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Abstract. We study a depth-averaged model of gravity-driven flows made of solid grains and fluid,
moving over variable basal surface. In particular, we are interested in applications to geophysical flows
such as avalanches and debris flows, which typically contain both solid material and interstitial fluid.
The model system consists of mass and momentum balance equations for the solid and fluid components,
coupled together by both conservative and non-conservative terms involving the derivatives of the
unknowns, and by interphase drag source terms. The system is hyperbolic at least when the difference
between solid and fluid velocities is sufficiently small. We solve numerically the one-dimensional model
equations by a high-resolution finite volume scheme based on a Roe-type Riemann solver. Well-
balancing of topography source terms is obtained via a technique that includes these contributions into
the wave structure of the Riemann solution. We present and discuss several numerical experiments,
including problems of perturbed steady flows over non-flat bottom surface that show the efficient
modeling of disturbances of equilibrium conditions.
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1. Introduction

In this paper we study a depth-averaged two-phase flow model for gravity-driven mixtures of solid material
and fluid. Our main interest, which was the original motivation for the present work, is the application to
gravitational geophysical flows such as avalanches and debris flows. These flows are granular masses that often
contain both solid components and a variable amount of interstitial fluid.

Following the pioneering work of Savage and Hutter [45,46], in recent years great advances have been made
in the mathematical and numerical modeling of granular geophysical flows by means of depth-averaged or thin
layer models, which are based on the small aspect ratio of typical flows (small characteristic flow depth H
compared to the characteristic flow length L). Savage and Hutter [45] began studying the one-dimensional
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motion of dry granular material down inclines. Later their approach has been developed further by numer-
ous authors, with extensions to two dimensions [18] and generalizations to flows on more complex bottom
topography [5,9,15,20,35,40,41]. Numerical algorithms implementing these depth-averaged models have been
able to reproduce many experimental tests and a large range of geological observations with significant suc-
cess [8,21,29–31,35,39,41,49,53].

Despite the important progress done, one open problem that still needs to be addressed in the description of
the debris flow mechanics is an accurate modeling of pore fluid effects. Interaction forces between solid grains
and interstitial fluid influence the rheological behavior of the moving mass and may play an important role in
deformation processes, flow mobility and run-out [19,22].

Considerable part of the literature on granular flow modeling is limited to single-phase dry granular masses,
from early studies [15,45,46] to more recent works [30,35,40,42]. Iverson [19] and Iverson and Denlinger [20] made
an effort to take into account intergranular fluid effects in the flowing material, and they developed a solid-fluid
mixture theory based on the simplifying assumptions of constant porosity (fluid volume fraction) and equality
of fluid velocity to solid velocity. Here the flow is described by a set of balance equations for the mass and for
the momentum of the mixture, which formally appears as a single-phase model with a stress term accounting for
contributions from the two constituents. This mixture formulation lacks an inherent description of the pore fluid
motion and the model needs to be supplemented with some specification of the pore fluid pressure evolution.
A pore fluid pressure advection-diffusion equation was assumed in [20], based on experimental measurements.
Numerical applications of this model to laboratory avalanches and debris flume experiments are reported in [8].
Among later works in the context of solid-fluid mixture theory, let us also mention the more recent paper [41]
of Pudasaini and co-workers, who propose a model for debris flows down general channels by using the same
simplifying hypotheses of constant mixture density and equality of phase velocities as Iverson and Denlinger.

Making a significant step forward with respect to mixture models, Pitman and Le [38] have recently presented
a novel depth-averaged two-phase model for debris flows and avalanches that contains mass and momentum
equations for both the solid and fluid component. This implicitly provides equations for the velocities of both
phases and for porosity. However, in this work the authors propose a numerical method only for a reduced
system that ignores fluid inertial terms.

We present here a mathematical and numerical two-phase granular flow model over variable topography that
follows the approach of Pitman and Le [38]. In the present paper we limit our study to the one-dimensional
case. We start recalling the work of Pitman and Le in Section 2, and in Section 3 we introduce our mathematical
model. As in [38], our system of equations expresses mass and momentum balances for both the solid and fluid
phase, and it includes interphase drag terms. However, the formulation of our two-phase system differs from
the original one in [38] in the description of the fluid phase dynamics, and it has the new property of recovering
a conservative equation for the momentum of the mixture. In Section 4 we analyze the eigenstructure of our
model and we derive sufficient conditions for hyperbolicity. In particular, we show that the model system is
hyperbolic at least for flow regimes characterized by sufficiently small phase velocity differences. Based on
this, for the system solution we will assume solid and fluid velocity values enough close for the equations to be
hyperbolic, a reasonable hypothesis for the applications to debris flows we are interested in, e.g. [19].

In Section 5 we briefly present a reduced model, derived by assuming that drag forces are strong enough
to drive instantaneously solid and fluid velocities to equilibrium. The only interest for this reduced system is
that it allows a much simpler mathematical analysis than the full two-phase system and an easy derivation of
exact solutions. This reduced model will be uniquely used for comparison with our two-phase model in the
numerical tests.

We then illustrate the numerical scheme for the solution of our system in Sections 6–9. We employ a
finite volume method belonging to the family of upwind schemes based on Riemann solvers (Godunov-type
methods) [12,26,50]. Such a class of methods has been applied with considerable success for granular flow
computations with single-phase and mixture models [8,21,29,35,53].

A specific numerical difficulty for our two-phase system comes from the presence of non-conservative terms
involving the derivatives of the unknowns that couple together the sets of equations of the solid and fluid phase.
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This will be addressed in Section 6, where we describe the Roe-type solver that we employ to approximate
local Riemann problems. Section 7 then explains how we formulate our scheme into the framework of the
high-resolution wave-propagation algorithms of [24].

Another numerical difficulty in the approximation of our system is to ensure well-balancing of bottom to-
pography terms, in order for the scheme to maintain steady state conditions at the discrete level, and to model
correctly small perturbations from steady states. Preserving equilibrium states and resolving accurately devia-
tions from them is a well known numerical problem that in general arises in the approximation of systems with
sources that at steady states balance some spatial gradients of the unknowns. Schemes for such systems that
approximate correctly steady and nearly steady conditions are called well-balanced, and there exists a very ex-
tensive literature on the subject, see for instance [2,3,13,16,25,33,34,52] and the monograph [4]. Our treatment
of bottom surface terms is explained in Section 8, while Section 9 describes the modeling of interphase drag
forces. We finally report results of several numerical tests in Section 10, and we conclude the paper by writing
some remarks.

2. The Pitman-Le two-phase model

We briefly recall in this section the modeling approach of Pitman and Le [38], referring to the original paper
for details. Pitman and Le consider a thin layer of a mixture of solid granular material and interstitial fluid
moving over a smooth basal surface. Solid and fluid components are assumed incompressible, with constant
specific densities ρs and ρf < ρs, respectively. Mass and momentum equations for the two constituents are
written based on the two-phase model of Anderson and Jackson [1]:

∂t(ρsϕ) + ∇ · (ρsϕVs) = 0, (2.1a)
ρsϕ(∂tVs + (Vs · ∇)Vs) = ∇ · Ts + ϕ∇ · Tf + I + ρsϕg, (2.1b)
∂t(ρf (1 − ϕ)) + ∇ · (ρf (1 − ϕ)Vf ) = 0, (2.1c)
ρf (1 − ϕ)(∂tVf + (Vf · ∇)Vf ) = (1 − ϕ)∇ · Tf − I + ρf (1 − ϕ)g. (2.1d)

Above ϕ is the solid volume fraction, Vs and Vf are the solid and fluid vectorial velocities, Ts and Tf the solid
and fluid stress tensors. Note that here we use the convention of denoting compressive stresses as negative,
differently from [38]. Furthermore, g is the gravity acceleration vector, and I represents all the non-buoyancy
interaction forces. Interphase drag is assumed to be the only contribution to I, and a standard form of the
drag force is used, I = D(Vf −Vs), where D is a drag function. Typically [32,51], D = D(ϕ, |Vf −Vs|;σ), where
σ is a vector of physical parameters such as the specific densities ρs and ρf , the fluid dynamic viscosity and
the solid particle diameter. In particular, Pitman and Le take D = |g|(1 − ϕ)1−Σϕ(ρs − ρf )/vT , where vT is a
characteristic velocity, and Σ depends on the Reynolds number of the flow.

In order to complete the formulation, a specification of material stresses is needed. The fluid is assumed
inviscid, and the only fluid stress considered is a pressure. The solid, as in the Savage-Hutter theory, is modeled
as a Mohr-Coulomb material. A Coulomb friction law is used, expressing collinearity of shear stresses and
normal stresses through a friction coefficient ν = tan δf, where δf is the local angle of friction. An earth pressure
relation is then assumed for solid lateral normal stresses. Here we will describe only the one-dimensional thin
layer model, with motion in a direction x. In this case, denoting with z the normal direction, the relations for
the relevant solid stress components are T xz

s = ± ν T zz
s (Coulomb friction law), with the sign taken so that

the shear traction opposes the solid sliding motion, and T xx
s = KT zz

s (earth pressure relation), where K is the
so-called earth pressure coefficient [43]. For simplicity, here we will set K = 1. The free upper surface of the
flow is stress-free for both constituents. As for kinematic boundary conditions, material surface conditions at
the upper free surface, and tangent motion conditions at the base are imposed for each phase.

Making use of the shallow flow assumption H/L � 1 (H = characteristic thickness, L = characteristic flow
length), the governing equations (2.1) are then suitably scaled and averaged over flow depth. We report below
the resulting model equations, omitting the lengthy procedure of their derivation (cf. [38]). Here we will make
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the further assumption of small topography slope, so that the direction tangent to the bottom surface can be
approximated by the horizontal direction. Then, the depth-averaged two-phase model of Pitman and Le can be
written in the form:

∂t(ϕ̄h) + ∂x(ϕ̄hv̄s) = 0, (2.2a)

∂t(ϕ̄hv̄s) + ∂x

(
ϕ̄hv̄2

s + g
1−γ

2
ϕ̄h2

)
+ γϕ̄

g

2
∂xh

2 = −gϕ̄h∂xb− sgn(v̄s)νbg(1−γ)ϕ̄h+ γDh(v̄f−v̄s), (2.2b)

∂th+ ∂x(ϕ̄hv̄s + (1 − ϕ̄)hv̄f ) = 0, (2.2c)

∂t(hv̄f ) + ∂x

(
hv̄2

f

)
+
g

2
∂xh

2 = −gh∂xb− D

1 − ϕ̄
h(v̄f − v̄s). (2.2d)

Above h is the flow depth, ϕ̄ the depth-averaged solid volume fraction, v̄s and v̄f are the solid and fluid averaged
velocities, respectively, g = |g| (gravity constant), and, moreover, we have introduced the ratio

γ =
ρf

ρs
< 1. (2.3)

Furthermore, b(x) describes the bottom topography, νb = tan δbed, where δbed is the basal friction angle, and
finally D = D/ρf , where D is an average of D(ϕ, |Vf − Vs|;σ). As suggested in [38], it is reasonable to adopt
the same form of D as a drag relation for the average quantities, that is we take D = 1

ρf
D(ϕ̄, |v̄f − v̄s|;σ). For

the specific choice of D in [38], this gives D = g(1 − ϕ̄)1−Σϕ̄ (1/γ − 1) /vT .
Note that equations (2.2a) and (2.2c) express mass conservation for the solid phase and for the mixture,

respectively, while equations (2.2b) and (2.2d) express solid and fluid momentum balances.
For the two-phase model above simple explicit expressions of the eigenvalues are not available, and approxi-

mate formulas are derived in [38] by using a perturbation expansion in
√
H/L, starting from the model written

in normalized form. The authors claim hyperbolicity of the model equations at least for H/L sufficiently small.

