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Abstract

We present a multilayer Saint-Venant system for the numerical simulation of free surface density-stratified
flows over variable topography. The proposed model formally approximates the hydrostatic Navier–Stokes
equations with a density that varies depending on the spatial and temporal distribution of a transported
quantity such as temperature or salinity. The derivation of the multilayer model is obtained by a Galerkin-
type vertical discretization of the Navier–Stokes system with piecewise constant basis functions. In contrast
with classical multilayer models in the literature that assume immiscible fluids, we allow here for mass
exchange between layers. We show that the multilayer system admits a kinetic interpretation, and we use
this result to formulate a robust finite volume scheme for its numerical approximation. Several numerical
experiments are presented, including simulations of wind-driven stratified flows.

Keywords: Hydrostatic Navier–Stokes equations, Saint-Venant equations, Free surface stratified flows,
Multilayer system, Variable density, Kinetic scheme.

1. Introduction

In this paper we present a multilayer Saint-Venant model for the numerical simulation of free surface
density-stratified flows over variable topography. We are mainly interested in applications to geophysical
water flows such as lakes and estuarine waters, which typically exhibit a significant density stratification
related to vertical variations of temperature and chemical composition. In these water bodies effects related
to small density gradients may strongly affect the hydrodynamics. Density stratification processes are there-
fore often important in environmental flows, and in particular they are a key feature in the biogeochemical
mechanisms occurring in natural aquatic systems.

The simulation of these flows requires stable, accurate, conservative schemes able to sharply resolve
density gradients, to handle efficiently complex topographies and free surface deformations, and to capture
robustly wet/dry fronts. In addition, the application to realistic three-dimensional problems demands ef-
ficient methods with respect to computational cost. The present work is aimed to build a simulation tool
endowed with these properties.

Most of the numerical models in the literature for environmental stratified flows use finite difference or
finite element schemes solving the free surface Navier–Stokes equations. We refer in particular to [1, 2, 3, 4]
and references therein for a partial review of these methods.
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Here we propose a different and original approach that uses a multilayer system to approximate the
Navier–Stokes equations and a finite volume solution scheme. Our work is an extension to the case of
variable density of the multilayer technique with mass exchange introduced in [5] for homogeneous flows.
The starting point is the free surface hydrostatic Navier–Stokes system where the density is a function of
a transported quantity such as temperature, salinity, pollutant, . . . . The multilayer model is derived by
a finite element Galerkin-type vertical discretization of the Navier–Stokes system with piecewise constant
basis functions. We use the nomenclature Saint-Venant system for the resulting equations since the vertical
uniformity assumption and the vertical integration procedure over each layer are the ingredients of the
derivation of the classical Saint-Venant equations [6] for shallow water flows. The proposed model presents
remarkable differences with respect to classical multilayer models [7, 8, 9, 10], which assume superposed
shallow layers of immiscible fluids. In our approach the layer partition is merely a discretization artefact,
and it is not physical. Therefore, the internal layer boundaries do not necessarily correspond to isopycnic
surfaces. A critical distinguishing feature of our model is that it allows fluid circulation between layers.
This changes dramatically the properties of the model and its ability to describe flow configurations that
are crucial for the foreseen applications, such as recirculation zones.

With respect to commonly used Navier–Stokes solvers, the appealing features of the proposed multilayer
approach are the easy handling of the free surface, which does not require moving meshes (e.g. [11]), and the
possibility to take advantage of robust and accurate numerical techniques developed in extensive amount for
classical one-layer Saint Venant equations. In particular, here the method for the numerical solution of the
multilayer system uses the finite volume kinetic scheme of [12], with an extended hydrostatic reconstruction
technique [13] for the treatment of source terms. In contrast with Navier–Stokes solvers, our discretization
technique allows easily satisfying properties such as conservation, positivity, well-balancing of source terms
(cf. [14]), and handling robustly wet/dry interfaces over variable bottom topography.

Let us also remark that the multilayer model presented here is rather different from the isopycnal co-
ordinate layered models extensively developed in the context of oceanography, e.g. [15, 16]. These models
use a primitive equation layered formulation obtained by vertical integration of the Navier–Stokes equations
over each Lagrangian layer, and the resulting system is solved by finite difference schemes.

To our knowledge, our multilayer method is a pioneering idea for applications to stratified environmental
flows. As a starting work, we consider some simplifications in the physical model, notably the hydrostatic
pressure assumption. We do take into account wind surface stress, which is a dominant natural forcing
mechanism acting on environmental water flows. However, we neglect surface thermal exchange due to
short wave and long wave radiation and evaporative processes. Furthermore, we do not address the issue of
turbulence closure, and diffusivity will be assumed constant. Turbulence modeling is a major difficulty for
an effective description of dyapicnal mixing occurring in realistic flows [3, 17], and it still remains an open
problem.

The paper is organized as follows. We start recalling the hydrostatic Navier–Stokes system in Section 2,
and the derivation of the multilayer model is illustrated in Section 3. In Section 5 we propose a numerical
scheme for the solution of the multilayer system based on a kinetic interpretation, which is detailed in
Section 4. Finally, in Section 6, some numerical experiments are presented.

2. The hydrostatic Navier–Stokes system with variable density

We begin by considering the two-dimensional hydrostatic Navier–Stokes system [18] describing a free
surface gravitational flow moving over a bottom topography zb(x). We denote with x and z the horizontal
and vertical directions, respectively. The system has the form:

∂ρ

∂t
+
∂ρu

∂x
+
∂ρw

∂z
= 0, (1)

∂ρu

∂t
+
∂ρu2

∂x
+
∂ρuw

∂z
+
∂p

∂x
=
∂Σxx
∂x

+
∂Σxz
∂z

, (2)

∂p

∂z
= −ρg +

∂Σzx
∂x

+
∂Σzz
∂z

, (3)
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Figure 1: Flow domain with water height H(x, t), free surface η(x, t) and bottom zb(x, t).

and we consider solutions of the equations for

t > t0, x ∈ R, zb(x) ≤ z ≤ η(x, t),

where η(x, t) represents the free surface elevation, u = (u,w)T the velocity vector and g the gravity accel-
eration. The flow height is H = η − zb, see Fig. 1.

The chosen form of the viscosity tensor is

Σxx = 2µ
∂u

∂x
, Σxz = µ

(∂u
∂z

+
∂w

∂x

)
,

Σzz = 2µ
∂w

∂z
, Σzx = µ

(∂u
∂z

+
∂w

∂x

)
,

where µ is a dynamic viscosity.
The fluid density ρ(x, t) is assumed to depend on the spatial and temporal distribution of a given tracer

T (x, t), namely
ρ = ρ(T ), (4)

and T is governed by a transport-diffusion equation

∂ρT

∂t
+
∂ρuT

∂x
+
∂ρwT

∂z
= µT

∂2T

∂x2
+ µT

∂2T

∂z2
, (5)

where µT is the tracer diffusivity.

Remark 2.1. If we neglect the viscosity terms in the equation (5), we note that the three relations

∂u

∂x
+
∂w

∂z
= 0,

∂ρ

∂t
+
∂ρu

∂x
+
∂ρw

∂z
= 0,

∂ρT

∂t
+
∂ρuT

∂x
+
∂ρwT

∂z
= 0,

are equivalent in the sense that two of them allow recovering the third. Therefore, neglecting the viscosity,
the studied system with varying density retains the free divergence property of the constant density model.

Nonetheless, at the semi-discrete level (see Prop. 1) and at the full discrete level detailed in Sec. 5, this
equivalence no more holds true. For reasons related to the kinetic interpretation and the associated finite
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volume scheme, we prefer to work with equations having the form of time-dependent conservation laws.
Thus we will keep the last two equations of the system above in the discretization procedure. This has two
consequences. First, our discretization technique is also valid for compressible fluids. Second, at the discrete
level our model only satisfies an approximate divergence free condition.

2.1. Boundary conditions
The system (1)-(3) is completed with boundary conditions. The outward unit normal vector to the free

surface ns and the upward unit normal vector to the bottom nb are given by

ns =
1√

1 +
(
∂η
∂x

)2
(
− ∂η∂x

1

)
, nb =

1√
1 +

(
∂zb
∂x

)2
(
−∂zb∂x

1

)
,

respectively. We then denote with ΣT the total stress tensor, which has the form:

ΣT = −pId +
(

Σxx Σxz
Σzx Σzz

)
.

2.1.1. Free surface conditions
At the free surface we have the kinematic boundary condition

∂η

∂t
+ us

∂η

∂x
− ws = 0, (6)

where the subscript s indicates the value of the considered quantity at the free surface.
We denote with τw the surface wind stress, for which the following expression [19] is considered:

τw = CD
ρa
ρ0
|Vw|Vw. (7)

Here Vw is the wind velocity, ρa the air density, ρ0 a reference water density, and CD the wind drag coefficient
(taken as CD = 1.3× 10−3 in the numerical experiments).

Assuming negligible the air viscosity, the continuity of stresses at the free boundary imposes

ΣTns = −pans + τwts, (8)

where pa = pa(x, t) is a given function corresponding to the atmospheric pressure and ts is the unit vector
orthogonal to ns.

Relation (8) is equivalent to

ns · ΣTns = −pa, and ts · ΣTns = τw.

In the following, we will assume pa = 0.

2.1.2. Bottom conditions
The kinematic boundary condition at the bottom consists in a classical no-penetration condition:

ub · nb = 0, or ub
∂zb
∂x
− wb = 0. (9)

For the stresses at the bottom we consider a wall law under the form

tb · ΣTnb = κub · tb, (10)
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where tb is a unit vector satisfying tb · nb = 0. If κ(ub, H) is constant then we recover a Navier friction
condition as in [20]. Introducing a laminar friction kl and a turbulent friction kt, we use the expression

κ(ub, H) = kl + ktH|ub|,

corresponding to the boundary condition used in [21]. Another form of κ(ub, H) is used in [22], and for
other wall laws the reader can also refer to [23]. Due to thermo-mechanical considerations, in the sequel we
will suppose κ(ub, H) ≥ 0, and κ(ub, H) will be often simply denoted by κ.

