Examen of classical gravitation
 Duration : 3H00

Calculators and documents are not allowed

The two body problem with geometry

We consider a mass m in the gravitational field of another mass M. We note $\vec{r}=\overrightarrow{M m}$ the position vector between the two masses at each time. The Newton's laws of gravitation and dynamics write

$$
m \dot{\vec{v}}=-\frac{\mu m}{r^{2}} \vec{e}_{r} \quad \text { with at each time } \vec{e}_{r}=\frac{\vec{r}}{\|\vec{r}\|} \text { and } \vec{v}=\dot{\vec{r}}=\frac{d \vec{r}}{d t}
$$

A Introduction

1. In which condition(s) can we consider that $\mu=G M$? We will consider this condition fullfilled from now.
2. Show that \vec{r} stays in a plane. Caracterize this plane. We note (r, θ) the polar coordinates in this plane and $\left(\vec{e}_{r}, \vec{e}_{\theta}\right)$ the orthonormal local polar basis.
3. Write \vec{e}_{r} as a function of $\dot{\vec{e}}_{\theta}$. Write r^{2} in terms of the modulus L of the kinetic momentum of m relativelly to M. Deduce that there exists a vector \vec{u} which is proportional to one of the two vectors of the local polar basis such that

$$
\frac{d}{d t}(\vec{v}-\vec{u})=\overrightarrow{0}
$$

Write k, the coefficient of this proportionality, in terms of G, M, m and L.
4. Let $\vec{h}=\vec{v}-\vec{u}$, named the Hamilton vector, Caracterize geometrically the hodograph of velocities (The set of the extremity of the velocity \vec{v} when m varies with time) in terms of \vec{h} and \vec{u}.
5. Computing $\vec{u} \cdot \vec{h}$, show that the trajectory is conic (Kegelschnitt in german), precise it parameters.
6. The Lagrange vector \vec{A} is defined by the relation $\vec{A}=\vec{h} \wedge \vec{L}$. Show that \vec{A} give the direction of a symetry axis of the trajectory.
7. Determine the massic energy of m in terms of \vec{h} and \vec{u}.

Often in astronomy, we only mesure the position and the velocity of a body at a given time of its orbit. We will see now how to construct geometrically the whole orbit only from this mesure assuming a newtonian force acting on m. For this we will use only a straightedge and a compass (Konstruktion mit Zirkel und Lineal in german) which was the only graphical instruments that astronomers has been

B Construction of the orbit with a straightedge and a compass

For all answers of this part use the paper given by the organiser and give it back. each step of the construction will be detailled by a written associated text in your copy. Figure 1 shows, at the initial time $t=0$, position and velocity vectors of a mass m in the gravitational field of a mass M.

The units system used is such that $m=1$ and $G M=1$. This unit length is represented on the figure with a cartesian basis $\left(\vec{e}_{x}, \vec{e}_{y}\right)$. For this representation we have chosen the origin of velocities in M.
ais le vecteur \vec{v}_{0} représente bien la vitesse de la particule de masse m.
8. Construct on figure 1, with only a straightedge and a compass, the length L of the kinetic momentum of m. One will verify after the construction that this length has a simple value. For eventual use, we recall below the construction with a straightedge and a compass of the product of two length a and b if one know the unit length.

Le repère (O, x, y) est orthonormé.

1) On construit la longueur b sur 1 'axe $O x$.
2) On construit la longueur a sur l 'axe $O y$.
3) On construit la droite D_{1} reliant a à l 'unité sur $O x$
4) On construit la droite D_{2} parallèle à D_{1} passant par b.
$D 2$ coupe 1 'axe $O y$ en un point $a b$, dont la distance à l 'origine est le produit de a par b.
9. Construct on figure 2, with only a straightedge and a compass, the Hamilton vector \vec{h}. Then deduce on the same figure the construction of the velocity hodograph.
10. Construct the Lagrange vector \vec{A} on figure 2 .
11. Starting from another point \vec{v}_{t} chosen arbitrarily on the hodograph and using a reverse procedure, construct on figure 3 , with only a straightedge and a compass, another point $m(t)$ of the orbit.
12. By constructing particular points of it, represent the whole orbit of the mass m on figure 4 .

Feuille de figures à remettre avec sa copie

Figure 1: Mesure de L

Nom :

Figure 2 : Construction de \vec{h} et de l'hodographe

Feuille de figures à remettre avec sa copie
Nom :

Feuille de figures à remettre avec sa copie
Nom :

Figure 4 : Construction de l'orbite