3. A new model formulation

The two-phase shallow flow model that we present in this section is a variant of the Pitman-Le model,
and it differs from the original work of [38] in the description of the fluid and mixture momentum balance.
Here we prefer a symmetric formulation of the solid and fluid depth-averaged equations, and we express mass
conservation and momentum balance for each constituent by writing equations for the mass variables ϕ̄h and
(1 − ϕ̄)h, and for the momenta ϕ̄hv̄s and (1 − ϕ̄)hv̄f . Most significantly, we integrate the fluid momentum
equation in a different form, to derive the equation for (1− ϕ̄)hv̄f that will replace (2.2d). Note that the motion
equations (2.1b) and (2.1d) for Vs and Vf can be reformulated as equations for ϕVs and (1−ϕ)Vf , respectively,
by rewriting the left-hand side in the equivalent conservative form ρθ(∂t(ϕθVθ) + ∇ · (ϕθVθ ⊗ Vθ)), θ = s, f ,
ϕs = ϕ, ϕf = (1− ϕ). To express the x-momentum balances, Pitman and Le integrate a solid motion equation
for ϕV(x)

s , and a fluid motion equation for V(x)
f , where Vθ

(x) is the x-component of Vθ, θ = s, f . Instead, for

the fluid phase we average an equation for (1 − ϕ)V(x)
f , thus employing symmetric terms for the two phases.

Although the two approaches use equivalent forms of (2.1d), they lead to slightly different expressions of the fluid
momentum balance due to the averaging approximations. More precisely, in the integration process the average
of any product of variables is approximated as the product of the corresponding depth-averaged variables. See
discussion in [38] for an estimation of errors in averaging.
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Omitting hereafter overbars to simplify the notation, our model takes the form:

∂t(ϕh) + ∂x(ϕhvs) = 0, (3.1a)

∂t(ϕhvs) + ∂x

(
ϕhv2

s + g
1−γ

2
ϕh2

)
+ γϕ

g

2
∂xh

2 = −gϕh∂xb− sgn(vs)νbg(1−γ)ϕh+ γDh(vf −vs), (3.1b)

∂t((1 − ϕ)h) + ∂x((1 − ϕ)hvf ) = 0, (3.1c)

∂t((1 − ϕ)hvf ) + ∂x

(
(1 − ϕ)hv2

f

)
+ (1 − ϕ)

g

2
∂xh

2 = −g(1 − ϕ)h∂xb−Dh(vf − vs), (3.1d)

with D = 1
ρf
D(ϕ, |vf − vs|;σ). The mass equations (3.1a) and (3.1c) are equivalent to the couple (2.2a) and

(2.2c). This in particular implies that the solid volume fraction is governed by an equation of the same form in
the two models:

∂tϕ+ ϕ(1 − ϕ)(vs − vf )
1
h
∂xh+ ((1 − ϕ)vs + ϕvf )∂xϕ+ ϕ (1 − ϕ)∂x(vs − vf ) = 0. (3.2)

While the solid momentum balance is also expressed by the same equation, the dynamics of the fluid phase is
described in a different way. By considering that

∂t((1 − ϕ)hvf ) + ∂x

(
(1 − ϕ)hv2

f

)
= (1 − ϕ)

(
∂t(hvf ) + ∂x

(
hv2

f

))
+ hvf (∂t(1 − ϕ) + vf∂x(1 − ϕ)) , (3.3)

we see that the fluid momentum equation (2.2d) is equivalent to the equation (3.1d) with the addition of a term
τ ≡ −hvf (∂t(1 − ϕ) + vf∂x(1 − ϕ)) on the left-hand side. By using mass conservation, this term can be also
written as τ = −(1 − ϕ)vf∂x(ϕh(vs − vf )). Note that the two models are coincident if the volume fraction ϕ
is constant in space and time, or if we assume instantaneous velocity equilibrium between the two constituents
(vs = vf ). In particular, both models reduce to classical single-phase shallow water equations for constant ϕ
and vs = vf .

The different expression of fluid momentum balance entails a different description of the mixture dynamics.
Consistently with the equations before averaging (2.1), and with the expected physical behavior, our model has
the property of recovering a conservative equation for the momentum of the mixture, which has the form

∂t((ϕvs + γ(1 − ϕ)vf )h) + ∂x

((
ϕv2

s + γ(1 − ϕ)v2
f

)
h+

g

2
(ϕ+ γ(1 − ϕ))h2

)
=

− g(ϕ+ γ(1 − ϕ))h∂xb− sgn(vs)νbg(1 − γ)ϕh. (3.4)

From the Pitman-Le equations (2.2) we derive a mixture momentum equation of the form above, with an
additional non-conservative term γτ on the left-hand side. Therefore, it doesn’t seem possible to recover a
mixture momentum equation in conservation form for the model in [38].

3.1. Formulation in hs, hf

We now rewrite our model by expressing quantities containing the variables ϕ and h in terms of the conserved
quantities hs ≡ ϕh and hf ≡ (1−ϕ)h. We neglect friction, which will not be considered hereafter. Manipulating
suitably the equations (3.1), and setting q = (hs, hsvs, hf , hfvf )T, we obtain the system

∂tq + ∂xf(q) + w(q, ∂xq) = ψ b(q) + ψD(q), (3.5a)
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where

f(q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

hs vs

hs v
2
s +

g

2
h2

s + g
1 − γ

2
hs hf

hf vf

hf v
2
f +

g

2
h2

f

⎞
⎟⎟⎟⎟⎟⎟⎠
, w(q, ∂xq) =

⎛
⎜⎜⎜⎜⎜⎝

0

γ g hs ∂xhf

0

g hf ∂xhs

⎞
⎟⎟⎟⎟⎟⎠ , (3.5b)

and the topography and drag source terms are given by

ψ b(q) = −

⎛
⎜⎜⎜⎜⎝

0
g hs ∂xb

0
g hf ∂xb

⎞
⎟⎟⎟⎟⎠ , ψD(q) =

⎛
⎜⎜⎜⎜⎜⎝

0

γ FD

0

−FD

⎞
⎟⎟⎟⎟⎟⎠ , FD = D(hs + hf )(vf − vs). (3.5c)

Above, we have put into evidence the conservative portion of the system ∂xf(q), and the non-conservative
term w(q, ∂xq). An interesting feature of this formulation in terms of hs, hf is that (with D ≡ 0) it has a
formal mathematical similarity with the classical two-layer shallow water model system (e.g. [6,7,34,54]), if we
interpret hs and hf as the depths of the two flow layers and vs and vf as the corresponding velocities. The
only difference with the two-layer system is the additional conservative cross term ∂x

(
g 1−γ

2 hshf

)
in the solid

momentum equation of our two-phase model.
Let us also write system (3.5) in quasi-linear form for later reference:

∂tq +A(q)∂xq = ψ b(q) + ψD(q), (3.6a)

where

A(q) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

−v2
s + ghs + g

1 − γ

2
hf 2vs g

1 + γ

2
hs 0

0 0 0 1

ghf 0 −v2
f + ghf 2vf

⎞
⎟⎟⎟⎟⎟⎠. (3.6b)

Finally, the equation for the mixture momentum m = hsvs + γhfvf can be written as

∂tm+ ∂xfm(q) = −g(hs + γhf)∂xb, (3.7a)

where

fm(q) = f (2)(q) + γ f (4)(q) + γ g hshf = hs v
2
s + γ hf v

2
f +

g

2
(
h2

s + γ h2
f

)
+ g

1 + γ

2
hs hf . (3.7b)
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3.2. Steady states

Steady state conditions for model (3.5) are

hs vs = const., (3.8a)

hf vf = const., (3.8b)

v2
f

2
+ g (hs + hf + b) = const., (3.8c)

hs ∂x

(
v2

f

2
− v2

s

2
+ g

1 − γ

2
hf

)
− hf∂x

(
g

1 − γ

2
hs

)
= 0. (3.8d)

In the particular case of steady state at rest (vs = vf = 0) these conditions simplify to hs + hf + b = const. and
hs/hf = const. In terms of the significant physical variables h = hs + hf and ϕ = hs/(hs + hf ), this means
that equilibrium at rest is characterized by

h+ b = const. and ϕ = const. (3.9)

4. Eigenstructure and hyperbolicity

4.1. Eigenvalue analysis

We study here the eigenvalues of our two-phase model, assuming h > 0. Hence, we look for the roots of the
characteristic polynomial P (λ) = det(A−λI) of the matrix A of system (3.6). For the purpose of this analysis,
it is convenient to use the variables h, ϕ, and to introduce the quantities

a =
√
gh and β =

√
1
2
(1 − ϕ)(1 − γ) < 1. (4.1)

The polynomial P (λ) has the quartic form P (λ) =
∑4

k=0 bkλ
k, where the coefficients bk can be expressed as

b4 = 1, (4.2a)
b3 = −2(vs + vf ), (4.2b)

b2 = (vs + vf )2 + 2vsvf − a2(1 + β2), (4.2c)

b1 = −2vsvf (vs + vf ) + 2a2(vs + β2vf ) − 2a2ϕ(vs − vf ), (4.2d)

b0 = v2
sv

2
f − a2(v2

s + β2v2
f ) + a4β2 + a2ϕ(v2

s − v2
f ). (4.2e)

In general, as for the original Pitman-Le model, simple explicit expressions of the roots λk of P (λ), k = 1, . . . , 4,
cannot be derived. In the particular case of equality of solid and fluid velocities, vf = vs ≡ v, the four roots of
P (λ) are real and distinct (ϕ �= 1), and given by

λ1,4 = v ∓ a and λ2,3 = v ∓ aβ. (4.3)

Other particular cases are:

• ϕ = 0, for which the eigenvalues are vf ∓ a, vs ∓ aβ, with β =
√

1−γ
2 ;

• ϕ = 1, for which we find the two distinct eigenvalues vs ∓ a and the double eigenvalue vf . As a special
sub-case, let us remark that if |vs − vf | = a then there are only two distinct eigenvalues.