2.2. The Boussinesq assumption
In geophysical water flows density variations are often small. Assuming homogeneous chemical compo-

sition, and identifying here T with the temperature, the equation of state for water bodies can be expressed
by the classical relation

ρ(T ) = ρ0

(
1− αT(T − T0)2

)
, (11)

with T0 = 4 oC, αT = 6.63 × 10−6 ◦C−2 (volume coefficient of thermal expansion) and ρ0 = 103 kg m−3.
For example, the relative density difference corresponding to two states with temperatures T1 = 25 ◦C and
T2 = 10 ◦C is

ρ(25)− ρ(10)
ρ(10)

≈ 0.0026 .

Such small differences typically allow justifying the Boussinesq assumption, which consists in considering
the density variations only in the gravitational forces. This leads to the following incompressible hydrostatic
Navier–Stokes system:

∂u

∂x
+
∂w

∂z
= 0, (12)

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
+

1
ρ0

∂p

∂x
=

1
ρ0

(
∂Σxx
∂x

+
∂Σxz
∂z

)
, (13)

∂p

∂z
= −ρg +

∂Σzx
∂x

+
∂Σzz
∂z

, (14)

∂T

∂t
+
∂uT

∂x
+
∂wT

∂z
= νT

∂2T

∂x2
+ νT

∂2T

∂z2
(15)

with νT = µT
ρ0

. Notice that in (12)-(15) the divergence free condition means a conservation of volume rather
than a conservation of mass as in Eqs. (1)-(3).

In the following the Boussinesq assumption is not made, and some remarks about its validity will be
given in the discussion of the results of the numerical simulations, see Sec. 6.

3. The multilayer system with variable density

In this section we describe the multilayer discretization procedure of the hydrostatic Navier–Stokes
system with variable density (1)-(5). For the special case of constant density, a detailed illustration of the
derivation of the multilayer Saint-Venant system was given in [5]. Here the presentation is slightly different
since we use a vertical space/time Galerkin approximation in order to introduce the layer decomposition.
Note that we will focus on the specific aspects arising from the density variations.

3.1. Multilayer model derivation
For the sake of simplicity, we omit hereafter the viscous and friction terms of equations (2), (3), (5), (10)

(we refer to [5] for the treatment of these terms). Therefore, we start from the hydrostatic free surface Euler
equations with varying density.
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Figure 2: Notations for the multilayer approach.

The interval [zb, η] is divided into N layers {Lα}α∈{1,...,N} of thickness lαH(x, t) where each layer Lα
corresponds to the points satisfying z ∈ Lα(x, t) = [zα−1/2, zα+1/2] with{

zα+1/2(x, t) = zb(x, t) +
∑α
j=1 ljH(x, t),

hα(x, t) = zα+1/2(x, t)− zα−1/2(x, t) = lαH(x, t), α ∈ [0, . . . , N ],
(16)

with lj > 0,
∑N
j=1 lj = 1, see Fig. 2.

Now let us consider the space PN,t0,H of piecewise constant functions defined by

PN,t0,H =
{
Iz∈Lα(x,t)(z), α ∈ {1, . . . , N}

}
,

where Iz∈Lα(x,t)(z) is the characteristic function of the interval Lα(x, t). Using this formalism, the projection
of u, w and T onto PN,t0,H is a piecewise constant function defined by

XN (x, z, {zα}, t) =
N∑
α=1

1[zα−1/2,zα+1/2](z)Xα(x, t), (17)

for X ∈ (u,w, T ). The density ρ = ρ(T ) inherits a discretization from the previous relation with

ρN (x, z, {zα}, t) =
N∑
α=1

1[zα−1/2,zα+1/2](z)ρ(Tα(x, t)). (18)

We have the following result.

Proposition 1. Omitting the viscosity terms, the weak formulation of Eqs. (1)-(3) and (5) on PN,t0,H leads
to a system of the form

N∑
α=1

∂ραhα
∂t

+
N∑
α=1

∂ραhαuα
∂x

= 0. (19)

∂ραhαuα
∂t

+
∂

∂x

(
ραhαu

2
α + hαpα

)
= uα+1/2Gα+1/2 − uα−1/2Gα−1/2

+
∂zα+1/2

∂x
pα+1/2 −

∂zα−1/2

∂x
pα−1/2, (20)
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∂ραhαTα
∂t

+
∂

∂x
(ραhαTαuα) = Tα+1/2Gα+1/2 − Tα−1/2Gα−1/2, (21)

α ∈ [1, . . . , N ],

with hα = lαH. The definitions of pα, pα+1/2, uα+1/2, Tα+1/2, Gα+1/2 are given in the following (eqs. (27),
(28), and (25)).

Proof. Using the Leibniz rule, the Galerkin approximation of Eq. (1) on PN,t0,H gives the set of equations

∂ραhα
∂t

+
∂

∂x
(ραhαuα) = Gα+1/2 −Gα−1/2, α ∈ [1, . . . , N ], (22)

with

Gα+1/2 = ρα+1/2

(
∂zα+1/2

∂t
+ uα+1/2

∂zα+1/2

∂x
− wα+1/2

)
, (23)

G1/2 = GN+1/2 = 0. (24)

Relations (23) give the mass flux leaving/entering each layer α, and relations (24) express that the bottom
and the top boundaries are interfaces without loss/supply of mass (see the boundary conditions (6), (9)).

Let us note that the layer mass equation (22) cannot be used per se since the layer height hα is not an
independent variable but it is defined as a part of the total water height H(t, x), see relation (16). Nonetheless,
using the first condition of (24), one can compute the mass flux Gα+1/2 just adding up the equations (22):

Gα+1/2 =
α∑
j=1

∂ρjhj
∂t

+
α∑
j=1

∂ρjhjuj
∂x

, , α = 1, . . . , N. (25)

Then the equation (25) written for α = N and the second condition of (24) give the equation (19). The
need to consider only the global mass equation (19) is related to the fact that we consider a single fluid with
varying density, and not several layers of non-miscible fluids as in some other multilayer models [7, 8, 9, 10].
Then it is physically consistent to consider a conservation law for the total mass (flow height), which enables
circulation of the fluid between the layers introduced in the discretization process. In the following, we use
the formula (25) rather than (23), and thus we have not to define ρα+1/2, wα+1/2.

Similarly, the PN,t0,H-approximation of the x-momentum equation (2) leads to (20). Indeed from (3) we
can compute

p(x, z, t) = g

∫ η

z

ρ dz,

and using (18), we have for z ∈ Lα

p(x, z, t) = g

 N∑
j=α+1

ρjhj + ρα(zα+1/2 − z)

 .

Using the notations

pα =
1
hα

∫ zα+1/2

zα−1/2

p(x, z, t)dz, pα+1/2 = p(x, zα+1/2, t), (26)

we have

pα = g

ραhα
2

+
N∑

j=α+1

ρjhj

 and pα+1/2 = g

N∑
j=α+1

ρjhj , (27)
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and applying the Leibniz rule to the pressure term of equation (2) we can write∫ zα+1/2

zα−1/2

∂p

∂x
dz =

∂hαpα
∂x

−
∂zα+1/2

∂x
pα+1/2 +

∂zα−1/2

∂x
pα−1/2.

Relation (21) also comes from a Galerkin approximation on PN,t0,H of equation (5) and the application of the
Leibniz rule.

To complete the definition of equations (20), (21), the quantities uα+1/2, Tα+1/2, α = 1, . . . , N − 1, are
defined by using an upwind strategy:

vα+1/2 =
{
vα if Gα+1/2 ≥ 0,
vα+1 if Gα+1/2 < 0, (28)

for v = u, T . �
In conclusion, for a flow height partition into N layers, the multilayer Saint-Venant system approximating

the free surface Euler system is defined by the continuity equation (19), the N x-momentum equations (20)
and the N tracer equations (21).

3.2. Energy
For smooth solutions it is straightforward to obtain an energy equality by multiplying the x-momentum

equation by u, and by performing the Galerkin approximation on PN,t0,H .
For the layer α we have

∂

∂t
ENsv,α +

∂

∂x

(
uα

(
ENsv,α +

g

2
ραhαH

))
=

+

(
u2
α+1/2

2
+ pα+1/2 + gzα+1/2

)
Gα+1/2 −

(
u2
α−1/2

2
+ pα−1/2 + gzα−1/2

)
Gα−1/2

−pα+1/2

∂zα+1/2

∂t
+ pα−1/2

∂zα−1/2

∂t
, (29)

with ENsv,α = ραhαu
2
α

2 +
gρα(z2α+1/2−z

2
α−1/2)

2 .
Adding the preceding relations for α = 1, . . . , N , we obtain the global balance

∂

∂t

(
N∑
α=1

ENsv,α

)
+

∂

∂x

(
N∑
α=1

uα

(
ENsv,α +

g

2
ραhαH

))
= 0.

Remark 3.1. Neglecting friction and viscosity, the multilayer system (19), (20) approximates the hydro-
static free surface Euler system with varying density that in general is not a hyperbolic system. The hyper-
bolicity of the multilayer model is still an open question and it is not investigated here. We refer to [5] for
a discussion on the hyperbolicity of the multilayer system with constant density. In the work [5] the authors
prove the hyperbolic character of the constant density model for the special case of two layers. Let us also
remark that the numerical scheme for the multilayer system detailed in the following is able to overcome the
difficulty of possible lack of hyperbolicity (Sec. 5).

3.3. Vertical velocity
In Prop. 1 the vertical velocity w no more appears, but we can derive relations for the discrete layer

values of this variable by performing the Galerkin approximation of the continuity equation (1) multiplied
by z. This leads to

∂

∂t

(
z2
α+1/2 − z

2
α−1/2

2
ρα

)
+

∂

∂x

(
z2
α+1/2 − z

2
α−1/2

2
ραuα

)
= hαραwα + zα+1/2Gα+1/2 − zα−1/2Gα−1/2, (30)

8



where the wα, α = 1, . . . , N , are the components of the Galerkin approximation of w on PN,t0,H , see (17).
Since all the quantities except wα appearing in Eq. (30) are already defined by (19), (20), (21), relation
(30) allows obtaining the values wα by post-processing. Note that we use the relation (30) rather than the
divergence free condition for stability purposes and for the reasons mentioned in the Remark 2.1. We refer
the reader to [24] for more details.

3.4. Multilayer system vs. Navier–Stokes system
Compared to the initial Navier–Stokes system (1)-(5), the multilayer formulation (19)-(21), (29) and (30)

shows advantageous features for the conception of a numerical solution method. The main benefits are the
following.

