
computations with the MC limiter are stable, both with the non-preconditioned and with the
preconditioned schemes (Roe and HLLC). We found that one can overcome this instability
problem for the standard Roe’s scheme by adding transverse fluctuations [24]. The com-
putation of these transverse contributions uses a projection of the fluctuations onto the Roe
eigenvectors, and for the HLLC scheme it is not clear how this fluctuation splitting could be
performed. In fact, our novel formulation of the HLLC solver could suggest a way to define
transverse fluctuations for the HLLC method in analogy with the Roe solver, nonetheless this
aspect is not investigated in the present work. To begin with, we display in Figure 4 first-order
results for the test case with M∗ = 0.01 obtained with the HLLC-Turkel method (subplot (a)),
the Roe-Turkel method (subplot (b)), and the standard HLLC method (subplot (c)). The ini-
tial condition for the Mach number for this test can be seen in Figure 5, subplot (a). The
results obtained with the Roe-Turkel and HLLC-Turkel methods do not show visible differ-
ences. These two first-order preconditioned methods introduce a large amount of numerical
dissipation and distort the vortex shape. The ratio KE of the total kinetic energy relative to
its initial value is KE = 0.3953 at t = 2 for both methods. The standard first-order HLLC
scheme produces more dissipation (KE = 0.3900) and, moreover, loses completely the initial
circular shape of the vortex. The subplots (b)-(c) of Figure 5 show the Mach number com-
puted by our HLLC-Turkel scheme with second-order corrections at t = 1 and t = 2 (times
corresponding to 1 and 2 rotations of the vortex) for the test with M∗ = 0.01, and the subplot
(d) shows results with the same method for the test with M∗ = 0.1. We observe the good
performance of the HLLC-Turkel method, which preserves very well the circular shape of
the vortex for the two considered values of M∗. The results appear qualitatively as accurate as
those presented in [32]. Some artificial dissipation is introduced, the loss of kinetic energy is
nonetheless small, with the ratio KE being KE = 0.9938 at t = 1 and KE = 0.9893 at t = 2 for
the test with M∗ = 0.01 and KE = 0.9926 at t = 2 for the test with M∗ = 0.1. While first-order
non-preconditioned results seem not to be affected by a reduction of ∆t, the results of the
non-preconditioned Roe’s and HLLC methods with second-order corrections exhibit better
accuracy if the time step is decreased with respect to the largest time step allowed for stabil-
ity. Here we display results for the second-order HLLC scheme obtained with the same time
step used for the HLLC-Turkel scheme, specifically in subplot (e) for the test with M∗ = 0.1
(∆t = 0.4 × 10−5), and in subplot (f) for the test with M∗ = 0.01 (∆t = 0.4 × 10−6). The
standard non-preconditioned HLLC scheme with second-order corrections shows significant
improvement with respect to first-order results, with the chosen very small ∆t. Nonetheless,
for the same order of the computational time, it still introduces more numerical dissipation
than the preconditioned method, giving at t = 2 KE = 0.9552 for the case M∗ = 0.1 and
KE = 0.7419 for the case M∗ = 0.01.

5. Conclusions. In this work we have presented a novel formulation of the HLLC Rie-
mann solver. This formulation allows us to recognize a formal mathematical similarity of the
HLLC solver with the Roe solver. This could be exploited to apply to HLLC-type methods
some numerical strategies conceived originally for the Roe’s method. We have illustrated
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(c) HLLC

Fig. 4. Gresho vortex test with M∗ = 0.01, first-order results for the Mach number at t = 2. (a) HLLC-Turkel
scheme; (b) Roe-Turkel scheme; (c) standard HLLC scheme.
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(a) M∗ = 0.01, t = 0
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(b) HLLC-Turkel, M∗ = 0.01, t = 1
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(c) HLLC-Turkel, M∗ = 0.01, t = 2
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(d) HLLC-Turkel, M∗ = 0.1, t = 2
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(e) HLLC, M∗ = 0.1, t = 2
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(f) HLLC, M∗ = 0.01, t = 2

Fig. 5. Gresho vortex test, results with second-order corrections included. (a) Mach number at t = 0 for the
test with M∗ = 0.01; (b)-(c): Mach number at t = 1 and t = 2 computed by the HLLC-Turkel scheme for the test with
M∗ = 0.01; (d): Mach number at t = 2 computed by the HLLC-Turkel scheme for the test with M∗ = 0.1; (e)-(f):
Mach number at t = 2 computed by the HLLC scheme for the tests with M∗ = 0.1 and M∗ = 0.01, respectively.