Although if ϕ = 0 (or ϕ = 1) everywhere in the domain then the velocity vs (resp. vf ) is not defined, note
that the eigenvalues expressions just above for ϕ = 0 and ϕ = 1 are still meaningful whenever vs and vf have a
determined value (e.g. at the edges of rarefactions where ϕ or (1 − ϕ) may vanish).
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Let us now analyze the general case. We can state the following result:

Proposition 4.1. Matrix A has always at least two real eigenvalues λ1,4, and moreover, the eigenvalues λk

of A, k = 1, . . . , 4, satisfy the following inequalities:

vmin − a ≤ λ1 ≤ Re(λ2) ≤ Re(λ3) ≤ λ4 ≤ vmax + a, (4.4)

where vmin ≡ min(vf , vs), vmax ≡ max(vf , vs), and Re(·) denotes the real part. Furthermore:
(i) If |vs − vf | ≤ 2aβ or |vs − vf | ≥ 2a then all the eigenvalues are real. If these inequalities are strictly

satisfied, and if ϕ �= 1, then the eigenvalues are also distinct, and system (3.6) is strictly hyperbolic.
(ii) If 2aβ < |vs − vf | < 2a then the internal eigenvalues λ2,3 may be complex.

Proof. To study the roots of P (λ) it is useful to introduce the quartic polynomials ps(λ), pf (λ) that have roots
vf ± a, vs ± aβ, and vs ± a, vf ± aβ, respectively:

pf (λ) = (λ− (vf − a))(λ − (vf + a))(λ− (vs − aβ))(λ − (vs + aβ)), (4.5a)
ps(λ) = (λ − (vs − a))(λ − (vs + a))(λ − (vf − aβ))(λ − (vf + aβ)). (4.5b)

These functions both intersect P (λ) at v̄ = vs+vf

2 , and, moreover, they differ from P (λ) only for terms up to
first order in λ:

P (λ) − pf (λ) = −2a2ϕ(vs − vf )
(
λ− vs + vf

2

)
, (4.6a)

P (λ) − ps(λ) = a2(1 − ϕ)(1 + γ)(vs − vf )
(
λ− vs + vf

2

)
. (4.6b)

The common coordinates of the inflection points of P (λ), ps(λ) and pf(λ) are given by:

ω1,2 = v̄ ∓ 1
2

√
1
3
(vs − vf )2 +

2
3
a2(1 + β2), (4.7)

and the curves are convex for λ ∈ (−∞, ω1) ∪ (ω2,+∞), and concave for λ ∈ (ω1, ω2). Note that if vs = vf

then pf ≡ ps ≡ P . Moreover, P ≡ pf for ϕ = 0, and P ≡ ps for ϕ = 1. Then it is clear that in these special
cases the eigenvalues have the expressions anticipated earlier in this section (see (4.3) and following relations),
and that the statements of Proposition 4.1 are satisfied.

Let us assume now vs �= vf , ϕ �= 0, ϕ �= 1. Then v̄ is the only point of intersection of the polynomials.
Moreover:

pf (λ) < P (λ) < ps(λ) if vs > vf and λ < v̄ or if vs < vf and λ > v̄, (4.8a)

ps(λ) < P (λ) < pf (λ) if vs > vf and λ > v̄ or if vs < vf and λ < v̄, (4.8b)

which means that the polynomial P (λ) is bounded by ps(λ) and pf (λ). As a consequence, all the real roots of
P (λ) will be bounded by vmin − a from below, and by vmax + a from above. See Figure 1. We also deduce that
there are at least two real roots,

λ1 ∈ ( vmin − a, min(vmax − a, vmin − aβ) ) and λ4 ∈ (max(vmin + a, vmax + aβ), vmax + a). (4.9)

Moreover, if the other two roots λ2,3 are also real, then they will be located in the interval:

λ2,3 ∈ (min(vmax − a, vmin − aβ),max(vmin + a, vmax + aβ)). (4.10)
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0

 

 

P(λ)

pf(λ)

ps(λ)

v̄

(v̄, P (v̄))

min(vs, vf ) − a max(vs, vf ) + a

Figure 1. Characteristic polynomial P (λ) and curves ps(λ), pf (λ) for a case in which the
roots of P (λ) are real. Stars (∗) indicate the roots of P (λ), circles (◦) the roots of ps(λ) and
pf (λ), and squares (�) the inflection points (ωi, P (ωi)), i = 1, 2.

Therefore, we have in this case λ1 < λ2 ≤ λ3 < λ4. Let us assume now that λ2,3 are complex. In general, the
following relation between the roots of P (λ) and the coefficient b3 holds:

4∑
k=1

λk = −b3 = 2(vs + vf ). (4.11)

In the case under consideration we can write

Re(λ2) = Re(λ3) = vs + vf − 1
2
(λ1 + λ4). (4.12)

Since from (4.9) we have vmin <
1
2 (λ1 + λ4) < vmax we then obtain by (4.12)

vmin < Re(λ2) = Re(λ3) < vmax. (4.13)

Hence, again through (4.9), we deduce

λ1 < Re(λ2) = Re(λ3) < λ4. (4.14)

This completes the proof of relations (4.4). Note that for ϕ �= 1 we have the more strict inequalities λ1 <
Re(λ2) ≤ Re(λ2) < λ4.

Let us now investigate the conditions for real eigenvalues. From the behavior of P (λ) we observe that a
necessary and sufficient condition for having four real roots is the positivity of the local maximum in the region
of concavity. Unfortunately, no simple expression can be obtained to characterize this point. However, noticing
that ω1 < v̄ < ω2, we can easily obtain sufficient conditions by imposing positivity of P (v̄):

P (v̄) = pf (v̄) = ps(v̄) =

[(
vs − vf

2

)2

− a2

][(
vs − vf

2

)2

− a2β2

]
≥ 0. (4.15)
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This gives
|vs − vf | ≤ 2aβ, or |vs − vf | ≥ 2a. (4.16)

With strict inequalities these conditions ensure also that λ2 < λ3, so that, for ϕ �= 1, the eigenvalues will be all
distinct. Then, system (3.6) will be strictly hyperbolic.

To show an example in which the eigenvalues may be complex, we consider the special case in which (v̄, P (v̄))
is coincident with the point of local maximum. Then clearly conditions (4.16) will be also necessary for real
roots. Besides the case vs = vf , this happens for any choice of vs, vf , and h when ϕ takes the particular value

ϕ = 1+γ
3+γ , γ < 1. In this situation the eigenvalues are complex if and only if

√
1 − 2ϕ =

√
1−γ
3+γ <

|vs−vf |
2
√

gh
< 1.

It is interesting to note that for this particular example we can indeed express the eigenvalues explicitly as λ1,4 =
v̄∓
√
B +

√
C, and λ2,3 = v̄∓

√
B −√

C, where B = (vs−vf )2/4+gh(1−ϕ) andC = gh((vs−vf )2(1−ϕ)+ghϕ2).
Therefore, we can check directly the results above. �

Proposition 4.1 shows that our model system is hyperbolic for differences of solid and fluid velocities either
sufficiently small or sufficiently large, and that there exists a range of values of the phase velocity difference for
which the system eigenvalues may be complex and hyperbolicity is lost.

Note that, based on (4.3), the quantities a =
√
gh and aβ =

√
g
2h(1 − ϕ)(1 − γ) appearing in the hyperbol-

icity conditions represent the propagation speeds of external and internal disturbances, respectively, for flow
with vs = vf ≡ v, relative to the flow velocity v. By considering that |vs−vf |

2 = |vs − v̄| = |vf − v̄|, where
v̄ = vs+vf

2 , we can also interpret (i) of Proposition 4.1 as saying that hyperbolicity holds either if solid and fluid
velocities relative to their mean value v̄ are both smaller than the characteristic internal speed aβ of flow in
kinematic equilibrium with velocity v̄, or these solid and fluid velocities are both larger than the characteristic
external speed a.

Let us finally mention that the appearance of complex eigenvalues and loss of hyperbolicity that may occur
in our model can be analogously observed in the two-layer shallow water model when differences of velocities
of the two layers are too large [6,54]. For two-layer flows this phenomenon is related to the appearance of
Kelvin-Helmholtz instabilities [6]. For the present two-phase model the occurrence of complex eigenvalues could
be related to instabilities that generate strong inhomogeneities in the spatial distribution of the porosity (fluid
volume fraction).

4.2. Eigenvectors

The right and left eigenvectors of the matrix A(q) (3.6b) can be easily written in terms of the eigenvalues
λk, k = 1, . . . , 4. Let us consider here ϕ �= 1 and ϕ �= 0, that is hs, hf > 0 (h > 0). Then the right eigenvectors
rk, k = 1, . . . , 4, can be expressed as

rk = (1, λk, ξk, ξkλk)T, (4.17a)

with

ξk =
(λk − vs)2 − g

(
hs + 1−γ

2 hf

)
g 1+γ

2 hs

=
ghf

(λk − vf )2 − ghf
· (4.17b)

By using the bounds for the eigenvalues in (4.9) and (4.10), one can find that: (i) for k = 1 and k = 4 ξk > 0;
(ii) for k = 2 and k = 3 we have ξk < 0 if |vs − vf | < 2aβ, ξk > 0 if |vs − vf | > 2a, and ξk can be either
positive or negative in the range 2aβ ≤ |vs−vf | ≤ 2a. These results suggest that simple waves associated to the
external eigenvalues are characterized by variations of hs and hf and corresponding momenta of the same sign,
while variations of opposite sign occur through internal waves in the small phase velocity difference regime.

Let us now assume that the matrix of the right eigenvectors R = (r1, r2, r3, r4) is non-singular, which is
always true if |vs − vf | < 2aβ or |vs − vf | > 2a (Prop. 4.1). Then the left eigenvectors lk of A(q), k = 1, . . . , 4,
can be taken as

lk =
nk

P ′(λk)
, nk = (ϑs,k (λk − 2vs), ϑs,k, ϑf (λk − 2vf ), ϑf ), (4.18a)
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with
ϑs,k = (λk − vf )2 − ghf = g

hf

ξk
and ϑf = g

1+γ
2

hs. (4.18b)

Here we have normalized the eigenvectors lk so that L = R−1, where L = (l1, l2, l3, l4)T.
Going further into the eigenstructure analysis, we can compute the derivative of the eigenvalues λk along

the trajectories of the vector fields rk. By evaluating the derivatives ∂λk(q)/∂q(k) through the characteristic
polynomial P (λ), we obtain ∇λk(q) · rk(q) = 1

P ′(λk) Ξk, with

Ξk = 2ϑs,k

hs
(λk − vs)2 + g

(
ϑs,k + g 1+γ

2 hf

)
+ ξk

(
2ξkϑf

hf
(λk − vf )2 + g

(
ξkϑf + 1−γ

2 ϑs,k + ϑf

))
.