◦ There is no more derivative with respect to the z direction;

◦ The water depth H can be treated as a dynamical variable;

◦ The geometrical domain is completely defined once the variable H is known. This point, together
with the two features above, means that at the discrete level only a fixed mesh of the domain in the
x-direction is necessary to represent a bidimensional (x− z) problem with a moving boundary.

◦ The system (19)-(21), (29) has the structure of a system of conservation laws with source terms. This
enables employing stable and robust numerical techniques extensively developed for the approximation
of similar systems of PDEs, in particular for handling efficiently wet/dry fronts and modelling correctly
equilibrium states.

We will take advantage of these properties at the discrete level, see Section 5.

4. Kinetic interpretation

In this section, we propose a kinetic interpretation for the system (19)-(21) completed with the relations
(25), (26) and (27).

The kinetic approach consists in using a description of the microscopic behavior of the system [25]. In
this method, fictitious particles are introduced and the equations are considered at the microscopic scale,
where no discontinuities occur. The kinetic interpretation of a system allows its transformation into a linear
transport equation, to which an upwinding discretization is naturally applicable.

4.1. Kinetic interpretation of the multilayer model
The procedure to obtain the kinetic interpretation of the multilayer model with varying density is anal-

ogous to the one used in [5], see also [26]. Originally, the kinetic approach was used for conservation laws
[25]. Here we extend the kinetic representation to systems with source terms. The kinetic technique allows
obtaining an energy equality and a CFL condition at the microscopic level.

For a given layer α, a distribution function Mα(x, t, ξ) of fictitious particles with microscopic velocity ξ
is introduced to obtain a linear kinetic equation equivalent to the macroscopic model presented in Prop. 1.

Let us introduce a real function χ defined on R, compactly supported, and endowed with the following
properties {

χ(−w) = χ(w) ≥ 0,∫
R χ(w) dw =

∫
R w

2χ(w) dw = 1.
(31)

Now let us construct a density of particles Mα(x, t, ξ) defined by a Gibbs equilibrium: the microscopic
density of particles present at time t, in the layer α, at the abscissa x and with velocity ξ given by

Mα =
ραhα(x, t)

cα
χ

(
ξ − uα(x, t)

cα

)
, (32)
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with
c2α =

pα
ρα
,

and pα defined by (27).
Likewise, we define Nα+1/2(x, t, ξ) and Sα+1/2(x, t, ξ) by

Nα+1/2(x, t, ξ) = Gα+1/2(x, t) δ
(
ξ − uα+1/2(x, t)

)
, (33)

Sα+1/2(x, t, ξ) = pα+1/2(x, t)
∂zα+1/2

∂x

∂

∂ξ
δ

(
ξ −

(
uα+1/2(x, t)−

wα+1/2(x, t)
∂zα+1/2

∂x

))
, (34)

for α = 0, . . . , N , and where δ denotes the Dirac distribution. Relation (34) will be used to obtain an energy
equality.

The quantities Gα+1/2, 0 ≤ α ≤ N , represent the mass exchanges between layers α and α+ 1. They are
defined in (25) and satisfy the conditions (24), so N1/2 and NN+1/2 also satisfy

N1/2(x, t, ξ) = NN+1/2(x, t, ξ) = 0. (35)

For the temperature, we have the equilibria

Uα(x, t, ξ) = Tα(x, t)Mα(x, t, ξ), α = 1, . . . , N, (36)
Vα+1/2(x, t, ξ) = Tα+1/2(x, t)Nα+1/2(x, t, ξ), α = 0, . . . , N. (37)

With the previous definitions we write a kinetic representation of the system described in Prop. 1 and we
can state the following proposition:

Proposition 2. The functions (H,uN , TN ) are strong solutions of the system (19)-(21) if and only if the
set of equilibria {Mα(x, t, ξ), Uα(x, t, ξ)}Nα=1 is a solution of the kinetic equations

∂Mα

∂t
+ ξ

∂Mα

∂x
−Nα+1/2 − Sα+1/2 +Nα−1/2 + Sα−1/2 = QMα

, (38)

∂Uα
∂t

+ ξ
∂Uα
∂x
− Vα+1/2 + Vα−1/2 = QUα , (39)

for α = 1, . . . , N , with {Nα+1/2(x, t, ξ), Sα+1/2(x, t, ξ), Vα+1/2(x, t, ξ)}Nα=0 satisfying (33)-(37).
The quantities QMα

= QMα
(x, t, ξ) and QUα = QUα(x, t, ξ) are “collision terms” equal to zero at the

macroscopic level, i.e. they satisfy a.e. for values of (x, t)∫
R
QMα

dξ = 0,
∫

R
ξQMα

dξ = 0, and
∫

R
QUαdξ = 0. (40)

Proof. Using the definitions (32), (36) and the properties (31) of the function χ, we have

ραhα =
∫

R
Mα(x, t, ξ)dξ, ραhαuα =

∫
R
ξMα(x, t, ξ)dξ, (41)

ραhαTα =
∫

R
Uα(x, t, ξ)dξ, ραhαTαuα =

∫
R
ξUα(x, t, ξ)dξ. (42)

From the definitions (33), (34) of Nα+1/2 and Sα+1/2, we also have∫
R
Nα+1/2(x, t, ξ)dξ = Gα+1/2, (43)
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∫
R
ξNα+1/2(x, t, ξ)dξ = uα+1/2Gα+1/2, (44)∫

R
Sα+1/2(x, t, ξ)dξ = 0, (45)∫

R
ξSα+1/2(x, t, ξ)dξ = pα+1/2

∂zα+1/2

∂x
. (46)

Then, using (40), (43), (45), the equation (38) integrated in ξ gives, for each layer α, the equation (22).
Then, with the conditions (35), the sum of the equations (38) gives the continuity equation (19). Likewise
the equations (38) integrated in ξ against ξ give the momentum equations (20). Finally a simple integration
in ξ of the equations (39), again using (40), gives the tracer equations (21). �

4.2. Vertical velocity kinetic equation
In order to capture the macroscopic vertical velocities wα at the continuous level, the kinetic inter-

pretation has to take into account the microscopic vertical velocity γ of the particles. For a given layer
α ∈ [1, . . . , N ], we construct the new densities of particles Rα(x, t, ξ, γ) defined by the Gibbs equilibria: the
microscopic density of particles present at time t, position x and with microscopic horizontal velocity ξ and
microscopic vertical velocity γ given by

Rα(x, t, ξ, γ) = ρα
z2
α+1/2 − z

2
α−1/2

2
δ (ξ − uα) δ (γ − wα) , (47)

and satisfying the kinetic equations

∂Rα
∂t

+ ξ
∂Rα
∂x
− δ (γ − wα)

(
γMα − zα+1/2Nα+1/2 + zα−1/2Nα−1/2

)
= QRα , (48)

where QRα = QRα(x, t, ξ, γ) is a collision term satisfying∫
R2
QRαdξdγ = 0. (49)

Using (49) a simple integration in ξ and γ of Eq. (48) gives (30).

4.3. Kinetic interpretation of energy equation
In order to recover, for smooth solutions, the energy balances (29), we also introduce for α = 1, . . . , N

the densities M̃α(x, t, ξ) defined by

M̃α =
hα(x, t)pα(x, t)

2
δ (ξ − uα(x, t)) ,

and we have the following proposition

Proposition 3. The solutions of (38), (39) and (48) are entropy solutions if additionally

∂M̃α

∂t
+ ξ

∂M̃α

∂x
= Q̃α(x, t, ξ), α = 1, . . . , N, (50)

with for smooth solutions

N∑
α=1

(∫
R

(
ξ2

2
QMα − Q̃α

)
dξ + g

∫
R2
QRαdξdγ

)
= 0. (51)
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Proof: The proof is obtained by simple integration in ξ, γ of the set of equations (38), (39) and (50) using
(40), (49) and (51). Indeed from the definitions (32), (33) and (47) we have

ραhαu
3
α +

hα
2
pαuα =

∫
R
ξ3Mα(x, t, ξ)dξ,

ραhαwα =
∫

R2
γδ(γ − wα)Mα(x, t, ξ)dξdγ,

hαpαuα =
∫

R
ξM̃α(x, t, ξ)dξ, u2

α+1/2 =
∫

R
ξ2Nα+1/2(x, t, ξ)dξ,

Gα+1/2 =
∫

R2
δ(γ − wα)Nα+1/2(x, t, ξ)dξdγ,

ρα
z2
α+1/2 − z

2
α−1/2

2
=
∫

R2
Rα(x, t, ξ, γ)dξdγ,

ρα
z2
α+1/2 − z

2
α−1/2

2
uα =

∫
R2
ξRα(x, t, ξ, γ)dξdγ,

2pα+1/2

∂zα+1/2

∂x
uα+1/2 =

∫
R
ξ2Sα+1/2(x, t, ξ)dξ. �

5. Numerical scheme

We have shown in Section 2 that a Galerkin vertical discretization of the Navier–Stokes equations leads
to the multilayer model system presented in Section 3. Now, we propose a finite volume numerical scheme
for the approximation of this model based on the kinetic interpretation of the system equations illustrated
in Section 4.

The choice of a kinetic scheme is motivated by several arguments. First, the kinetic interpretation is a
suitable starting point for building a stable numerical scheme. We will prove in Sec. 5.8 that the proposed
kinetic scheme preserves positivity of the water depth and ensures a discrete local maximum principle for
the tracer concentration (temperature, salinity...). Second, the construction of the kinetic scheme does not
need the computation of the system eigenvalues. This point is very important here since these eigenvalues
are not available in explicit analytical form, and they are hardly accessible even numerically. Furthermore,
as previously mentioned, hyperbolicity of the multilayer model may not hold, and the kinetic scheme allows
overcoming this difficulty.

The multilayer system obtained in Prop. 1 has the form

∂X

∂t
+
∂F (X)
∂x

= Se(X, ∂tX, ∂xX) + Sp(X) + Sv,f (X), (52)

with X =
(∑N

α=1 ραhα, q1, . . . , qN , k1, . . . , kN

)T
and qα = lαH, qα = ραlαHuα, kα = ραlαHTα. We denote

with F (X) the flux of the conservative part, and with Se(X, ∂tX, ∂xX), Sp(X) and Sv,f (X) the source terms,
representing respectively the mass transfer, the interface pressure, and the viscous and friction effects.