an application to the design of low Mach number preconditioning techniques for the HLLC
scheme for the Euler equations, proposing a new HLLC-Turkel scheme. An extension of this
HLLC-Turkel method to a six-equation two-phase flow numerical model has been already
presented by the author in [33], and in principle the same approach could be used readily
for other HLLC-type schemes for multifluid and multiphase compressible flow models, such
as the models in [13, 39]. We plan to explore other potential benefits of our reformulation
of the HLLC solver. For example, we are interested in investigating possible applications to
the HLLC method of the f-wave approach [2, 26] for well balancing of source terms, a tech-
nique that requires the specification of a set of average eigenvectors associated to the Jacobian
matrix of the model system.
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Appendix A. Roe eigenstructure for the Euler equations.
We recall the eigenstructure of the Roe matrix Â(q`, qr) for a plane-wave Riemann prob-

lem in the x direction with data q`, qr for the Euler equations. We first introduce the averages:

û =
u`
√
ρ` + ur

√
ρr

√
ρ` +

√
ρr

, v̂ =
v`
√
ρ` + vr

√
ρr

√
ρ` +

√
ρr

, ρ̂ =
√
ρ`ρr,(43a)

Ĥ =
H`
√
ρ` + Hr

√
ρr

√
ρ` +

√
ρr

, ĉ =

√
κ(Ĥ − K̂) + χ, K̂ =

û2 + v̂2

2
.(43b)

The Roe eigenvalues are:

(44) λ̂1 = û − ĉ, λ̂2 = λ̂3 = û, λ̂4 = û + ĉ.

The matrix R̂ = [r̂1, . . . , r̂4] of the corresponding Roe right eigenvectors is

(45) R̂ =


1 1 0 1

û − ĉ û 0 û + ĉ
v̂ v̂ 1 v̂

Ĥ − ûĉ K̂ −
χ
κ

v̂ Ĥ + ûĉ

 .
The coefficients ζ̂l, l = 1, . . . 4, of the Roe eigen-decomposition qr − q` =

∑4
l=1 ζ̂lr̂l, are:

(46) ζ̂1 =
1
2ĉ

(
∆p
ĉ
− ρ̂ ∆u

)
, ζ̂2 = ∆ρ −

∆p
ĉ2 , ζ̂3 = ρ̂∆v, ζ̂4 =

1
2ĉ

(
∆p
ĉ

+ ρ̂ ∆u
)
,

where ∆(·) ≡ (·)r − (·)`.

Appendix B. Roe’s and HLLC semi-discrete equations for the Euler system.
We use here the grid notation introduced in subsection 4.1. We write the Roe and HLLC

solution structure for a Riemann problem between the reference cell J and its neighbor K in
a common framework. We denote withWJ,K

JK and sJ,K
JK the wave and speeds corresponding to

the acoustic fields, and withW?
JK , s?JK the total middle wave (contact wave associated to the

entropy wave and shear wave) and the corresponding speed, respectively. These waves and
speeds satisfyWJ

JK +W?
JK +WK

JK = ∆JKq and sJ
JKW

J
JK + s?JKW

?
JK + sK

JKW
K
JK = ∆JK f (q).

We have:

sJ,K
JK = U J,K

JK ∓ cJ,K
JK , s?JK = U?

JK , W
J,K
JK = ζ J,K

JK rJ,K
JK ,(47a)

ζ J,K
JK =

1

2c̃J,K
JK

∆JK p

cJ,K
JK

∓ ρJ,K
JK ∆JKU

 ,(47b)

rJ,K
JK =


1

~uJ,K
JK ∓ cJ,K

JK~nJK

HJ,K
JK ∓ U?