Based on the inequalities written above for ξk, we can verify that ∇λk(q) · rk(q) �= 0 ∀q for k = 1 and k = 4,
that is the external characteristic fields are genuinely nonlinear. On the other hand, the quantity ∇λk(q) · rk(q)
could cross zero for k = 2 and k = 3. We leave to the reader to verify these statements.

To conclude this section, we write for completeness the expression of the right eigenvectors for the particular
cases omitted above. For ϕ = 1 (hf = 0), we can still use the normalization (4.17a) (but not the last expression
in (4.17b)). Here we have ξk = 0 for the eigenvalues vs ∓ √

gh, and ξk = 2((vs − vf )2 − gh)/(gh(1 + γ)) for
the double eigenvalue vf . The eigenvalue vf has algebraic multiplicity 2 and geometric multiplicity 1, and the
matrix R is singular (to be precise, note that the algebraic multiplicity of vf becomes 3 in the special situation
|vs − vf | =

√
gh).

For ϕ = 0 (hs = 0) the right eigenvectors can be written as (κk, κkλk, 1, λk)T, with κk = 0 for the eigenvalues

vf ∓√
gh, and with κk = − 1+γ

2 + 2(vs−vf )
ghf

(
vs−vf

2 ∓
√
ghf

1−γ
2

)
for the eigenvalues vf ∓

√
ghf

1−γ
2 .

5. A reduced model

Let us assume that drag is strong enough to drive instantaneously the phase velocities to equilibrium. Then
we can derive from (3.1) a reduced model describing the dynamics of the two-phase mixture with scaled density
ρ = ϕ+ γ(1 − ϕ) and velocity v ≡ vs = vf . By adding mass and momentum phase equations, and considering
the velocity equilibrium limit, we obtain the following reduced system, here in conservative form:

∂th+ ∂x(hv) = 0, (5.1a)

∂t(ρh) + ∂x(ρhv) = 0, (5.1b)

∂t(ρhv) + ∂x

(
ρhv2 +

g

2
ρh2
)

= −gρh∂xb− sgn(v)νbg
(
1 − γ

ρ

)
ρh. (5.1c)

Note that in this model the volume fraction ϕ = ρ−γ
1−γ , as well as ρ, is simply advected:

∂tϕ+ v ∂xϕ = 0. (5.2)

The analysis of the eigenstructure of the model above is much simpler than the one of the full model (3.1).
The system of equations is strictly hyperbolic and it has eigenvalues λr

1,3 = v ∓ √
gh, λr

2 = v. The second
characteristic field corresponds to a contact discontinuity across which v and P ≡ g

2ρh
2 are constant. As we

can deduce from equation (5.2), the volume fraction ϕ (equivalently ρ) can only vary across this contact wave.
Let us now consider the steady state conditions at rest (omitting friction) for the reduced model (5.1). We

have
∂x(h+ b) = − h

2ρ
∂xρ. (5.3)

We observe that these conditions include those of the full model, equations (3.9), but they also allow equilibrium
states with non-uniform h+ b and non-uniform ρ, hence non-uniform ϕ. Since we wish to describe phenomena
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for which physically meaningful equilibrium conditions are only those in (3.9), the reduced model above appears
to be physically inappropriate. That is, the hypothesis of instantaneous velocity equilibrium seems physically
inconsistent whenever we wish to consider a variable volume fraction. Although the model (5.1) by itself may
not be physically interesting, it could be useful for comparison with the full two-phase model, as we will see in
Section 10.4.

6. Numerical solution: a Roe-type method

We will assume hereafter that hs, hf > 0 during the flow evolution, and that the difference between solid and
fluid velocities is small enough so that the model system is strictly hyperbolic ((i) of Prop. 4.1).

We develop a numerical solution method for system (3.5) in the framework of finite volume schemes based
on Riemann solvers (cf. [12,26,50]).

We consider first the solution of system (3.5) without source terms, and we discuss in the following sections
the numerical treatment of bottom topography and drag terms. Hence, here we will consider the solution of
the homogeneous system

∂tq + ∂xf(q) + w(q, ∂xq) = 0, (6.1)

with f(q) and w(q, ∂xq) as in (3.5b), or, in quasi-linear form,

∂tq +A(q)∂xq = 0, (6.2)

with A(q) as in in (3.6b). Correspondingly, the mixture momentum equation is given by (3.7a) with zero
right-hand side.

The difficulties in solving the system above are related to its non-conservative character and the coupling
between the equations of the solid and fluid phase. Note that the mass equations of the two materials are in
conservation form, together with the mixture momentum equation. On the other hand, the momentum equations
contain non-conservative products involving the derivatives of the unknowns that couple the sets of equations
of the two constituents. The presence of these coupling terms suggests to avoid trying to solve separately the
equations of the two phases through splitting approaches, since uncoupled methods could generate numerical
instabilities. Instead, we opt for a global solution technique. See for instance [6] for a discussion on analogous
difficulties in the context of two-layer flow modeling, and instabilities produced by uncoupled schemes.

Here we numerically solve our model system by employing a Roe-type method [44], similarly to the approach
used in [6] for the two-layer shallow flow model. We consider a computational grid with cells of uniform size Δx,
and we denote with Δt the time step. We call Qn

i the approximate average solution in the ith cell, i ∈ Z, at
time tn = nΔt, n ∈ N. Following the classical Roe’s technique, at every time level tn, and at each cell interface
i+ 1/2 between average solution values Qn

i and Qn
i+1 , we solve a Riemann problem for the linearized system

∂tq + Â(Qn
i , Q

n
i+1)∂xq = 0, (6.3)

with initial data Qn
i and Qn

i+1 . The constant coefficient matrix Â(Qn
i , Q

n
i+1) is defined so as to guarantee

conservation for the mass of each phase and for the momentum of the mixture. That is, we need

f (p)(Qn
i+1) − f (p)(Qn

i ) = Â(p,:)(Qn
i+1 −Qn

i ), p = 1, 3, (6.4a)

fm(Qn
i+1) − fm(Qn

i ) =
(
Â(2,:) + γÂ(4,:)

)
(Qn

i+1 −Qn
i ), (6.4b)

where f (p) denotes the pth component of the vector f , A(p,:) the pth row of the matrix Â, and fm is the flux
of the mixture momentum in (3.7b). The conditions (6.4) above can be satisfied by taking Â as the original
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matrix A(q) evaluated in an average state q̂ = q̂(ĥs, ĥf , v̂s, v̂f ), where

ĥθ =
hn

θ,i + hn
θ,i+1

2
and v̂θ =

√
hn

θ,i v
n
θ,i +

√
hn

θ,i+1 v
n
θ,i+1√

hn
θ,i +

√
hn

θ,i+1

, θ = s, f . (6.5)

Let us remark that the mass conservation conditions (6.4a) are indeed identically satisfied for any choice of the
average state q̂.

7. F-wave formulation

The Roe-type method we use is formulated in the framework of the wave-propagation algorithms of [24],
which are a class of high-resolution finite volume schemes based on Riemann solvers for the solution of hy-
perbolic systems. In particular, here we adopt a special formulation of these algorithms based on the f-wave
method introduced in [3], since this approach will be useful to include topography source terms in the solution
of the equations. The f-wave technique is designed for conservative systems, that is, in the homogeneous case,
systems of the form ∂tq + ∂xF(q) = 0, where q ∈ R

M , and F(q) ∈ R
M is a flux function. The key idea is to

decompose the flux jump ΔF across cell interfaces into a set of Mw waves Zk propagating with some speeds
sk, k = 1, . . . ,Mw, that approximate the local Riemann solution. These waves Zk are called f-waves since they
correspond to jumps in the flux F . For the interface i+ 1/2, and at time tn, we have the decomposition

ΔF ≡ F(Qn
i+1) −F(Qn

i ) =
Mw∑
k=1

Zk
i+1/2. (7.1)

F-waves and speeds resulting from local Riemann problems are then used to determine the left-going and
right-going fluctuations A∓ΔQ at cell interfaces:

A−ΔQi+1/2 =
∑

k:sk
i+1/2

<0

Zk
i+1/2 and A+ΔQi+1/2 =

∑
k:sk

i+1/2
>0

Zk
i+1/2. (7.2)

Finally, the solution is updated at time n+ 1 through the second-order formula:

Qn+1
i = Qn

i − Δt

Δx
(A+ΔQi−1/2 + A−ΔQi+1/2) − Δt

Δx
(F c

i+1/2 − F c
i−1/2), (7.3a)

F c
i+1/2 =

1
2

Mw∑
k=1

sgn
(
sk

i+1/2

)(
1 − Δt

Δx

∣∣sk
i+1/2

∣∣)Zc,k
i+1/2, (7.3b)

where F c
i+1/2 are correction fluxes for second order resolution, and Zc,k

i+1/2 are a modified version of Zk
i+1/2,

obtained by applying to Zk
i+1/2 a limiter function (see [26] for a more detailed description).

If a Roe linearization Â(Qn
i , Q

n
i+1) ∈ R

M×M of the Jacobian F ′(q) is used to approximate local Riemann
problems, then f-waves and associated speeds correspond to the M eigenpairs {r̂k, λ̂k}1≤k≤M of Â. In this case
sk

i+1/2 = λ̂k and Zk
i+1/2 = ζk r̂k , where ζk are the coefficients of the projection of ΔF onto the Roe eigenvectors,

ΔF =
∑M

k=1 ζk r̂k.
In our model system mass equations are conservative, but phase momentum equations contain non-conservative

products. Therefore we lack a flux vector F to be used for a wave decomposition of the form (7.1). Nonethe-
less, we can still formulate our Roe-type scheme into the structure of the algorithm above, if we define locally
an approximate flux difference ΔF̃ to be splitted into Roe eigencomponents in a way that is consistent with
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the Roe linearization Â of our system. Here we define ΔF̃ as the sum of the jump in the flux vector f of the
conservative portion of the equations (see (3.5b)), plus a contribution resulting from a linearization of the non-
conservative term w(q, ∂xq) corresponding to the Roe system. Based on the local approximation of w(q, ∂xq)
as (0, γgĥs∂xhf , 0, gĥf∂xhs)T, where ĥs, ĥf are the Roe averages in (6.5), we take:

ΔF̃ = Δf +

⎛
⎜⎜⎜⎝

0

γ g ĥsΔhf

0

g ĥf Δhs

⎞
⎟⎟⎟⎠, (7.4)

whereΔf = f(Qn
i+1)−f(Qn

i ), andΔhθ = hn
θ,i+1−hn

θ,i, θ = s, f . Note thatΔF̃ = ÂΔq, Δq ≡ Qn
i+1−Qn

i . Hence,
by construction of Â, we see that ΔF̃ satisfies the mixture momentum conservation conditionΔF̃ (2)+γΔF̃ (4) =
fm(Qn

i+1) − fm(Qn
i ).