We introduce a (2N + 1)× 2N matrix K(ξ) defined by K1,j = 1, K1,j+N = 0 for j = 1, . . . , N , Ki+1,j =
δi,j ξ, Ki+N+1,j+N = δi,j for i, j = 1, . . . , N with δi,j the Kronecker symbol. Then, using Prop. 2, we can
write

X =
∫
ξ

K(ξ)
(
M(ξ)
U(ξ)

)
dξ, F (X) =

∫
ξ

ξK(ξ)
(
M(ξ)
U(ξ)

)
dξ, (53)

Se(X) =
∫
ξ

K(ξ)
(
N(ξ)
V (ξ)

)
dξ, Sp(X) =

∫
ξ

K(ξ)
(
P (ξ)

0

)
dξ, (54)
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with M(ξ) = (M1(ξ), . . . ,MN (ξ))T , U(ξ) = (U1(ξ), . . . , UN (ξ))T and

P (ξ) =

 S3/2(ξ)− S1/2(ξ)
...

SN+1/2(ξ)− SN−1/2(ξ)

 , and W (ξ) =

 W3/2(ξ)−W1/2(ξ)
...

WN+1/2(ξ)−WN−1/2(ξ)

 , for W = N,V,

We refer to [5] for the computation of Sv,f (X).
To approximate the solution of (52) we use a finite volume framework. We assume that the compu-

tational domain is divided into I nodes xi. We denote Ci the cell of length ∆xi = xi+1/2 − xi−1/2 with
xi+1/2 = (xi+xi+1)/2. For the time discretization, we denote tn =

∑
k<n ∆tk, where the time steps ∆tk will

be determined through a CFL condition. We denote Xn
i =

(∑N
α=1 ρ

n
α,ilαH

n
i , q

n
1,i, . . . , q

n
N,i, k

n
1,i, . . . , k

n
N,i

)T
the approximate solution at time tn on the cell Ci with qnα,i = ρnα,ilαH

n
i u

n
α,i, knα,i = ρnα,ilαH

n
i T

n
α,i and

ρnα,i = ρ(Tnα,i). Note that to deduce the primitive variables Hn
i , u

n
1,i, . . . , u

n
N,i, T

n
1,i, . . . , T

n
N,i from Xn

i a non-
linear problem has to be solved (see Sec.5.7).

5.1. Time discretization
For the time discretization, we apply a time splitting technique to the equations (52) and we write

X̃n+1 −Xn

∆tn
+
∂F (Xn)
∂x

= Se(Xn, X̃n+1) + Sp(Xn), (55)

Xn+1 − X̃n+1

∆tn
− Sv,f (Xn, Xn+1) = 0. (56)

We first solve the conservative part of (55) by the proposed explicit kinetic scheme (Sec. 5.2 and 5.3). The
mass exchange terms are also computed via the kinetic interpretation (Sec. 5.4). The first step also includes
the pressure source terms at the interfaces in order to preserve relevant equilibria [13]. Concerning the
viscous and friction terms Sv,f in (56), they have been omitted in the derivation of the multilayer system
(52). Since their expression does not depend on the fluid density ρ, their vertical discretization and their
numerical treatment do not differ from earlier works of the authors [5]. Since these terms are dissipative,
they are treated via a semi-implicit scheme for stability reasons.

5.2. Discrete kinetic equations
We here illustrate the discrete kinetic equations corresponding to the first step (55).
Starting from a piecewise constant approximation of the initial data, the general form of a finite volume

discretization of system (55) is

X̃n+1
i −Xn

i + σni

[
Fni+1/2 − F

n
i−1/2

]
= ∆tnSn+1/2

e,i + σni Snp,i, (57)

where σni = ∆tn/∆xi is the ratio between the time step and the mesh width, and the numerical flux Fni+1/2

is an approximation of the exact flux estimated at the point xi+1/2.
The pressure terms at the layer interfaces Snp,i are not deduced from the kinetic interpretation (see [12])

but computed via hydrostatic reconstruction, see Sec. 5.5. As in [27, 26] the kinetic interpretation (38)-
(39) is used to specify the expression of the fluxes Fni+1/2 in (57). Assuming that the primitive variables
Hn
i , u

n
1,i, . . . , u

n
N,i, T

n
1,i, . . . , T

n
N,i are known, by analogy with (32) we first define the discrete densities of

particles Mn
α,i by

Mn
α,i(ξ) = ρnα,ilα

Hn
i

cnα,i
χ

(
ξ − unα,i
cnα,i

)
, with cnα,i =

√
pnα,i
ρnα,i

,
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and following (27)

pnα,i = g

ρnα,ilαHn
i

2
+

N∑
j=α+1

ρnj,iljH
n
i

 .

Then the equation (38) is discretised for each α by applying a simple upwind scheme

fn+1
α,i (ξ) = Mn

α,i(ξ)− ξσni
(
Mn
α,i+1/2(ξ)−Mn

α,i−1/2(ξ)
)

+

∆tn
(
N
n+1/2
α+1/2,i(ξ)−N

n+1/2
α−1/2,i(ξ)

)
+ ∆tn

(
Snα+1/2,i(ξ)− S

n
α−1/2,i(ξ)

)
, (58)

where

Mn
α,i+1/2 =

{
Mn
α,i if ξ ≥ 0,

Mn
α,i+1 if ξ < 0. (59)

The terms Nn+1/2
α+1/2,i (resp. S

n
α+1/2,i) will be defined in Sec. 5.4 (resp. 5.5).

The quantity fn+1
α,i is not an equilibrium, nonetheless by analogy with the proof of Prop. 2, we set

ρn+1
α,i lαH

n+1
i =

∫
R
fn+1
α,i (ξ)dξ, (60)

and
ρn+1
α,i lαH

n+1
i un+1

α =
∫

R
ξfn+1
α,i (ξ)dξ, (61)

thus recovering the macroscopic quantities at time tn+1.
An upwind scheme similar to (58) is applied to Eq. (39), giving, with obvious notations,

gn+1
α,i (ξ) = Unα,i(ξ)− ξσni

(
Unα,i+1/2(ξ)− Unα,i−1/2(ξ)

)
+

∆tn
(
V
n+1/2
α+1/2,i(ξ)− V

n+1/2
α−1/2,i(ξ)

)
, (62)

and allowing recovering the macroscopic quantities

ρn+1
α,i lαH

n+1
i Tn+1

α,i =
∫

R
gn+1
α,i (ξ)dξ. (63)

The equations (60), (61), (63) are summarized here in compact form:

X̃n+1
i =

∫
ξ

K(ξ)
(
fn+1
i (ξ)
gn+1
i (ξ)

)
dξ, (64)

with fni (ξ) = (fn1,i(ξ), . . . , f
n
N,i(ξ))

T , gni (ξ) = (gn1,i(ξ), . . . , g
n
N,i(ξ))

T .
Note that in (58) the collisions terms QMα , which relax f to a Gibbs equilibrium M , are not taken into

account, they are added by introducing a discontinuity at time tn+1 on Mα,i. Assuming that the primitive
variables are computed at time tn+1, we set

Mn+1
α,i (ξ) = ρn+1

α,i lα
Hn+1
i

cn+1
α,i

χ

(
ξ − un+1

α,i

cn+1
α,i

)
.

We apply the same remark to Uα,i. From the previous definitions Mα,i and Uα,i are discontinuous at time
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tn+1 in the sense that Mn+1
α,i 6= fn+1

α,i and Un+1
α,i 6= gn+1

α,i , but at the macroscopic level we have∫
R
Mn+1
α,i dξ =

∫
R
fn+1
α,i dξ,

∫
R
Un+1
α,i dξ =

∫
R
gn+1
α,i dξ.

5.3. Numerical fluxes of the conservative part
In this section we give some details for the computation of the fluxes introduced in the discrete equation

(57), and defined by (64) using (58) and (62). To take into account (59), we denote

Fni+1/2 = F (Xn
i , X

n
i+1) = F+(Xn

i ) + F−(Xn
i+1), (65)

and following (53), we define

F−(Xn
i ) =

∫
ξ∈R−

ξK(ξ)
(
Mn
i (ξ)

Uni (ξ)

)
dξ, F+(Xn

i ) =
∫
ξ∈R+

ξK(ξ)
(
Mn
i (ξ)

Uni (ξ)

)
dξ (66)

with Mn
i (ξ) = (Mn

1,i(ξ), . . . ,M
n
N,i(ξ))

T , Uni (ξ) = (Un1,i(ξ), . . . , U
n
N,i(ξ))

T .
More precisely the expression of F+(Xi) can be written

F+(Xi) =
(
F+
H (Xi), F+

q1(Xi), . . . , F+
qN (Xi), F+

k1
(Xi), . . . , F+

kN
(Xi)

)T
, (67)

with, using (58) and (64),

F+
H (Xi) =

N∑
α=1

F+
hα

(Xi) =
N∑
α=1

ρα,ilαHi

∫
w≥−

uα,i
ci

(uα,i + wcα,i)χ(w) dw, (68)

F+
qα(Xi) = ρα,ilαHi

∫
w≥−

uα,i
ci

(uα,i + wcα,i)2χ(w) dw, (69)

F+
kα

(Xi) = Tα,iF
+
hα

(Xi). (70)

We denote also

Fhα,i = Fhα,i+1/2 − Fhα,i−1/2 = F+
hα

(Xi) + F−hα(Xi+1)−
(
F+
hα

(Xi−1) + F−hα(Xi)
)
. (71)

One attractive feature of the kinetic method is that it provides a very simple and natural way to construct
a numerical flux through the kinetic interpretation. Indeed, choosing

χ(w) =
1

2
√

3
1|w|≤√3(w),

the integration in (67) can be done analytically.