JKcJ,K
JK

 , W?
JK =


ζ?JK

ζ?JK ~u
?
JK + ζ?s

JK~n
⊥
JK

W?E
JK + ζ?s

JKV?
JK

(47c)

ζ?JK = ∆JKρ −
∆JK p
(c?)2

JK

−

(
ρ

c

)?
JK
∆JKU, ζ?s

JK = ρ?JK∆JKV,(47d)

where for the Roe solver we use the Roe averages in (43) for the interface quantities (·)JK :

~uJ
JK = ~uK

JK = ~u?JK = ~̂uJK , cJ
JK = cK

JK = c̃J
JK = c̃K

JK = c?JK = ĉJK ,(48a)

HJ
JK = HK

JK = ĤJK , ρJ
JK = ρK

JK = ρ?JK = ρ̂JK ,
(
ρ

c

)?
JK

= 0,(48b)

W?E
JK = ζ?JK

(
Û2

JK+V̂2
JK

2 −
χ
κ

)
,(48c)
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and for the HLLC solver we use the quantities č `,r, S ? and ρ?`,r introduced in (21), (22) and
(23) replacing superscript and subscripts `, r with J,K and u with U:

~uJ,K
JK = ~uJ,K , U?

JK = S ?
JK , V?

JK = V̄JK , cJ,K
JK = č J,K

JK , c̃J,K
JK =

ρJ č J
JK + ρK č K

JK

2ρ?J,K
JK

,

(49a)

HJ,K
JK = HJ,K , ρJ,K

JK = ρK,J
č K,J

JK

č J,K
JK

, ρ?JK =
ρ?J

JK + ρ?K
JK

2
, ~u?JK = S ?

JK~nJK + V̄JK~n⊥JK ,

(49b)

(c?JK)2 = 2
 1

č J
JK c̃J

JK

+
1

č K
JK c̃K

JK

−1

,
(
ρ

c

)?
JK

=
ρK

JK

2c̃K
JK

−
ρJ

JK

2c̃J
JK

,

(49c)

W?E
JK = ρ?J

JKhJ − ρ
?K
JK hK − ∆JK p + ζ?JK

(
(S ?)2

JK
2 + 1

2

(
V2

2

)
JK

)
+

ρ?J
JK
2 (UJ−S ?

JK)2 −
ρ?K

JK
2 (UK−S ?

JK)2.

(49d)

We obtain the following non-dimensionalized semi-discrete equations for the Roe’s scheme
and for the HLLC scheme for the Euler equations, using the Riemann solution waves defined
above in the two-dimensional first-order spatial discretization (3) of the wave propagation
scheme (for simplicity we do not use a special notation for non-dimensional variables):

Mass equation.

δ
dρJ

dt
+

1
2

∑
K∈ν(J)

ρK~uK · ~nJK(50a)

+ 1
2
∑

K∈ν(J) |U?
JK |

(
∆JKρ −

1
(c?JK )2∆JK p

)
−

M∗
2

∑
K∈ν(J) |U?

JK |
(
ρ
c

)?
JK
∆JKU(50b)

+ 1
4M∗

∑
K∈ν(J)

(
1

c̃J
JK

+ 1
c̃K

JK

)
∆JK p + M∗

4
∑

K∈ν(J)

(
U J

JK
ρJ

JK

c̃J
JK

+ UK
JK

ρK
JK

c̃K
JK

)
∆JKU(50c)

+ 1
4
∑

K∈ν(J)

((
UK

JK

cK
JK c̃K

JK
−

U J
JK

cJ
JK c̃J

JK

)
∆JK p +

(
ρK

JK
cK

JK

c̃K
JK
− ρJ

JK
cJ

JK

c̃J
JK

)
∆JKU

)
= 0.(50d)

Momentum equation.

δ
d(ρ~u)J

dt
+

1
2

∑
K∈ν(J)

(ρ~u)K(~uK · ~nJK) +
1

2M2
∗

∑
K∈ν(J)

pK ~nJK

(51a)

+ 1
2
∑

K∈ν(J) |U?
JK |

((
∆JKρ −

∆JK p
(c?)2

JK

)
~u?JK + ρ?JK∆JKV ~n⊥JK

)
−

M∗
2

∑
K∈ν(J) |U?