Denoting here with {r̂k, λ̂k}1≤k≤4 the eigenpairs of the Roe matrix Â of our system, we then use the decom-
position

ΔF̃ =
4∑

k=1

ζk r̂k, (7.5)

and we define f-waves and corresponding speeds as

Zk
i+1/2 = ζk r̂k and sk

i+1/2 = λ̂k, k = 1, . . . , 4. (7.6)

These quantities are employed to update cell averages through (7.2)–(7.3). Based on the property Δf̃ = ÂΔq,
note that the f-waves defined above are exactly the flux jumps of the solution of the Roe linear system, given by
λ̂kαk r̂k, where αk are the coefficients of the eigen-decomposition Δq =

∑4
k=1 αk r̂k, and we have the equivalence

ζk = λ̂kαk, k = 1, . . . , 4.

8. Topography source terms

We now consider the solution of the model system with the bottom topography source term ψb(q) in (3.5c)
included:

∂tq +A(q)∂xq = ψb(q). (8.1)
As mentioned in the Introduction, topography terms must be discretized in a way to ensure well-balancing, that
is the property of the method of preserving steady state conditions and modeling efficiently small perturbations
from them. In particular, for the system under study we are concerned with the steady state conditions at rest
in (3.9).

To build a well-balanced scheme, we follow the approach of [3,28], which uses the f-wave formulation framework
described in the previous section. Such a technique has been used for instance in the context of tsunami modeling
to treat bathymetry source terms [27]. The idea is to incorporate the effect of topography source terms into the
Riemann solution, by taking discrete interface values Ψb,n

i+1/2 of ψb(q), and by including a contribution Ψb,n
i+1/2Δx

into the splitting of ΔF̃ in (7.5). In place of (7.5), we now decompose

ΔF̃ − Ψb,n
i+1/2Δx =

4∑
k=1

ζk r̂k. (8.2)

F-waves Zk
i+1/2 = ζk r̂k obtained from this splitting, together with their propagating speeds sk

i+1/2 = λ̂k, are
then used to compute the fluctuations at interfaces as in (7.2), and the solution is updated through (7.3).



A ROE-TYPE SCHEME FOR TWO-PHASE SHALLOW GRANULAR FLOWS 865

R
ap

id
e 

N
ot

e

H
ighlight Paper

The motivation for this approach is that if cell averages Qn
i and interface source terms Ψb,n

i+1/2 satisfy at
time tn the discrete steady state condition

ΔF̃
Δx

= Ψb,n
i+1/2, (8.3)

then the left-hand side of (8.2) will be zero, therefore ζk = 0, ∀k = 1, . . . , 4. Hence, all the f-waves Zk
i+1/2 will

have zero strength, and the wave-propagation algorithm (7.2)-(7.3) will give Qn+1
i = Qn

i . That is, the discrete
steady state is maintained by this method. If the solution does not satisfy (8.3) exactly but is close to a steady
state, then (8.2) means that it is the deviation from steady state that is used to determine the Zk

i+1/2 [28].

The interface source term Ψb,n
i+1/2 must be defined so that the discrete steady state condition (8.3) holds

whenever initial Riemann data correspond to equilibrium, that is when (h + b)n
i = (h + b)n

i+1, ϕn
i = ϕn

i+1,
vn

s,i = vn
s,i+1 = vn

f,i = vn
f,i+1 = 0. To satisfy this requirement we take

Ψb,n
i+1/2Δx = −

⎛
⎜⎜⎜⎝

0

g ĥsΔb

0

g ĥf Δb

⎞
⎟⎟⎟⎠ , (8.4)

with Δb = bi+1 − bi.

9. Drag source terms

We illustrate in this section the numerical treatment of the drag term ψD(q) in (3.5c) for the solution of the
complete model system (3.5). Note that ψD(q) vanishes at steady states at rest, hence it does not influence the
steady state equilibrium conditions (3.9). Based on this, there is no special need for well-balancing techniques
for this term, and we employ a simple fractional step method for its numerical approximation. Here we alternate
between solving over a time step Δt the model system without drag (see previous sections), and solving over a
time step Δt a system of ordinary differential equations for the drag contribution:

∂tq = ψD(q). (9.1)

In particular, for the numerical solution of this system we will adopt the approach used in [36,37] in the context
of dusty gas modeling.

We recall that in (3.5c) D = 1
ρf
D(ϕ, |vf −vs|;σ), where σ is a vector of constant physical parameters (e.g. the

solid particle diameter). Based on drag relations proposed in the literature for multiphase granular materials,
e.g. [55,56] and reviews [32,51], here we consider functions D in the following quasi-linear form in |vf − vs|:

D = S1(ϕ,Σ(Re);σ) + S2(ϕ,Σ(Re);σ) |vf − vs|, (9.2)

where Σ(Re) is a vector of physical parameters (e.g. the drag coefficient) that may depend on |vf − vs| through
the Reynolds number of the flow

Re =
(1 − ϕ)ρf ds|vf − vs|

μf
· (9.3)

Here ds is the solid particle diameter, and μf is the dynamic viscosity of the fluid. The general drag relation
above encompasses also the drag function used by Pitman and Le, which we reported in Section 2. For another
example of D, see Section 10.4.
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By using (9.2) the system of ODEs in (9.1) takes the form

∂ths = 0, (9.4a)

∂t(hsvs) =
1
ρs

(hs + hf )(S1 + S2|vf − vs|)(vf − vs), (9.4b)

∂thf = 0, (9.4c)

∂t(hfvf ) = − 1
ρf

(S1 + S2|vf − vs|)(hs + hf )(vf − vs), (9.4d)

with initial data h0
s, (hsvs)0, h0

f , (hfvf )0 coming from the hyperbolic solver. Here and in the following the
superscript 0 indicates initial values. From (9.4a) and (9.4c) we immediately see that the variables hf and hs

are constant over Δt:
hf (Δt) = h0

f and hs(Δt) = h0
s. (9.5)

Each step we assume that the parameters Σ(Re) are constant in time, and equal to their initial values Σ0 =
Σ(Re0). It follows that the functions S1,2 are also constant, and equal to S0

1,2 = (ϕ0, Σ0;σ), where ϕ0 = hs0

h0
s+h0

f
.

Then the solution of the momentum equations (9.4b), (9.4d) can be found exactly as

(hsvs)(Δt) = (hsvs)0 − γ
h0Δv0

ς0

⎛
⎝ S0

1

(S0
1 + |Δv0|S0

2)e
ς0 S0

1
ρf

Δt − |Δv0|S0
2

− 1

⎞
⎠, (9.6a)

and

(hfvf )(Δt) = (hfvf )0 +
h0Δv0

ς0

⎛
⎝ S0

1

(S0
1 + |Δv0|S0

2)e
ς0 S0

1
ρf

Δt − |Δv0|S0
2

− 1

⎞
⎠, (9.6b)

where h = hs + hf , and where we have introduced the quantities

Δv = vf − vs and ς = (hs + hf)
(

1
hf

+
γ

hs

)
=

1
1 − ϕ

+
γ

ϕ
· (9.7)

In the limit case S1 ≡ 0 the solution for the momenta has the form

(hsvs)(Δt) = (hsvs)0 − γ
h0Δv0

ς0

⎛
⎝ 1

S0
2

ρf
ς0|Δv0|Δt+ 1

− 1

⎞
⎠, (9.8a)

and

(hfvf )(Δt) = (hfvf )0 +
h0Δv0

ς0

⎛
⎝ 1

S0
2

ρf
ς0|Δv0|Δt+ 1

− 1

⎞
⎠. (9.8b)

If instead S2 ≡ 0, note that the last term between parentheses on the right of (9.6) simplifies to

(e
−ς0 S0

1
ρf

Δt − 1).
We then use formulas (9.5), (9.6) ((9.8) if S1 ≡ 0) for the numerical solution of the system of ODEs for the

drag term. The advantage of this semi-exact algorithm is that it is efficient for both fast and slow velocity
relaxation processes. If the time scale for reaching phase velocity equilibrium is much smaller than the time
scale corresponding to the hyperbolic wave-propagation behavior of the system, then the source term is stiff,



A ROE-TYPE SCHEME FOR TWO-PHASE SHALLOW GRANULAR FLOWS 867

R
ap

id
e 

N
ot

e

H
ighlight Paper

and other explicit ODEs solvers may require for stability a time step too small to be used in practice. We refer
for instance to [26] for a discussion on numerical difficulties with stiff source terms in hyperbolic systems.

Let us finally remark that if the drag relaxation time is small relative to the time step, then the solid and
fluid velocities as determined from the updating equations (9.6) or (9.8) both approach the common equilibrium
value

veq =
h0

sv
0
s + γh0

fv
0
f

h0
s + γh0

f

· (9.9)

10. Numerical experiments

10.1. Implementation and eigenvalues computation

The numerical scheme that we have presented in the previous sections has been implemented on the basis of
the Fortran 77 routines of the clawpack software [23].

As we have seen, the method requires the computation of the eigenstructure of the Roe matrix Â. We
recall that simple explicit formulas for the system’s eigenvalues are not available except in the special case
vs = vf (Sect. 4). Here we use Newton’s iteration method to find the external Roe eigenvalues λ̂1,4, employing
as initial guess the bounds in (4.4) for the roots of the characteristic polynomial. More precisely, we use starting

guess vmin−
√
gĥ to find λ̂1, and starting guess vmax +

√
gĥ to obtain λ̂4, where ĥ = ĥs + ĥf , vmin = min(v̂f , v̂s)

and vmax = max(v̂f , v̂s). Typically convergence to the roots is fast. The only situation in which root finding
can be slow is when the average solid volume fraction ϕ̂ = ĥs

ĥ
is very close to 1, in which case the derivative

of the characteristic polynomial may be close to zero in the neighborhood of one of the external roots. In this
case one could switch to a bisection method with a choice of the starting interval based on (4.9). Knowing
λ̂1,4, we can then obtain the internal Roe eigenvalues λ̂2,3 by simply using Vieta’s formulas, which relate roots
and coefficients of polynomials. Once we have all the λ̂k, k = 1, . . . , 4, the right and left Roe eigenvectors are
immediately found through the relations (4.17) and (4.18), respectively.