5.4. Discrete mass exchange terms

Let us now define the mass exchange term Sn+1/2
e,i in the equation (57), or more precisely the terms

N
n+1/2
α+1/2,i in Eq. (58). From the conditions (35) we prescribe

N
n+1/2
1/2,i (ξ) = N

n+1/2
N+1/2,i(ξ) = 0, (72)

and using the discrete analogous of Eq. (45) (see Eq. (79) in Sec. 5.5) the sum for all α of Eq. (60) defines
explicitly

∑N
α=1 ρ

n+1
α,i lαH

n+1
i .
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Likewise, by partial summation of (58), we have

∆tnNn+1/2
α+1/2,i(ξ) + ∆tnSn+1/2

α+1/2,i(ξ) =
α∑
j=1

(
fn+1
j,i (ξ)−Mn

j,i(ξ) + ξσni

(
Mn
j,i+1/2(ξ)−Mn

j,i−1/2(ξ)
))

, (73)

for α = 1, . . . , N − 1.
By analogy with (43), we define

G
n+1/2
α+1/2,i =

∫
R
N
n+1/2
α+1/2,i(ξ)dξ, α = 0, . . . , N, (74)

thus, using (60) and (79), we can write

∆tnGn+1/2
α+1/2,i =

α∑
j=1

[
lj(ρn+1

j,i Hn+1
i − ρnj,iHn

i ) + σni (Fnhj,i+1/2 − F
n
hj,i−1/2)

]
, (75)

for α = 1, . . . , N . We remark that this expression is consistent with the free surface condition in (72). Let
us note that the definition (75) depends on ρn+1

α,i H
n+1
i , which reflects the dependence of Gα+1/2 on the time

derivatives ∂t(ρjhj), j = 1, . . . , α (see eq. (25)). These values ρn+1
α,i H

n+1
i are unknown at this stage since

only the global quantity
∑N
α=1 ρ

n+1
α,i lαH

n+1
i can be explicitly computed. This is the reason why we choose

to denote the discrete mass exchange terms with time level (n + 1/2), Gn+1/2
α+1/2,i, and similarly we use the

notation Nn+1/2
α+1/2 , V

n+1/2
α+1/2 and Sn+1/2

e,i . As a consequence we will have to solve a nonlinear system to compute
the quantities of interest at time tn+1, see Sec. 5.7.

We define

N
n+1/2
α+1/2,i(ξ) = G

n+1/2
α+1/2,i δ

(
ξ − unα+1/2,i

)
, V

n+1/2
α+1/2,i(ξ) = Tnα+1/2,iN

n+1/2
α+1/2,i(ξ) (76)

with, according to (28),

vnα+1/2,i =

{
vnα+1,i if G

n+1/2
α+1/2,i ≥ 0,

vnα,i if G
n+1/2
α+1/2,i < 0,

(77)

for v = u, T . Let us stress also here the dependence of the interface values in the above definition on
the quantities Gn+1/2

α+1/2,i not explicitly available at time tn+1. The way to overcome this difficulty will be
explained when we will illustrate the numerical solution technique for the nonlinear problem in Sec. 5.7.
Nevertheless we can now consider that the exchange term Sn+1/2

e,i in (57) is completely defined.

5.5. Numerical treatment of pressure source terms
We focus now on the source term Snp,i in (57) associated to the interface pressure, namely the discretization

of Sα+1/2(x, t, ξ) defined by (27), (34). The terms Snp,i are defined in such a way to preserve steady states
conditions of a lake at rest. The numerical treatment that we propose here for these source pressure terms
is different from what it is usually done in the hydrostatic reconstruction method [13], and from what has
been proposed by the authors in [5]. Nevertheless in the case of a single layer with a constant density, and
for the first order scheme, the source term discretization that we present here is similar to the formulation
given in [13].

From the kinetic interpretation (38), and using the definition (34), we point out that we can write

Snp,i =
∫
ξ

K(ξ)
(
Pni (ξ)

0

)
dξ, (78)

with
Pnα,i(ξ) = Snα+1/2,i(ξ)− S

n
α−1/2,i(ξ).
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We have the discrete analogous of Eq. (45):∫
R
Snα+1/2,i(ξ)dξ = 0. (79)

The term ∫
R
ξSnα+1/2,i(ξ)dξ,

which is an approximation of ∫ xi+1/2

xi−1/2

∂zα+1/2(x, tn)
∂x

pα+1/2(x, tn)dx,

is defined hereafter.
As for the classical hydrostatic reconstruction [13], we introduce

zb,i+1/2 = max{zb,i, zb,i+1}, (80)
Hn
i+1/2− = Hn

i + zb,i − zb,i+1/2, (81)
Hn
i+1/2+ = Hn

i+1 + zb,i+1 − zb,i+1/2, (82)
hnα,i+1/2± = lαH

n
i+1/2±. (83)

Then, following (16), we set

znα+1/2,i = zb,i +
α∑
j=1

hnα,i, znα+1/2,i+1/2− = zb,i+1/2 +
α∑
j=1

hnα,i+1/2−. (84)

We also define

pnα+1/2,i+1/4 =
pnα+1/2,i+1/2− + pnα+1/2,i

2
, (85)

with

pnα+1/2,i = g

N∑
j=α+1

ρnj,ih
n
j,i, pnα+1/2,i+1/2− = g

N∑
j=α+1

ρnj,ih
n
j,i+1/2−. (86)

Then the idea of the numerical treatment of the pressure source term relies on rewriting it under the form

∂zα+1/2(x, t)
∂x

pα+1/2(x, t) =
∂

∂x

∫ x

x0

∂zα+1/2(x̃, t)
∂x̃

pα+1/2(x̃, t) dx̃.

This leads at the discrete level to the formula∫ xi+1/2

xi−1/2

∂zα+1/2(x,t
n)

∂x pα+1/2(x, tn)dx

=
∫ xi+1/2

xi

∂zα+1/2(x, tn)
∂x

pα+1/2(x, tn) dx−
∫ xi−1/2

xi

∂zα+1/2(x, t)
∂x̃

pα+1/2(x, tn) dx̃,

where the cell-averaged source term is locally represented as a discrete gradient corresponding to a source
distributed to the cell interfaces. Then we write∫

R
ξSnα+1/2,i(ξ)dξ = Snα+1/2,i+1/2− − S

n
α+1/2,i−1/2+, α = 1, . . . , N, (87)
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with the definition

Snα+1/2,i+1/2− = pnα+1/2,i+1/4

(
znα+1/2,i+1/2− − z

n
α+1/2,i

)
. (88)

Notice that Eq. (88) is a classical relation/definition allowing to obtain an approximate quadrature formula
for the right hand side of (87), whereas Eqs. (80)-(83) correspond to an upwind discretization of the bottom
topography using the hydrostatic reconstruction strategy. We also notice that the flux (65) is no more
computed using the cell centered values hnα,i and hnα,i+1 but the reconstructed interface values hnα,i+1/2− and
hnα,i+1/2+, i.e.

Fni+1/2 = F+(Xn
i+1/2−) + F−(Xn

i+1/2+).

One of the major concern for the discretization of the pressure source terms Sp,i(Xn) is the preservation
of relevant equilibria. At the continuous level, the static equilibrium of the lake at rest is given by

u(x, z) = 0,
∫ η

z

ρ(x, z̃ d)z̃ = Cst(z), ∀x, z,

which implies
u = 0, η = Cst, and T = T (z). (89)

We first consider the case of constant density, i.e. T (x, z, t) = T0, and we have the following proposition.

Proposition 4. If the density is constant, the discretization of the source terms given by (78) preserves the
steady state of a “lake at rest” given by (89).

Proof. Assuming steady state conditions of a lake at rest, we have Hn
i + zb,i = Hn

i+1 + zb,i+1 and uni = 0
∀i. By construction we have Hn

i+1/2− = Hn
i+1/2+ and Sn+1/2

e,i = 0 for α = 1, . . . , N , i ∈ I. Thus Xn
i+1/2− =

Xn
i+1/2+, and we obtain Fhα,i = 0, ∀α, ∀i. A simple calculation shows that the expression of the source terms

(78) coupled with the flux computed with the kinetic scheme gives Fni+1/2 − F
n
i−1/2 = Snp,i+1/2− − S

n
p,i−1/2+

with Snp,i+1/2− = (Sn3/2,i+1/2−−S
n
1/2,i+1/2−, . . . , S

n
N+1/2,i+1/2−−S

n
N−1/2,i+1/2−)T , which completes the proof.

�

5.6. Static equilibrium and variable density
When the fluid density varies, the preservation of equilibrium states at rest is more problematic. In the

case of flow in static equilibrium over a flat bottom all the interfaces are horizontal, thus at the continuous
and discrete level we have

∂zα+1/2

∂x
= 0, α = 1, . . . , N.

It follows that Sp = 0 and the equilibrium is obviously preserved.
In the situation of non flat bottom, equilibrium at rest is more difficult to characterize since this corre-

sponds to
∂hαpα
∂x

=
∂zα+1/2

∂x
pα+1/2 −

∂zα−1/2

∂x
pα−1/2

with possibly an inhomogeneous distribution of the tracer T .
Instead of proving that our scheme preserves such equilibria, we will show numerically in Sec. 6.1 that

starting from a given initial condition, and with no forcing terms and energy supply, the system evolves to
a static equilibrium state satisfying

ηi = Cst, uα,i = 0, and T (xi, {zα}) = Cstα, α = 1, . . . , N, i ∈ I,

that is the discrete equivalent of the continuous equilibrium (89).
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5.7. Nonlinear coupling
In Secs. 5.2-5.5 we have described how to compute through the kinetic scheme and an extended hydro-

static reconstruction technique the quantities

N∑
α=1

ρn+1
α,i lαH

n+1
i , ρn+1

α,i lαH
n+1
i un+1

α,i and ρn+1
α,i lαH

n+1
i Tn+1

α,i . (90)

From (60) and (72), we have that the first term is computed explicitly. It is not the case for the third term,
since, as anticipated before, the evaluation of the interface flux Gn+1/2

α+1/2,i (75) involves quantities computed
at time tn+1. Moreover, the density ρα,i is in general a nonlinear function of the tracer (temperature) Tα,i.
It follows that a (N + 1) nonlinear problem has to be solved to completely define Hn+1

i and Tn+1
α,i . This

nonlinear problem reads

N∑
α=1

ρn+1
α,i lαH

n+1
i =

N∑
α=1

ρnα,ilαH
n
i +

∆tn

∆x
(
F+
H (Xn

i−1) + F−H (Xn
i )− F+

H (Xn
i )− F−H (Xn

i+1)
)
,

ρn+1
α,i lαH

n+1
i Tn+1

α,i = ρnα,ilαH
n
i T

n
α,i +

∆tn

∆x
(
F+
kα

(Xn
i−1) + F−kα(Xn

i )− F+
kα

(Xn
i )− F−kα(Xn

i+1)
)

(91)

+∆t
(
T k,nα+1/2,iG

n+1/2
α+1/2,i − T

k,n
α−1/2,iG

n+1/2
α−1/2,i

)
, α = 1, . . . , N,

where the fluxes F± and G can be evaluated through the formulas (71) and (75), and the interface values
Tα+1/2,i are given by (77). The system above can be written under the form

R(Hn+1
i , Tn+1

1,i , . . . , Tn+1
N,i ) = Cni , (92)

where the term Cni contains all the data, i.e. the quantities that are evaluated at time tn, and the function
R from RN+1 to RN+1 is given by

R(x, y1, . . . , yn) =

(
x
∑N
α=1 lαρ(yα)

xlαyαρ(yα)− T k,nα+1/2,ix
∑α
j=1 ljρ(yj) + T k,nα−1/2,ix

∑α−1
j=1 ljρ(yj)

)
.