JK |
(
ρ
c

)?
JK
~u?JK∆JKU

(51b)

+ 1
4M2

∗

∑
K∈ν(J)

(
cK

JK

c̃K
JK
−

cJ
JK

c̃J
JK

)
~nJK∆JK p + M∗

4
∑

K∈ν(J)

(
U J

JKρ
J
JK

c̃J
JK

~uJ
JK +

UK
JKρ

K
JK

c̃K
JK

~uK
JK

)
∆JKU

(51c)

+ 1
4M∗

∑
K∈ν(J)

((
~uJ

JK+U J
JK~nJK

c̃J
JK

+
~uK

JK+UK
JK~nJK

c̃K
JK

)
∆JK p +

(
ρJ

JK (cJ
JK )2

c̃J
JK

+
ρK

JK (cK
JK )2

c̃K
JK

)
~nJK∆JKU

)(51d)

+ 1
4
∑

K∈ν(J)

((
UK

JK

cK
JK c̃K

JK
~uK

JK −
U J

JK

cJ
JK c̃J

JK
~uJ

JK

)
∆JK p +

(
ρK

JK
cK

JK

c̃K
JK
~uK

JK − ρ
J
JK

cJ
JK

c̃J
JK
~uJ

JK

)
∆JKU

)
= 0.

(51e)
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Total energy equation.

δ
dEJ

dt
+

1
2

∑
K∈ν(J)

(EK + pK)~uK · ~nJK(52a)

+ 1
2
∑

K∈ν(J) |U?
JK |

(
W?E0

JK + M2
∗ (W

?E2
JK + ρ?JKV?

JK∆JKV) + M3
∗W

?E3
JK

)
(52b)

+ 1
4M∗

∑
K∈ν(J)

(
HJ

JK

c̃J
JK

+
HK

JK

c̃K
JK

)
∆JK p + M∗

4
∑

K∈ν(J)

((
U J

JKρ
J
JK HJ

JK

c̃J
JK

+
UK

JKρ
K
JK HK

JK

c̃K
JK

)
∆JKU(52c)

+

(
U J

JK

c̃J
JK

+
UK

JK

c̃K
JK

)
U?

JK∆JK p +

(
ρJ

JK (cJ
JK )2

c̃J
JK

+
ρK

JK (cK
JK )2

c̃K
JK

)
U?

JK∆JKU
)

(52d)

+
M2
∗

4
∑

K∈ν(J)

(((
cK

JK

c̃K
JK
−

cJ
JK

c̃J
JK

)
U?

JK +

(
UK

JK HK
JK

cK
JK c̃K

JK
−

U J
JK HJ

JK

cJ
JK c̃J

JK

))
∆JK p(52e)

+

(
ρK

JK
cK

JK HK
JK

c̃K
JK
− ρJ

JK
cJ

JK HJ
JK

c̃J
JK

)
∆JKU

)
= 0.(52f)

Above the quantityW?E
JK = W?E0

JK + M2
∗W

?E2
JK + M3

∗W
?E3
JK is the non-dimensional quantity

corresponding to the quantity in (48c) and (49d) (W?E3
JK = 0 for the Roe solver and it is

related to the term with (ρ/c)?JK for the HLLC solver, the termW?E0
JK corresponds to ζ?JKχ/κ

for the Roe solver and to ρ?J
JKhJ −ρ

?K
JK hK −∆JK p for the HLLC solver). When preconditioning

is applied, the preconditioned acoustic waves and speeds that replaceWJ,K
JK and sJ,K

JK given in
(47) have the form

sJ,K P
JK = U J,K P

JK ∓ cJ,K P
JK , W

J,K P
JK = ζ J,K P

JK rJ,K P
JK ,(53a)

U J,K P
JK =

1
2

(1 + β2
JK)U J,K

JK , cJ,K P
JK =

1
2

√
XJ,K
β,JK ,(53b)

XJ,K
β,JK = ((1 − β2

JK)U J,K
JK )2 + (2βJKcJ,K

JK )2,(53c)

ζ J,K P
JK =

1

2c̃J,K P
JK

∆JK p

ćJ,K P
JK

∓ ρJ,K
JK ∆JKU

 ,(53d)

rJ,K P
JK = [1, ~uJ,K

JK ∓ ćJ,K P
JK ~nJK , HJ,K

JK ∓ U?
JK ćJ,K P

JK ]T,(53e)

ćJ,K P
JK = ∓(sJ,K P

JK − U J,K
JK β

2
JK) = cJ,K P

JK ∓
1
2

(1 − β2
JK)U J,K

JK ,(53f)

where for the Roe solver and the HLLC solver we have, respectively,

(54) c̃J,K P
JK = cJ,K P

JK , and c̃J,K P
JK =

ρJc JP
JK + ρKc KP

JK

2ρ?J,K
JK

.

Note that in writing the non-dimensionalized discrete equations the parameter β, which is of
order M∗, is also rescaled as β = M∗β̃, as in [19].
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