As a final remark, let us remind that it is well known that Roe’s solver may fail when the Roe eigenvalues are
close to sonic points. To overcome this problem, a technique based on the Harten and Hyman entropy-fix [17]
has been applied.

10.2. Tests with flat bottom and with no drag

We present in this subsection some numerical tests over flat bottom surface and with no drag contribution,
that is we take b(x) = 0 and D = 0. In all the experiments we set g = 9.8 and γ = 1/2. Moreover, we apply
free flow boundary conditions, and we use CFL number = 0.9 (CFL = Δt

Δx maxi(max1≤k≤4 |λ̂k|)i, where i ∈ Z

is the grid cell index).

10.2.1. Initial flow hump with higher fluid content

We perform a numerical experiment that has been suggested to us by a test for single-phase shallow water
equations in [26] (p. 257) that shows the evolution of an initial hump of water. Here we add to the problem
in [26] a perturbation of the solid volume fraction, and we observe the waves arising from a flow hump that
contains a higher fluid content with respect to the surrounding region.

Initially, the fluid is at rest (vs = vf = 0) and the profiles of the flow depth and of the solid volume fraction
are defined by the following Gaussian functions over the domain [−15, 15]:

h = h0 + δe−16x2
and ϕ = ϕ0 − δe−16x2

, (10.1)

with h0 = 1, ϕ0 = 0.6 and δ = 0.2 or δ = 0.2 × 10−3.
To begin with, we consider a small perturbation with respect to the state characterized by h = h0 and

ϕ = ϕ0, and we take δ = 0.2 × 10−3. In this case we expect that the solution of the problem consists
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approximately of four linear waves propagating at the characteristic speeds corresponding to the background
state, that is λ1,4 = ∓√

gh0 for the external waves, and λ2,3 = ∓√ g
2h0(1 − ϕ0)(1 − γ) for the internal waves.

We perform the computation with 1000 grid cells, and with the monotonized centered (MC) limiter for second
order correction terms.

Figure 2 shows the results for h, ϕ, and vs, vf at several times. The dotted line in the plots of h and ϕ
represents the initial profile of these variables. As predicted, we see that the initial perturbation splits into
four waves that then move with their profile unchanged. The numerical speed of the waves corresponds to the
expected values λ1,4 = ∓ 3.1305 and λ2,3 = ∓ 0.9899.

Note that the perturbation of ϕ induces a variation of the phase velocity difference (vs − vf ), consistently
with the equation governing (vs − vf ) in our model, which is, with b(x) = 0 and D = 0,

∂t(vs − vf ) +
gh

2ϕ
(1 − γ)∂xϕ+

1
2
∂x(v2

s − v2
f ) = 0. (10.2)

We can observe that in this problem ϕ and (vs − vf ) vary only across the internal waves. To try to understand
this behavior, we can compute the derivative of ϕ along the direction of the characteristic fields. We obtain,
for k = 1, . . . , 4:

∇ϕ · rk =
hs

(hs + hf)2

(
hf

hs
− ξk

)
, (10.3)

with ξk as in (4.17b). If vs = vf , then for the external characteristic fields (k = 1 and k = 4) we have
ξk = hf/hs, therefore the derivative above is zero. It is then reasonable to expect small variations of ϕ across
external waves when phase velocities are close. Although this provides a partial explanation, as we will see in
the next experiment (Fig. 3), also for larger initial perturbations of ϕ, and hence larger induced variations of
(vs−vf ), the same phenomenon occurs. Moreover, numerical tests of Riemann problems show that no variation
of ϕ and (vs − vf ) may take place across rarefactions and even shocks associated to the external characteristic
fields, when at initial time vs = vf (e.g. experiment in the next subsection, Fig. 5). To fully understand
such behavior, detailed knowledge of the Riemann solution structure would be needed, including the Riemann
invariants, but unfortunately we lack an analytical description of it.

We now repeat the numerical test above with a larger variation of h and ϕ, using here the initial profiles (10.1)
with δ = 0.2. Results are displayed in Figure 3. In this case we can clearly observe the effects of nonlinearities,
which cause the steepening of the front of the waves.

Finally, to appreciate the single influence of variations of flow depth and solid volume fraction, we plot in
Figure 4 the solution at time t = 3.5 for the cases in which we set: (a) only an initial perturbation of h, (b) only
an initial perturbation of ϕ, in both cases with δ = 0.2.

For case (a) we see that the solid volume fraction ϕ and the phase velocity difference remain unperturbed.
This is in general the behavior of the solution of any problem for which we have initial conditions ϕ = const. and
vs = vf . In this case ϕ = const. and vs = vf at any later time since there are no forces that can induce variations
of ϕ or (vs − vf ), and the solution for the flow depth h and the flow velocity vs = vf simply corresponds to the
solution of single-phase shallow water equations, whichever is the constant value of ϕ. Figure 4a shows that the
flow hump generates two gravity waves moving in opposite directions, as in the shallow water example of [26],
p. 257.

In Figure 4b we see that the initial variation of ϕ produces perturbations in all the variables and causes the
formation of four waves, analogously to the problem of Figure 3 (see Fig. 3d at time t = 3.5). Note that here
(Fig. 4b) the increase of h induced by ϕ in correspondence of the internal waves is balanced by a decrease of h
through the external waves as required by mass conservation.
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(d) t = 3.5

Figure 2. Waves generated by a small perturbation of the flow depth and of the solid volume
fraction, δ = 0.2 × 10−3. Each sub-figure shows the flow depth h, the solid volume fraction ϕ,
and the phase velocities vs (dashed line) and vf (dash-dot line). The dotted line in the plots
of h and ϕ represents the initial profiles.

10.2.2. Riemann problems

We solve here two Riemann problems, for which the initial conditions consist of two constant states separated
by an interface located at x = 0. We define the initial values of the flow height and of the solid volume fraction as

h = 3, ϕ = 0.7 if x < 0 and h = 2, ϕ = 0.4 if x > 0. (10.4)

In the first problem we assume the fluid initially at rest on both sides on the interface (dam-break problem),
i.e. vs = vf = 0 everywhere in the domain. We perform the computation over the interval [−5, 5] with 100 and
1000 grid cells, employing the Minmod limiter for second order corrections.

Results at time t = 0.5 are displayed in Figure 5. Figures 5a, 5b and 5d compare the results obtained
with the two different grid resolutions for the flow depth variables, the solid volume fraction, and the phase
velocities. In these plots the solid line represents the solution computed with the finer grid of 1000 grid cells.
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(b) t = 1.5
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(d) t = 3.5

Figure 3. Waves generated by a perturbation of flow depth and solid volume fraction, δ = 0.2.
See caption of Figure 2 for plot description.

Moreover, the dashed line indicates the initial conditions. In Figure 5c we display the eigenvalues as computed
with the finer grid.

We can observe that the Riemann solution consists of a 1-rarefaction, a 2-shock, a 3-rarefaction, and a 4-shock.
Note that the eigenvalues λ1 and λ3 are monotonically increasing along the rarefactions of the associated
characteristic fields. As anticipated in the previous subsection, we can see that ϕ appears to vary only across
the internal waves.

We now solve a Riemann problem with the same initial data for h and ϕ in (10.4), but we assume here an
initial phase velocity difference, taking

vs = −1.4, vf = 0.3 if x < 0 and vs = −0.9, vf = −0.1 if x > 0. (10.5)

Results are displayed in Figure 6. The solution of this Riemann problem, as in the previous case, is made of a
1-rarefaction, a 2-shock, a 3-rarefaction, and a 4-shock. However, in this case we can observe that the initial
phase velocity difference induces a variation of ϕ across the 1-rarefaction and the 4-shock.
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Figure 4. (a) Waves generated by a perturbation of the flow depth. (b) Waves generated by
a perturbation of the solid volume fraction. δ = 0.2, t = 3.5. See caption of Figure 2 for plot
description.

Finally, for both the two Riemann problems presented we plot the ratio N = |vs−vf |
2aβ to show the fulfillment

of the hyperbolicity condition N < 1 of Proposition 4.1, and to observe how far we are in these particular
examples from the limit N = 1 of the hyperbolicity region. Note that, based on the observations at the end
of Section 4.1, the dimensionless number N can be interpreted as the ratio between the deviation of solid and
fluid velocities from their mean value |vs − v̄| = |vf − v̄| = |vs−vf |

2 and the characteristic propagation speed aβ of
internal disturbances that would be observed for flow with vs = vf = v̄. In Figure 7 we see that N < 1 for the
two problems. Let us mention that our Fortran program would stop in case complex eigenvalues were found,
since the model would lose its validity.

10.3. Tests with variable topography

We present results of some experiments over variable bottom topography chosen to test the well-balance
property of our numerical scheme. For all the problems we use γ = 1/2, CFL = 0.9, and the MC limiter.

10.3.1. Perturbation of a steady state at rest

We perform an experiment that is an extension of LeVeque’s classical test [25] for single-phase shallow water
equations with bottom topography. In this problem we observe the behavior of a small perturbation of steady
state conditions at rest (3.9) over a bottom topography defined as

b(x) =
{

0.25(cos(π(x − 0.5)/0.1) + 1) if |x− 0.5| < 0.1,
0 otherwise. (10.6)

Initially, we take a small perturbation of the flow depth h and of the solid volume fraction ϕ:

h(x, 0) = h0 + h̃ and ϕ(x, 0) = ϕ0 − ϕ̃, for − 0.6 < x < −0.5, (10.7)

with h0 = 1, ϕ0 = 0.6, and h̃ = ϕ̃ = 10−3. Figure 8 shows the type of the initial data for the total height h+ b
and the solid volume fraction ϕ, though with much larger h̃ and ϕ̃ for clarity of the plot. The computational
domain is [−0.9, 1.1], and free flow boundary conditions are used. Moreover, we take g = 1 and γ = 1/2.
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Figure 5. Dam-break problem. (a), (b) and (d): Results computed with 100 grid cells com-
pared with reference solution obtained with 1000 cells (solid line for every variable). Dashed
line: initial conditions. (a) Flow depth h (circles) and variables hs (stars) and hf (pluses);
(b) solid volume fraction ϕ; (d) phase velocities vs (stars) and vf (pluses). (c) Eigenvalues
computed with 1000 grid cells.

We compute the solution with 100 grid cells and compare it with a fine grid reference solution obtained with
1000 grid cells.

In Figure 9 we display the results at six different times for h + b and ϕ (top and bottom subplot of each
sub-figure, respectively). The bold line over the x-interval [0.4, 0.6] in the plots of h+ b indicates the region of
the domain where b(x) �= 0.