The nonlinear system (92) is solved by using an iterative procedure that defines a sequence of quantities
(Hk,n

i , T k,nα,i ), where the superscript k is the iteration counter. Let us note that in the definition of the
function R the interface value of the tracer T k,nα+1/2,i is explicitly related to the actual iteration. Indeed

formula (77), which was said to be non explicit since the quantity Gn+1/2
α+1/2,i is implicitly defined, is replaced

in the iterative process by the explicit formula

T k,nα+1/2,i =

{
Tnα+1,i if Gk−1,n

α+1/2,i ≥ 0,
Tnα,i if Gk−1,n

α+1/2,i < 0,

where the explicit quantity Gk−1,n
α+1/2,i is computed using the previous estimation of the unknown quantities

∆tnGk−1,n
α+1/2,i =

α∑
j=1

[
lj(ρ

k−1,n
j,i Hk−1,n

i − ρnj,iHn
i ) + σni (Fnhj,i+1/2 − F

n
hj,i−1/2)

]
.

The nonlinear problem (92) is solved for example by using a Newton-type algorithm. This is a small size
problem but it has to be solved at each time step and for each cell Ci. In practice, this step is the most
CPU time-consuming. Once Hn+1

i and Tn+1
α,i are computed, un+1

α,i is deduced from (61).
Let us remark that the Boussinesq assumption recalled in Sec. 2.2 simplifies significantly the numerical
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scheme since in this case the density only appears in the wave velocity cα,i. Then we have

X̃n+1
i =

 Hn+1
i

lαH
n+1
i un+1

α,i

lαH
n+1
i Tn+1

α,i

 ,

and we easily recover the unknowns of interest without the solution of a nonlinear system. In fact the global
water height Hn+1

i is explicitly defined by the sum of relations (60) and then quantities Tn+1
α,i and un+1

α,i can
be computed using (61) and (63).

5.8. Stability of the scheme and maximum principle
Classically, the stability property of the kinetic scheme can be established through a CFL condition

ensuring that the water height remains non negative. This CFL condition means that the quantity of water
leaving a given cell during a time step ∆tn is less than the actual water in the cell. Note that due to the
vertical discretization the water can leave the cell Ci of the layer α either through the boundaries xi±1/2,
or through the interfaces zα±1/2. This makes the CFL condition more restrictive. In the case of a constant
density, the resulting CFL constraint is given and demonstrated in [5]. Its adaptation to the situation where
the density varies is straightforward and leads to the following proposition.

Proposition 5. Assume that the function χ has a compact support of length 2wM , then under the CFL
condition

∆tn ≤ min
1≤α≤N

min
i∈I

ραlαH
n
i ∆xi

ραlαHn
i

(
|unα,i|+ wMcnα,i

)
+ ∆xi

([
G
n+1/2
α+1/2,i

]
−

+
[
G
n+1/2
α−1/2,i

]
+

)
the kinetic scheme defined in Sec. 5.2-5.7 keeps the water height positive, i.e. Hn

i ≥ 0 if this condition is
true at initial time.

For the tracer concentration we have the two following propositions.

Proposition 6. Under the CFL condition defined in Prop. 5, the kinetic scheme defined in Secs. 5.2-5.7
preserves the positivity of the tracer concentration.

Proof. We assume that Tnα,i ≥ 0, ∀α, i and we prove that Tn+1
α,i ≥ 0, ∀α, i. We also assume that the CFL

condition given in Prop. 5 is satisfied, so Hn
i ≥ 0, ∀i.

From the positivity of the function χ we deduce

Mn
α,i ≥ 0, ∀i, for α = 1, . . . , N.

We now introduce the quantities

[ξ]+ = max(0, ξ), [ξ]− = max(0,−ξ).

Using the definition of the Gibbs equilibrium Uα (36), the definition (39) and the upwinding (77), we can
write the upwind microscopic scheme (62) under the form

gn+1
α,i = (1− σni |ξ|)Unα,i + σni [ξ]+Unα,i−1 + σni [ξ]−Unα,i+1

+∆tn
(([

V
n+1/2
α+1/2,i

]
+
−
[
V
n+1/2
α+1/2,i

]
−

)
−
([
V
n+1/2
α−1/2,i

]
+
−
[
V
n+1/2
α−1/2,i

]
−

))
,

= (1− σni |ξ|)Tnα,iMn
α,i + σni [ξ]+Tnα,i−1M

n
α,i−1 + σni [ξ]−Tnα,i+1M

n
α,i+1

+∆tn
((

Tnα+1,i

[
N
n+1/2
α+1/2,i

]
+
− Tnα,i

[
N
n+1/2
α+1/2,i

]
−

)
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−
(
Tnα,i

[
N
n+1/2
α−1/2,i

]
+
− Tnα−1,i

[
N
n+1/2
α−1/2,i

]
−

))
= Tnα,i

(
(1− σni |ξ|)Mn

α,i −∆tn
([
N
n+1/2
α+1/2,i

]
−

+
[
N
n+1/2
α−1/2,i

]
+

))
σni [ξ]+Tnα,i−1M

n
α,i−1 + σni [ξ]−Tnα,i+1M

n
α,i+1

+∆tn
(
Tnα+1,i

[
N
n+1/2
α+1/2,i

]
+

+ Tnα−1,i

[
N
n+1/2
α−1/2,i

]
−

)
. (93)

Since the quantity

σni |ξ|Mn
α,i + ∆tn

([
N
n+1/2
α+1/2,i

]
−

+
[
N
n+1/2
α−1/2,i

]
+

)
,

represents, at the microscopic level, the water leaving the cell Ci of the layer α during ∆tn, from Prop. 5 it
satisfies ∫

R

(
σni |ξ|Mn

α,i + ∆tn
([
N
n+1/2
α+1/2,i

]
−

+
[
N
n+1/2
α−1/2,i

]
+

))
dξ ≤

∫
R
Mn
α,idξ,

and we obtain
ραlαH

n+1
i Tn+1

α,i =
∫

R
gn+1
α,i dξ ≥ 0, ∀i, for α = 1, . . . , N,

which completes the proof. �

Proposition 7. Under the CFL condition defined in Prop. 5, the kinetic scheme defined in Secs. 5.2-5.7
ensures a maximum principle for the tracer concentration. Indeed it satisfies

∀n, ∀i, ∀α Tn+1
α,i ≤ max{Tnα,i, Tnα+1,i, T

n
α−1,i, T

n
α,i+1, T

n
α,i−1}.

Proof. From (93) using the CFL condition, we have

gn+1
α,i ≤ max{Tnα,i, Tnα+1,i, T

n
α−1,i, T

n
α,i+1, T

n
α,i−1}

(
(1− σni |ξ|)Mn

α,i −∆tn
[
N
n+1/2
α+1/2,i

]
−
−∆tn

[
N
n+1/2
α−1/2,i

]
+

+σni [ξ]+Mn
α,i−1 + σni [ξ]−Mn

α,i+1 + ∆tn
[
N
n+1/2
α+1/2,i

]
+

+ ∆tn
[
N
n+1/2
α−1/2,i

]
−

)
= max{Tnα,i, Tnα+1,i, T

n
α−1,i, T

n
α,i+1, T

n
α,i−1}f̃n+1

α,i ,

with, using (58), ∫
R
f̃n+1
α,i dξ =

∫
R
fn+1
α,i dξ.

Then, after an integration in ξ we obtain

ραlαH
n+1
i Tn+1

α ≤ max{Tnα,i, Tnα+1,i, T
n
α−1,i, T

n
α,i+1, T

n
α,i−1}ραlαHn+1

i ,

which completes the proof. �
In practice, see [28], we rather introduce some upwinding in the tracer equation depending on the sign of

the total mass flux. Then the tracer flux vanishes with the total mass flux. This is done with the introduction
of the new tracer flux Fk(Xi, Xi+1) defined in the following formula, which replaces (70):

Fkα(Xi, Xi+1) = Tα,i+1/2Fhα(Xi, Xi+1),

where
Tα,i+1/2 =

{
Tα,i for Fhα(Xi, Xi+1) ≥ 0,
Tα,i+1 for Fhα(Xi, Xi+1) < 0. (94)

Note that this upwinding technique preserves the properties demonstrated in the previous propositions.
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5.9. Boundary conditions
The treatment of the boundary conditions is not detailed in this paper since it consists in a natural

adaptation of the technique proposed by Bristeau and Coussin, see [29]. Note that for a given boundary, the
type of prescribed condition – given water height, inflow, . . . – can vary depending on the considered layer.

5.10. Second order scheme
Second-order accuracy in time can be recovered by the Heun method [30], which is a modified version of

the second order Runge-Kutta method. The advantage of the Heun scheme is that it preserves the invariant
domains with no further restrictions on the CFL.

We also apply a formally second order scheme in space by a limited reconstruction of the variables [13].
These new variables are classically obtained with three ingredients: prediction of the gradients in each cell,
linear extrapolation, and limitation procedure. The process is detailed in [27].

Note that the second order numerical scheme that we propose here does not adopt the same discretization
for the pressure source terms as the method in [13] (not even for the case of a constant density single layer).
Nonetheless the two approaches, the one presented here and the one in [13], give similar results and the
convergence order of the schemes is the same (for smooth solutions). Nevertheless, our discretization of the
topographic source term seems more natural, and for the second order extensions no additional centered
source term is needed.

Remark 5.1. In [13] the consistency and the existence of a semi-discrete in-cell entropy inequality for the
scheme are demonstrated. The study of these two properties for the more general model that we propose here
goes beyond the scope of this paper.

6. Numerical results

In the case of constant density, the multilayer numerical model has been already validated, see [5]. In
this section we focus on situations where the density variations have crucial influence on the hydrodynamical
processes. First we illustrate the behavior of the proposed method in problems of non trivial static equilibria,
then we show numerical experiments simulating flows exhibiting internal waves, and density-stratified water
bodies subject to wind surface stress. The density is considered a function of the water temperature, see (11).