As we can observe from the first sub-figure the initial perturbation splits into four waves, two right-going
waves, and two left-going waves that leave the domain from the left edge. Figure 9b shows the time at which the
right-going external wave has just passed over the obstacle at the bottom, and it has been partially reflected.
In Figure 9c this wave has left the domain from the right, and the reflected wave generated by it has passed
through the incoming right-going internal wave. In Figure 9d this internal wave has moved past the hump and
has produced its own reflected wave, which can be clearly distinguished in Figure 9e. The last sub-figure shows
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Figure 6. Riemann problem with phase velocity difference in the initial data. See caption of
Figure 5 for plot description.

finally the situation in which all the disturbances have exited from the computational region and equilibrium is
attained.

It is well known that numerical schemes that are not well-balanced may produce in this kind of numerical
tests unphysical disturbances [25]. Our numerical method is able to capture the physically correct reflected
waves, without producing spurious oscillations.

10.3.2. Perturbation of a steady flow in motion

As we have seen in Section 8, our numerical scheme has been specifically designed to ensure well-balancing
for steady state conditions at rest. Nonetheless, we present here an experiment that shows that our method
is capable to preserve equilibrium conditions and to model efficiently perturbations from equilibrium also for a
steady flow that is in motion.

Here we are concerned with the general equilibrium conditions for a moving steady flow characterized by
vs = vf ≡ v:

ϕ = const., hv = const. and g(h+ b) +
1
2
v2 = const. (10.8)
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Figure 7. Ratio |vs−vf |
2aβ at t = 0.5 for the Riemann problems of Figure 5 (left) and Figure 6 (right).
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Figure 8. Type of initial conditions for the numerical test of subsection 10.3.1. Above: total
flow height h + b, below: solid volume fraction ϕ. (Here h̃ and ϕ̃ are much larger than the
values used in the experiment.)

To begin with, we perform an experiment proposed in [14] and then used by several authors (e.g. [10]) to test
convergence of classical shallow water equations to a steady subcritical flow moving over a bump. The bottom
surface is specified over the interval [−5, 25] as

b(x) =
{

0.2 − 0.05(x− 10)2 if 8 < x < 12,
0 otherwise. (10.9)

A constant flux (hv)in = 4.42 is imposed at the left boundary (inlet), and a flow height hout = 2 is fixed at
the right boundary (outlet). Initially, we take constant ϕ, zero phase velocities, and h = 2 everywhere in the
domain. Moreover, we set g = 9.8. The computed solution converges to the correct steady state, as we can
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Figure 9. Perturbation of a steady state at rest (h̃ = ϕ̃ = 10−3). Circles: solution computed
with 100 grid cells; solid line: reference solution computed with 1000 grid cells. Bold line over
0.4 < x < 0.6: region where b(x) �= 0.



876 M. PELANTI ET AL.

R
apide N

ot

H
ig

hl
ig

ht
 P

ap
er

−5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
 h + b

 

 

 computed
 exact

Figure 10. Steady subcritical flow over a bump. Analytical solution (solid line) and solution
computed with 100 grid cells at t = 50 (stars).

observe from Figure 10, where we plot results of h+ b obtained with 100 grid cells at t = 50 together with the
analytical solution of the problem (the results are superimposed).

Now, we take a small initial perturbation of the steady conditions, and we observe its evolution in time. We
set the initial phase velocities and the initial flow height equal to their equilibrium values, while we introduce
an initial disturbance for the solid volume fraction, by defining

ϕ(x, 0) = ϕ0 + ϕ̃, for − 3.5 ≤ x ≤ −2.5, (10.10)

with ϕ0 = 0.6 and ϕ̃ = 10−3. We perform the experiment with 150 grid cells, and compare the results with a
reference solution obtained with 1500 cells. Free flow boundary conditions are used in this test.

Results are displayed in Figure 11 at several times. For each sub-figure, we show the deviation of h from
the steady state value hsteady, and the solid volume fraction ϕ. The bold line over the x-interval [8, 12] in the
subplots of h− hsteady indicates the location of the obstacle at the bottom.

The initial perturbation generates four waves, one of which leaves the domain from the left boundary. Fig-
ures 11a and 11b show the passage of the right external wave and of the right internal wave over the bump,
respectively, and in Figure 11c we can clearly notice the reflected wave generated by the internal wave. Fig-
ure 11d shows then the time at which the second internal wave goes over the bump. Finally all the disturbances
leave the domain and steady state conditions are attained in the computational region, as we can see from the
last plots. As for the test illustrated in Figure 9, no spurious oscillations are generated by the numerical method
in this problem.

10.4. Tests with interphase drag

We repeat here the flow hump experiment and the dam-break problem of Section 10.2, including now inter-
phase drag effects. We express the drag function D in (9.2) based of the drag correlation of Gidaspow [11]:

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

150
ϕ2 μf

(1 − ϕ)d2
s

+
7
4
ϕρf

ds
|vf − vs| if ϕ > 0.2,

3
4
cd(Re)

(1 − ϕ)ϕρf

ds
(1 − ϕ)−2.65|vf − vs| if ϕ ≤ 0.2,

(10.11)

where the drag coefficient cd = cd(Re) is given by

cd =

{
24
Re

(
1 + 0.15Re0.687

)
if Re < 1000,

0.44 if Re ≥ 1000.
(10.12)
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Figure 11. Perturbation of a steady flow moving over a bump (ϕ̃ = 10−3). Circles: solution
computed with 150 grid cells; solid line: reference solution computed with 1500 cells. Bold line
over 8 < x < 12: region where b(x) �= 0.
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We define the specific densities of the two material as ρs = 2000 kg·m−3 and ρf = 1000 kg·m−3, so that
γ = ρf/ρs = 1/2 as in the previous experiments. Moreover, we set ds = 0.05 m and μf = 0.001 Pa·s. Let us
remark that it is beyond the scope of the present work to discuss the definition of a physically appropriate drag
law for realistic flows. Here we choose a reasonable drag function that allows us to test our numerical scheme
and to observe qualitatively the effects of interphase drag forces.

In addition to perform the computations with a definite drag, by employing the algorithm described in
Section 9, for each numerical test we also compute the solution of our two-phase system obtained by imposing
numerically instantaneous phase velocity equilibrium, as if drag forces were infinitely large. This is done by
setting each time step the values of the solid and fluid velocities equal to the equilibrium value veq in (9.9).
That is, in the fractional step algorithm we replace the updating formulas (9.6) or (9.8) with

(hsvs)(Δt) = h0
sveq and (hfvf )(Δt) = h0

fveq. (10.13)

Furthermore, we also solve with the same initial data the reduced system (5.1) that was theoretically derived
by assuming instantaneous velocity relaxation. We will see that in the limit of infinitely large drag solutions of
the two-phase model approach those of the reduced model.

The reduced system is solved numerically by a finite volume scheme that uses a Riemann solver based on
Suliciu’s relaxation method [47,48]. See the Appendix. Let us note, however, that Riemann problems for the
reduced model can be solved exactly, thanks to the simplicity of the analysis of the system’s eigenstructure.

10.4.1. Flow hump with drag

We first compute the solution of our two-phase system with drag terms included for the flow hump experiment
of Section 10.2.1, taking δ = 0.2 in the initial conditions (10.1). We use 1000 grid cells as before. Results are
displayed in Figure 12, and should be compared with the case of no drag in Figure 3. As we can see, the drag
forces here prevent the separation of two internal waves carrying a variation of h and ϕ. Instead, after the
separation of two waves carrying only a variation of h, we observe that a hump rich in fluid remains where the
initial perturbation was located. This hump spreads laterally and its amplitude decays as time evolves. As
t→ ∞ the flow approaches in this region the steady conditions h = const. and ϕ = const.

Now, we perform the computation by imposing numerically instantaneous phase velocity relaxation, and we
also compute the solution of the reduced model with the same initial profiles for h and ϕ in (10.1), and initial
velocity v = 0. Since the relaxation scheme for the reduced model is more diffusive than the Roe-type scheme
for the full two-phase model, and we wish to obtain comparable sharpness of the wave fronts, a double grid
resolution (2000 grid cells) is employed for the reduced model.

We show the results of these computations in Figure 13. In each subplot we have used a thin solid line
to indicate the results of the reduced model, and a thicker solid line for the results of the two-phase model
with numerical infinite drag. These two sets of results are hardly distinguishable since they are approximately
superimposed.

The solution of the reduced model consists of two waves carrying only a variation of h moving in opposite
directions, and a steady hump with higher content of fluid at the location of the initial hump. In this region the
flow satisfies the equilibrium condition (5.3) of the reduced model. For this case of flat bottom this condition
expresses the invariance of the hydrostatic pressure, P = g

2ρh
2 = const., and we see in Figure 14 that this is

verified in the region of the hump. The solution of the two-phase model with infinite drag qualitatively agrees
with the one of the reduced model. We notice a small decay in time of the amplitude of h and ϕ with respect to
the solution of the reduced model that is due to the numerical errors introduced by the fractional step method
(this decay for instance can be reduced by decreasing the CFL number).

10.4.2. Dam-break problem with drag

We now repeat the dam-break problem of Section 10.2.2 including drag effects. Results obtained by employing
the drag relation in (10.11) are displayed in Figure 15. In the same figure we also plot the solution of the
two-phase model without drag contribution (dotted line), which we already described, and the exact solution



A ROE-TYPE SCHEME FOR TWO-PHASE SHALLOW GRANULAR FLOWS 879

R
ap

id
e 

N
ot

e

H
ighlight Paper

−15 −10 −5 0 5 10 15
0.95

1

1.05

1.1

1.15

 Flow depth at t = 0.5

−15 −10 −5 0 5 10 15
0.4

0.45

0.5

0.55

0.6

 Solid volume fraction at t = 0.5

−15 −10 −5 0 5 10 15

−0.2
−0.1

0
0.1
0.2

 Phase velocities at t =0.5

 

 

v
s

v
f

(a) t = 0.5

−15 −10 −5 0 5 10 15
0.95

1

1.05

1.1

1.15

 Flow depth at t = 1.5

−15 −10 −5 0 5 10 15
0.4

0.45

0.5

0.55

0.6

 Solid volume fraction at t = 1.5

−15 −10 −5 0 5 10 15

−0.2
−0.1

0
0.1
0.2

 Phase velocities at t =1.5

 

 

v
s

v
f

(b) t = 1.5

−15 −10 −5 0 5 10 15
0.95

1

1.05

1.1

1.15

 Flow depth at t = 2.5

−15 −10 −5 0 5 10 15
0.4

0.45

0.5

0.55

0.6

 Solid volume fraction at t = 2.5

−15 −10 −5 0 5 10 15

−0.2
−0.1

0
0.1
0.2

 Phase velocities at t =2.5

 

 

v
s

v
f

(c) t = 2.5

−15 −10 −5 0 5 10 15
0.95

1

1.05

1.1

1.15

 Flow depth at t = 3.5

−15 −10 −5 0 5 10 15
0.4

0.45

0.5

0.55

0.6

 Solid volume fraction at t = 3.5

−15 −10 −5 0 5 10 15

−0.2
−0.1

0
0.1
0.2

 Phase velocities at t =3.5

 

 

v
s

v
f

(d) t = 3.5

Figure 12. Evolution of a flow hump rich in fluid with modeling of interphase drag forces.

of the reduced model with the same initial data (dashed line). Results of the two-phase model with drag
show that the reduction of the phase velocity difference in the middle region induced by drag forces causes a
continuous variation of the flow height and of the solid volume fraction where there was a constant state between
the 2-shock and the 3-rarefaction for the case with no drag.

The solution of the reduced model consists of a 1-rarefaction, a contact discontinuity and a 3-shock. As
expected from the eigenstructure analysis, the solid volume fraction varies only across the contact wave, whereas
the flow velocity is constant across this wave.

Finally, we compute the solution of the two-phase model in the limit of instantaneous kinematic equilibrium.
The results, illustrated in Figure 16, agree with the solution of the reduced model.

11. Concluding remarks

We have introduced a new numerical model for grain-fluid mixtures over variable topography, which includes
interphase drag effects. The mathematical model presents an alternative description of the fluid phase dynamics
with respect to the original two-phase model of Pitman and Le. Our variant gives a conservative equation for



880 M. PELANTI ET AL.

R
apide N

ot

H
ig

hl
ig

ht
 P

ap
er

−15 −10 −5 0 5 10 15
0.95

1

1.05

1.1

1.15

 Flow depth at t = 0.5

−15 −10 −5 0 5 10 15
0.4

0.45

0.5

0.55

0.6

 Solid volume fraction at t = 0.5

−15 −10 −5 0 5 10 15

−0.2
−0.1

0
0.1
0.2

 Phase velocities at t =0.5

 

 

v
s

v
f

(a) t = 0.5

−15 −10 −5 0 5 10 15
0.95

1

1.05

1.1

1.15

 Flow depth at t = 1.5

−15 −10 −5 0 5 10 15
0.4

0.45

0.5

0.55

0.6

 Solid volume fraction at t = 1.5

−15 −10 −5 0 5 10 15

−0.2
−0.1

0
0.1
0.2

 Phase velocities at t =1.5

 

 

v
s

v
f

(b) t = 1.5

−15 −10 −5 0 5 10 15
0.95

1

1.05

1.1

1.15

 Flow depth at t = 2.5

−15 −10 −5 0 5 10 15
0.4

0.45

0.5

0.55

0.6

 Solid volume fraction at t = 2.5

−15 −10 −5 0 5 10 15

−0.2
−0.1

0
0.1
0.2

 Phase velocities at t =2.5

 

 

v
s

v
f

(c) t = 2.5

−15 −10 −5 0 5 10 15
0.95

1

1.05

1.1

1.15

 Flow depth at t = 3.5

−15 −10 −5 0 5 10 15
0.4

0.45

0.5

0.55

0.6

 Solid volume fraction at t = 3.5

−15 −10 −5 0 5 10 15

−0.2
−0.1

0
0.1
0.2

 Phase velocities at t =3.5

 

 

v
s

v
f

(d) t = 3.5

Figure 13. Evolution of a flow hump rich in fluid in the limit of instantaneous velocity equilibrium.
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Figure 14. Profile of the hydrostatic pressure P = g
2ρh

2 at time t = 3.5 for the flow hump test
of Section 10.4.1. Solid line: reduced model; dashed line: two-phase model with instantaneous
velocity relaxation (lines are superimposed).
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Figure 15. Dam-break problem with drag. Flow depth h, solid volume fraction ϕ, and phase
velocities vs, vf at time t = 0.5 computed with 1000 grid cells. Dotted line: solution of the
two-phase model with no drag. Dashed line: exact solution of the reduced model.
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Figure 16. Dam-break problem in the limit of instantaneous velocity equilibrium. Flow
depth h, solid volume fraction ϕ, and phase velocities vs, vf at time t = 0.5 computed with
1000 grid cells. Dotted line: solution of the two-phase model with no drag. Dashed line: exact
solution of the reduced model.
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the momentum of the mixture, consistently with the two-phase model before averaging. Although simple explicit
expressions of the system’s eigenvalues cannot be derived, we were able to find precise bounding intervals for
them, and to formulate sufficient conditions for the hyperbolicity of the system.

The numerical method developed for the system’s solution is a finite volume scheme that uses a Roe-type
Riemann solver. Topography source terms are incorporated into the Riemann solution, while drag terms are
handled through a fractional-step technique. Numerical experiments demonstrate the good accuracy of the
method and its well-balance property in problems of perturbed steady flows over non-flat bottom surface.
Moreover, we have observed agreement of numerical results of the two-phase model in the limit of infinitely
large drag with the exact solution of the reduced model that is derived theoretically by assuming that drag is
strong enough to drive instantaneously phase velocities to equilibrium.

The work reported in this paper is a very first stage of a project whose ultimate goal is the development of
a model applicable to realistic geophysical flows in a natural environment. One important issue that needs to
be addressed in our current numerical method is guaranteeing positivity of the computed flow depth (h ≥ 0).
Positivity preservation is an essential property for the treatment of interfaces between flow fronts and dry
bed regions, that is regions where the physical flow height vanishes. Planned work includes extensions of the
mathematical and numerical model to two dimensions and to flows over general bottom topography.

A. Appendix. Suliciu’s solver for the reduced model

We consider here the reduced system (5.1) without topography and friction source terms. To solve numerically
this system we use a Riemann solver that is an extension of Suliciu’s relaxation solver for standard shallow water
equations, as described in details e.g. in [4] (cf. also original works [47,48]).

First, we introduce the following relaxation system:

∂th+ ∂x(hv) = 0, (A.1a)

∂t(ρh) + ∂x(ρhv) = 0, (A.1b)

∂t(ρhv) + ∂x

(
ρhv2 + π

)
= 0, (A.1c)

∂t(ρhπ) + ∂x(ρhπv) + c2∂xv = 0, (A.1d)

where π is an additional variable whose equilibrium value corresponds to the hydrostatic pressure P(ρ, h) =
1
2gρh

2, and c is a parameter to be suitably chosen. To allow for a different definition of left and right values
of c for each Riemann problem, we then assume that c is nonconstant, and that it is advected with the flow
velocity. Hence, we augment the system above with the equation

∂tc+ v ∂xc = 0. (A.1e)

Let us consider a Riemann problem for system (A.1) with left and right data (h�, ρ�, v�, π�, c�) and (hr, ρr, vr, πr, cr),
respectively. Note that initially π is set equal to its equilibrium value: π� = P(ρ�, h�) ≡ P� and πr = P(ρr, hr) ≡
Pr. The exact solution of the Riemann problem can be easily found, by observing that (A.1) can be put in the
diagonal form

∂t(π − cv) + (v − c/ρh)∂x(π − cv) = 0, (A.2a)

∂t(π + cv) + (v + c/ρh)∂x(π + cv) = 0, (A.2b)

∂t

(
1/ρh+ π/c2

)
+ v ∂x

(
1/ρh+ π/c2

)
= 0, (A.2c)

∂tρ+ v ∂xρ = 0, (A.2d)

∂tc+ v ∂xc = 0. (A.2e)



A ROE-TYPE SCHEME FOR TWO-PHASE SHALLOW GRANULAR FLOWS 883

R
ap

id
e 

N
ot

e

H
ighlight Paper

The solution of this system consists of three linearly degenerate waves separating two intermediate states, which
we will denote with indexes �, ∗, and r, ∗. Across the second wave v and π are invariant, thus

v∗� = v∗r ≡ v∗ and π∗
� = π∗

r ≡ π∗. (A.3a)

Moreover:
(π + cv)∗� = (π + cv)�, (π − cv)∗r = (π − cv)r, (A.3b)

(1/ρ+ π/c2)∗� = (1/ρ+ π/c2)�, (1/ρ+ π/c2)∗r = (1/ρ+ π/c2)r, (A.3c)

ρ∗� = ρ�, ρ∗r = ρr, c∗� = c�, c∗r = cr. (A.3d)

Based on the relations above, we immediately obtain the structure of the Riemann solution. The wave speeds
are

v� − c�
ρ�h�

, v∗, vr +
cr
ρrhr

, (A.4)

and the quantities characterizing the intermediate states are found as

v∗ =
π� − πr + c�v� + crvr

c� + cr
, π∗ =

crπ� + c�πr − c�cr(vr − v�)
c� + cr

(A.5)

1
h∗�

=
1
h�

+
ρ�

c�

π� − πr + cr(vr − v�)
c� + cr

and
1
h∗r

=
1
hr

+
ρr

cr

πr − π� + c�(vr − v�)
c� + cr

· (A.6)

The definition of the left and right values of c is subject to the subcharacteristic condition, which requires that
the characteristic speeds of the relaxation system are at least as large as the characteristic speeds of the original
system (5.1). Hence we need:

∀h ∈ [h�, h
∗
� ], ρ� h

√
gh ≤ c�, (A.7a)

∀h ∈ [hr, h
∗
r ], ρr h

√
gh ≤ cr. (A.7b)

Furthermore, we wish to define c� and cr in such a way that the scheme is able to handle vacuum states. From
the expression of the speeds in (A.4), we notice that we need to guarantee that the quantities c�/(ρ�h�) and
cr/(ρrhr) both remain bounded if either h� or hr goes to zero (note that at least one of them is always positive).
Here, following [4], we propose to define the relaxation speeds by:

if Pr − P� ≥ 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c�
ρ�h�

=
√
gh� + α

( Pr − P�

ρrhr

√
ghr

+ v� − vr

)
+

,

cr
ρrhr

=
√
ghr + α

(P� − Pr

c�
+ v� − vr

)
+

,

(A.8a)

if Pr − P� ≤ 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cr
ρrhr

=
√
ghr + α

( P� − Pr

ρ�h�

√
gh�

+ v� − vr

)
+

,

c�
ρ�h�

=
√
gh� + α

(Pr − P�

cr
+ v� − vr

)
+

,

(A.8b)

with α = 3/2. The only exceptions to the relations above are: (i) cr/(ρrhr) =
√
ghr if h� = 0, and (ii) c�/(ρ�h�) =√

gh� if hr = 0. The choice of the relaxation parameters described here satisfies the conditions (A.7), and it
ensures positivity of the computed values of the flow height h.
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[6] M.J. Castro, J. Maćıas and C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term.
Application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107–127.
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