6.1. Static equilibria with non flat bottom
We illustrate here the properties of preservation of equilibria for stratified flows, see Sec. 5.6.
If we account for diffusion of the tracer, i.e. µT 6= 0 in relation (5), the only possible static equilibria are

trivial and correspond to
∂T

∂x
= Cst, and

∂T

∂z
= Cst, ∀x, z, t.

To avoid these simplified situation, in the experiments of this section we set µT = νT = 0. Since our numerical
scheme has small numerical dissipation, a Navier type bottom friction is considered in each simulation in
order to reach static equilibrium more quickly.

We consider a 3 meter-long enclosed basin with vertical shores and an initial water level of H0+zb = 1 m,
with the bottom geometry zb(x) defined by the parabolic bump

zb(x) = max(−1,−0.75− 1.246(x− 1.2)2).

The computational grid has 100 nodes in the x direction.
In Figures 3 and 4 we illustrate the behavior of the scheme for two problems over non flat bottom with

initial conditions corresponding to an unstable state.
For the first example, whose results are displayed in Fig. 3, the flow is initially at rest and the temperature

distribution at t = t0 is defined as

T 0(x, z) =
{

25 oC if z − zb ≥ 2H0/3,
8 oC otherwise.
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For the simulation we have used a vertical discretization with 20 equally spaced layers, i.e. lα = 1/20 for
α = 1, . . . , 20. The post-processing visualization tool performs a linear interpolation of the constant cell data,
which explains the small diffusion of the temperature jump that is observed at the initial time. Figure 3-(b)
shows that the system naturally reaches a stable equilibrium characterized by

∂T

∂x
= 0.

In the second example, whose results are displayed in Fig. 4, we consider the same configuration as in
the previous experiment but we set a different initial temperature distribution, which in this case deviates
significantly from equilibrium conditions, see Fig. 4-(a). Also in this test the flow tends toward a stable
static equilibrium state, see Fig. 4-(b).

(a) (b)

Figure 3: (a) initial state and (b) static equilibrium reached after 10 minutes.

(a) (b)

Figure 4: (a) initial state and (b) static equilibrium approximately reached after 20 minutes.

6.2. Internal gravity waves
In this section we present a test problem that shows that small numerical diffusivity is introduced by

our numerical scheme.
Starting from an unstable initial condition, a stratified flow made of two miscible fluids asymptotically

evolves, in presence of dissipative effects (fluid viscosity, tracer diffusivity, bottom friction), towards an
equilibrium state that minimizes the potential energy Ep of the fluid volume V ,

Ep =
∫
V

ρ(T )gz dz,
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and that corresponds to ∂T
∂x = 0. Therefore the interface between the two fluids is asymptotically horizontal.

This corresponds exactly to the situations depicted in Sec. 6.1 with Figs. 3 and 4.
In absence of physical diffusivity and friction, and still starting from an unstable initial condition, the

potential energy has now no reason to decrease and interfacial gravity waves will appear in the fluid domain.
The preservation of the interface between two miscible fluids for such gravity waves is a challenging task for
numerical schemes, since in practice numerical diffusion coming from the scheme is often observed to lead
to an artificial equilibrium in the simulations.

We refer in particular to [31] and references therein for numerical studies and simulations of interfacial
gravity waves. In [31] various numerical schemes are compared with a test case corresponding to a finite
amplitude deep-water standing wave. The interface is defined in [32] and given by

ζ(x) = a

((
1− (ka)2

64

)
cos kx− (ka)2

8
cos 3kx

)
,

where ka = 0.1 is the initial steepness, k = 2π/L, and L is the length of the domain.
We perform here a test with the same configuration described in [31], where the interface thickness is

kδ = 0.01π. In Fig. 5 we show the profile of the density field at the initial time and after two periods of
oscillation. The period of oscillation is T = 9.82 seconds. We have used 80 nodes in the horizontal direction
and 100 equally spaced layers in the vertical direction. Except near the interface where Fringer et al. [31]
uses a refined mesh, our vertical computational grid corresponds to the one used in [31]. We see in Fig. 5-(b)
that after two periods of oscillation we recover the initial shape of the interface ζ even if some diffusion of
the temperature is observed.

(a) (b)

Figure 5: Density field for the interfacial standing wave, (a) initial condition and (b) after two periods of oscillation.

6.3. Validity of the Boussinesq assumption
In the literature the Boussinesq assumption (see Sec. 2.2) is very often considered, however its validity

is sometimes unclear [33, 34]. As far as the authors know, most of the numerical schemes with validated
results use this assumption, although there exist ocean models using various approximated versions of the
non-Boussinesq equations [34]. It seems to the authors that the Boussinesq assumption is valid in the
majority of the test problems they have simulated. However, in the case of internal waves in stratified flows
and for long time simulations, the validity of the Boussinesq hypothesis is questionable. The following test
case illustrates this point.

We consider the same geometry and initial conditions as in the first example of Sec. 6.1 and we compare
in Figs. 6 the results that are obtained with and without the Boussinesq assumption. It appears that even
if the system reaches in both situations the same static equilibrium condition (see Fig. 3-(b)), the transient
velocity fields are different. The differences induced by the Boussinesq assumption in the simulations are
reinforced, in our case, by the numerous reflections against the vertical shores. For an overview of the

24



physical situations where the Boussinesq assumption leads to significant errors, the reader can refer to
[33, 34].

At time t1 = 1 minute

At time t2 = 2 minutes

At time t3 = 3 minutes

Figure 6: Computed velocity field. Left column: without the Boussinesq assumption; right column: with the Boussinesq
assumption.

6.4. Wind forced flows
We simulate in this section the response of a density-stratified water basin to wind stress. Thermo-

hydrodynamical phenomena in lakes subject to the action of wind have been studied since a long time, by
means of observations and measurements in situ [35, 36], laboratory experiments [36, 37, 38, 39], theoretical
analysis [40, 41, 42], and, more recently, numerical simulations [43, 44, 3, 45].

The typical thermal stratification of natural lakes and hydraulic reservoirs consists of a warmer less
dense surface layer, a colder denser bottom layer, and a middle layer characterized by a steep vertical
thermal gradient, the center of which is the thermocline. Classically, in the literature the lake temperature
distribution is schematized by a two-layer or three-layer thermal stratification.

When wind blows over these enclosed stratified water systems, the thermocline is deflected upward in
the upwind region. The thermocline behaves as a barrier between an upper region with circular fluid motion
that has the same direction as the wind at the surface, and a lower region with fluid rotating in the opposite
sense. If the wind is sufficiently strong then the thermocline reaches the surface at the upwind end of the
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basin and upwelling of colder fluid in the windward region occurs. This is quite different from the effect of
wind forcing a homogeneous basin, where wind induces a simple circular motion of the fluid mass.

6.4.1. Comparison with an analytical solution
In this section we simulate the steady setup of a two-layer flow subject to wind stress and we compare

the results obtained through our numerical model with a local analytical solution. We consider a fluid in a
rectangular basin of length Lb = 3 m, and we impose a constant uniform wind stress from left to right at the
free surface. The simulation starts with a flow at rest with the following two-layer temperature distribution
(see Fig. 7):

T0(x, z) =
{

25 oC if z − zb ≥ H0/2,
8 oC otherwise, (95)

where H0 = 1 m is the initial water height. Note that since at t0 = 0 we have

∂ρ

∂z
≤ 0,

the initial state corresponds to a stable equilibrium. With these initial conditions, if wind is not too strong,
the system is expected to reach the stationary regime described schematically in Fig. 7.

z = zb = 0

x

z T2 = 25 oC

T1 = 8 oC

z = H1(x, t)

Figure 7: Steady setup of a two-layer flow subject to uniform and constant wind (from left to right). Flow domain with
water height H(x, t) and layer interface H1(x, t) (thermocline). At t0 we have H1(x, t0) = H0/2 and flow at rest. The
steady configuration is characterized by deflections of opposite sign of the free surface and of the thermocline, and by opposite
circulations in the upper and lower layer.

We use a viscosity ν = 0.003 m2 · s−1, a Navier friction coefficient κ = 0.1 m · s−1 and a wind velocity
of 6 m · s−1 leading to a = −395.51, K̃ = 2.347 m · s−1, α1 = 3.63 10−2 m2 · s−1, α1,0 = 8.63 10−2 m2 · s−1,
τw = 6.05 10−5 m2 · s−2 and τ = 2.72 m2 · s−2 in the formulas (A.5) and (A.6).

In agreement with the expected behavior, the results of the simulation show that the flow reaches a
stationary configuration characterized by two circulation regions rotating in opposite sense below and above
the thermocline. See the computed temperature distribution and vector velocity field at time t = 600 s in
Figure 8-(a). For this test problem, and also for the one considered in the next subsection 6.4.2, the shear
stress due to the wind induces a gradient of the free surface. Nonetheless, the deflection of the free surface
is very small, and it is not visible in the plots of the results (Figs. 8 and 10).

Additionally, we display in Figure 8-(b) the results obtained by performing a simulation with the same
initial conditions of flow at rest and tracer distribution as in (95), but for the constant density case, that is
we set ρ(T ) = ρ0. In such a situation we see that the wind induces a simple clockwise circular flow motion
and a corresponding advection of the tracer T . In this case the flow velocity field attains a stationary
rotating regime, but note that the only possible steady tracer distribution corresponds to the homogeneous
conditions T (x, z, t) = T̄ . Let us also remark that for this test with constant density the convergence of the
simulation results towards the analytical solution has already been investigated by the authors, see [5].
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Note, moreover, that when the density variations are not considered the velocity profile along the vertical
axis satisfies - far from the shores -

∂2u

∂z2
> 0,

whereas when the density variations are taken into account this quantity changes of sign when z varies from
the bottom to the free surface. Because of the viscosity, the latter situation induces large dissipation and
this explains why the velocities are smaller in Fig. 8-(a) (variable ρ) than in Fig. 8-(b) (ρ = ρ0).

(a) (b)

Figure 8: Computed temperature distribution and velocity field at time t = 600 s. (a) Case of variable density, ρ(T ) =
ρ0(1− αT(T − T0)2). The thermocline is tilted upward in the upwind region and two circulation regions appear. (b) Case of
constant density, ρ(T ) = ρ0. A simple circular flow motion appears; in this case T is merely a tracer advected by the flow.

Under several simplifying hypotheses on the Navier–Stokes equations, for the steady stratified flow setup
problem described above it is possible to derive an analytical solution for the horizontal velocity vertical
profile at a position x̄ (far from basin ends) where the assumptions of vertical velocity w ≈ 0, and ∂xu ≈ 0,
∂xxu ≈ 0 are reasonably satisfied. In particular, we consider as x̄ the mid-length of the lake. For the case of
constant density, this analytical result is detailed in [46]. Here we extend the derivation of this local solution
to the case of variable density, see Appendix A. Note that we have a < 0 with |a| � 1, meaning that the
deflection of the interface z = H1 is significantly larger in amplitude and has opposite sign with respect to
the deflection of the free surface.

In Fig. 9-(a) we compare the analytical solution with the results obtained with the multilayer model for
different vertical discretizations. Fig. 9-(a) presents the results obtained with 10, 30 and 50 discretization
layers. For each computational grid the horizontal discretization is very fine, thus the error associated with
this horizontal discretization is not relevant. We see in Fig. 9-(a) that our numerical results are in good
agreement with the analytical solution.

In Fig. 9-(b) we display the rate of error versus the accuracy of the vertical discretization, namely the
number of layers. The plot shows the log(L1 − error) of the horizontal velocity at mid-length of the domain
versus log(h0/hi). We denote by hi the average cell height, while h0 is the average cell height of the coarser
mesh. These error values have been computed on 5 grids with 5, 10, 20, 30 and 50 layers. It has to be
noticed that, from (A.7), ∂H1

∂x is proportional to a and thus ∂H1
∂x < 0. Since the velocity at the interface is

tangent to z = H1, this means that we have w 6= 0 near z = H1, so the underlying assumption w ≈ 0 of
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the analytical solution is not rigorously true. For these reasons, the analytical solution and the simulated
velocity at mid-length of the basin are not completely consistent and the convergence rate appearing in
Fig. 9-(b) is not completely meaningful.

(a) (b)

Figure 9: Comparison between analytical and computed velocities at mid-length of the basin.

6.4.2. Upwelling
We now consider a test problem with the same configuration as the one in the previous section, but with

a greater wind velocity. The domain is again a rectangular basin of length Lb = 3 m, and we set an initial
water height H0 = 1 m. The computational grid has 100 nodes in the x direction and 30 layers. The wind
velocity (from left to right) is 20 m · s−1. We have used a viscosity ν = νT = 0.001m2 · s−1 and a Navier
type bottom friction with κ = 0.1 m · s−1. In Fig. 10 we show at different times the computed temperature
distribution and the velocity field.

We observe, as expected, an upward deflection of the thermocline in the windward region (Fig. 10 at
time t1), until it reaches the surface and upwelling of colder water occurs (Fig. 10 at time t2). Analogously
to the experiment of the previous section (Fig. 8-(a)), two circulation regions appear above and below the
thermocline, with opposite sense of rotation.

Due to the simplicity of our physical model (uniform diffusivity, hydrostatic pressure, lack of a turbulent
mixing model), the aim of our numerical tests here is not attempting to reproduce realistic limnological pro-
cesses on a long time scale. Rather, we emphasize the influence of density variations on the hydrodynamical
response of the water body. In particular, the results of the simulations with variable density show that
the numerical model is able to describe the tilting of the thermocline and upwelling of deeper fluid to the
surface. Thus we are able to capture the essential features of the expected hydrodynamical behavior until
the occurrence of upwelling. The post-upwelling flow dynamics cannot be modeled effectively by the present
simplified model.

6.5. A test case with dry areas, shocks and varying densities effects
In the previous numerical experiments we have considered situations with rather smooth solutions (low

Froude number, small gradient of the free surface). However, in geophysical flows severe conditions and stiff
processes may occur.

We conclude this section devoted to numerical results with a test case emphasizing the capability of our
model to deal with dry areas, hydraulic jumps (shocks), and large and rapid variations of the free surface.
We expect that for this type of problems our simulation tool offers superior performance with respect to
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At time t1 = 10 s At time t2 = 70 s

At time t3 = 140 s

Figure 10: Temperature distribution and velocity field during the simulation of a simplified upwelling phenomenon. The three
sub-figures display the tracer distribution and the velocity field at times t1 = 10 s, t2 = 70 s, and t3 = 140 s.
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commonly used Navier–Stokes solvers, which, to our knowledge, would encounter difficulties in dealing with
strong discontinuities and large free surface distortions of flows over variable topography with dry bed zones.

We consider a topography characterized by two bowled-shaped depressions, defined by

zb(x) = −4e−0.1(x−10)2 − 6e−0.2(x−18)2 ,

for x ∈ [0, 25] m. The configuration and the initial conditions of the problem are depicted in Fig. 11. Initially
the bowl on the left contains still cold water (T = 8oC), while the bowl on the right is filled with still hot
water (T = 25oC). Moreover, at initial time a column of cold water (T = 8oC) sits on the plateau on the left
of the first bowl, mimicking a dam-break initial condition. Simulation results at different times are shown
in Fig. 12. At time t1 we observe the arrival of the fluid mass from the initial water column on the left in
the first bowl with a discontinuity of the water depth. Because of the mass supply in the first bowl, and due
to the dynamics induced by the water column, some cold water of the first bowl arrives in the second bowl
filled with still hot water. Then the kinetic energy of this cold fluid arriving in the second bowl decreases,
and it is no more able to compensate the Archimedes force to which is subject due to the pressure gradient
induced by the temperature differences. At time t4 we see that the cold water in the second bowl begins to
fall because of the Archimedes force.

Figure 11: Initial conditions for the test case with dry areas, shocks and variable densities effects (section 6.5).

7. Conclusion

We have presented in this paper a new multilayer model with variable density for the simulation of
density-stratified flows. The crucial distinguishing feature of our model with respect to classical multilayer
approaches is its property of allowing inter-layer fluid circulation. The numerical method for the system
solution is based on a kinetic interpretation of the model, which allows building a stable positivity pre-
serving scheme. Well-balancing of source terms is obtained through an extended hydrostatic reconstruction
technique, and the resulting scheme is formally second-order accurate. Numerical results show the ability of
the multilayer model to correctly capture the hydrodynamical behavior of stratified flows related to density
gradients effects.

Work is in progress to include in the present model non-hydrostatic terms, following the studies of the
authors in [47]. In the future, we plan to take into account additional physical phenomena, in particular
surface thermodynamics and turbulent mixing.
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Figure 12: Flow dynamics at four different times, t1 = 2.5 s, t2 = 7.5 s, t3 = 12.5 s, and t4 = 27.5 s (plots from top to bottom).
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Appendix A. Local analytical solution for a two-layered flow subject to wind stress

We start with the two-dimensional hydrostatic Navier–Stokes system (1)-(5), with the initial conditions
and the notations defined in Fig. 7. Since we have a two-layered basin, the density can be written:

ρ(z) = ρ1 + (ρ2 − ρ1)He(z −H1), (A.1)

where He is the Heaviside function and ρi = ρ(Ti) for i = 1, 2.
We look for the stationary solution of this problem, by assuming νT = 0, and by considering a vertical
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viscosity only for the x-momentum equation. Near the mid-length of the basin we can assume

∂u

∂x
≈ 0, and w ≈ 0. (A.2)

Therefore, in this region, the stationary solution of the system (1)-(3), (5), neglecting nonlinear convective
terms, satisfies

ν
∂2u

∂z2
− g ∂

∂x

∫ η

z

ρ(T ) dz̃ = 0. (A.3)

By using (A.1) in the equilibrium condition above, we obtain

ν
∂2u

∂z2
− gρ2

∂H

∂x
− g(ρ1 − ρ2)

∂H1

∂x
He(H1 − z) = 0. (A.4)

Let τw and τb denote respectively the shear stress at the free surface (wind stress) and at the bottom (Navier
friction). A first integration of (A.4) from zb to z gives

ν
∂u

∂z
− τb = ρ2g(z − zb)

∂H

∂x
+ (ρ1 − ρ2)g(z − zb)

∂H1

∂x
He(H1 − z)

+(ρ1 − ρ2)gH1
∂H1

∂x
He(z −H1),

and a second integration from zb to z gives

ν(u− ub) = (z − zb)τb +
ρ2g

2
(z − zb)2

∂H

∂x

+g(ρ1 − ρ2)
∂H1

∂x

(
(z − zb)2

2
He(H1 − z) +H1

(
z − H1

2

)
He(z −H1)

)
.

Then, the mass conservation condition in the layer where T = T1 gives

−νub =
H1

2
τb +

ρ2g

6
H2

1

∂H

∂x
+

(ρ1 − ρ2)g
6

H2
1

∂H1

∂x
,

while mass conservation in the layer where T = T2 leads to

−νub =
H +H1

2
τb +

ρ2g

6
(H2 +HH1 +H2

1 )
∂H

∂x
+ (ρ1 − ρ2)g

H1

2
∂H1

∂x
.

From the two previous relations, since we have a Navier type friction law at the bottom, i.e. τb = κub, we
obtain

ub = − 1
α1

(
ρ2g

6
H2

1

∂H

∂x
+

(ρ1 − ρ2)g
6

H2
1

∂H1

∂x

)
(A.5)

(ρ1 − ρ2)
(
H2

1

6α1
− H1H

2α1,0

)
∂H1

∂x
=
ρ2

6

(
H2 +HH1 +H2

1

α0,1
− H2

1

α1

)
∂H

∂x
, (A.6)

with α1 = ν + κH1/2, α1,0 = ν + κ(H +H1)/2. Now, integration of (A.4) from zb to η gives

τw − κub = ρ2gH
∂H

∂x
+ (ρ1 − ρ2)gH1

∂H1

∂x
.

Hence, with obvious notations, we finally have

∂H1

∂x
= a

∂H

∂x
, ub = K̃

∂H

∂x
, τw = τ

∂H

∂x
, (A.7)
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and

u(z) =
(
K̃ + κK̃

z − zb
ν

+
ρ2g

2ν
(z − zb)2 +

(ρ1 − ρ2)g
2ν

a(z − zb)2He(H1 − z)

+
(ρ1 − ρ2)g

ν
aH1

(
z − H1

2

)
He(z −H1)

)
τw
τ
.
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