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Abstract. Safety and security are claimed major concerns by the formal FoCaL
development environment. In [7] we introduced a safety development cycle cus-
tomised to FoCaL. In this paper, we examine how to specify and implement a
concrete example following this cycle. We show that indeed it is feasible and
we present how FoCaL features fit with software best practises like modularity,
reuse, fault confinement and maintenance.
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1 Introduction

Development of safety related systems has to be strictly compliant with applicable stan-
dards. This is required by any safety authority before commissioning of a system. Safety
demonstration is greatly helped by using a formally based framework to express re-
quirements, design, code and to ensure that this code meets specification requirements.
Unfortunately, this is not sufficient. Safety authorities also require an independent ver-
ification process which must follow the different stages of a strict development cycle.
Thus, any tool claiming to be dedicated to formal developments should not only provide
a formal paradigm to model and prove the system but must also strongly support a well
defined development cycle and must produce adequate documentation at each stage of
the development.Moreover, such a tool should help to identify impacts of modifications
during the whole life of the system (frequently more than 20 years). The purpose of the
FoCaL tool is to bring some answers to this problem area. FoCaL provides a unified
language to express requirements (declaration and properties) as well as source code
and proofs while only using concepts largely accessible to engineers.

In [7], we introduced a safety development cycle customised for FoCaL. Our prob-
lem now is to study its feasibility and to understand how practically FoCaL can help
to answer safety and good practise requirements. We have chosen to fully treat the ex-
ample of a voter. Indeed a voter is a central equipment of all redundant architectures,
widely used for safety related systems. A voter is a process or a device whereby a num-
ber of similar signals are monitored for discrepancies and are voted upon to obtain the
! This work is supported in part by the Agence Nationale de la Recherche under grant ANR-06-
SETI-016 for the SSURF Project (Safety and Security UndeR FoCaL).
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selected output which is most probably correct. It is highly safety critical because in
many cases, the voter is the last barrier able to eliminate failure effects and answers a
part of the safety principles underlining the whole system. As these ones strongly de-
pend of the aim and domain of the system, for the re-usability sake, a voter should be
conceived as a very generic equipment. Thus choosing a voter seems a good balance
between the exemplary nature of the development and the length of the paper.

The rest of the paper is organised as follows. We present the main features of the
FoCaL tool in Section 2. Section 3 exposes the rules of a voter and its textual specifica-
tion. The Section 4 comments the development of the voter using the FoCaL tool. We
conclude and comment possible further works in Section 5.

2 The FoCaL environment

We give here an informal presentation of near all FoCaL features, to help further read-
ing of this paper. For more details and the new release 3.

2.1 The Basic Brick

The primitive entity of a FoCaL development is the species. Like in most modular
systems (i.e. objected oriented, algebraic abstract types), it can be viewed as a record
grouping a data structure with its related operations. Since FoCaL does not only address
data type and operations, species may contain the declarations (specifications) of these
operations, some properties (which may represent requirements) and their proofs. All
these components of a species are called methods and we briefly describe them.
– The method introduced by the keyword representation gives the data repre-
sentation of entities manipulated by the species. It is defined by a type expression,
which is roughly a ML-like pure type (with restricted polymorphism). The repre-
sentationmay be not-yet-defined in a species, meaning that the real structure of the
data-type the species embeds does not need to be known at this point. However, to
obtain an implementation, the representation has to be defined later either explicitly
or by inheritance.

– Declarations (keyword signature followed by a name and a type) introduce
methods to be defined later: they only specify types without implementation yet.
Declarations serve to express specifications, properties. Thanks to late-binding, as
soon as a name is declared, it can be used in definitions.

– Definitions (keywordlet, followed by a name, a type and an expression) introduce
constants or functions, i.e. computational operations. The expressions are roughly
pure ML-like expressions with an auxiliary construction (S!m) to call the method
m from a given species S.

– Statements (keyword property followed by a name and a first-order formula)
may serve to express requirements (i.e. facts that the system must hold to con-
form to the Statement of Work) and then can be viewed as a specification purpose
method, like signatures were for let-methods. They entail a proof obligation later
in the development. Like signatures, even if no proof is yet given, the name of the
property can be used to prove other theorems or lemmas.

3 see : http://focalize.inria.fr
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– Theorems (theorem) made of a name, a statement and a proof are properties to-
gether with the formal proof that their statement holds in the context of the species.
This proof will be processed by FoCaL and ultimately checked with the theorem
prover Coq.

In addition, FoCaL provides a powerful mechanism for documentation by allowing
special kind of commentaries (called annotations) kept along the compiler process.

2.2 Type of Species, Interfaces and Collections

The type of a species is obtained by removing definitions and proofs. Thus, it is a kind of
record type, made of all the method types of the species. If the representation is
still a type variable say α, then the species type is prefixed with an existential binder ∃α.
This binder will be eliminated as soon as the representation will be instantiated
(defined) and must be eliminated to obtain executable code. Species types remain totally
implicit to users and serve only to introduce interfaces.

The interface of a species is obtained by abstracting the representation type in the
species type and this abstraction, which hides the representation, is permanent. Inter-
faces play an important role. They are simply denoted by the species name. Interfaces
can be ordered by inclusion, a point providing a very simple notion of sub-typing.

A species is said to be complete if all declarations have received definitions and
all properties have received proofs. When complete, a species can be submitted to an
abstraction process of its representation to create a collection. Thus the interface of the
collection is just the interface of the complete species underlying it. A collection can
hence be seen as an abstract data-type, only usable through the methods of its interface,
but with the guarantee that all methods/theorems are defined/proved.

2.3 Combining Bricks

A FoCaL development is organised as a hierarchy which may have several roots. Usu-
ally the upper levels of the hierarchy are built during the specification stage while the
lower ones correspond to implementation. Each node of the hierarchy, i.e. each species
(or collection as terminal ends), is a progress to a complete implementation. There are
two ways to build new species from previously built species: inheritance and parametri-
sation.

In FoCaL inheritance serves two kinds of evolutions, which can be freely mixed.
One may create a new species by extending the inherited ones with new operations
and properties while keeping those of the inherited ones (or redefining some of them).
One may create a new species by giving explicit definitions to signatures and proofs to
properties of the inherited species, to be closer to a “executable” implementation.

Multiple inheritance is available in FoCaL. In case of inheriting a method from
several parents, the order of parents in the inherits clause serves to determine the
chosen method.

The type of a species built using inheritance is defined like for other species, the
methods types retained inside it being those of the methods present in the species after
inheritance is resolved.
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A strong constraint in inheritance is that the type of inherited, and/or redefined
methods must not change. This is required to ensure logical consistency of the FoCaL
model.

FoCaL allows two flavors of parametrisation: parametrisation by collection param-
eters and parametrisation by entity parameters. For instance a pair is a structure which
is built upon its two components and is described by a species parametrised by its two
components. Entity parameters are not introduced as we do not use them within this
paper.

The parametrised species can use collection parameters’ methods to define its own
ones. A collection parameter is given a name C and an interface I . The name C serves
to call the methods of C which figure in I . C can be instantiated by an effective pa-
rameter CE of interface IE. CE is a collection and its interface IE must contain I .
Note that species (without abstraction) are not allowed as parameters. Indeed, if an in-
complete species were used as an effective parameter run-time error due to linkage of
libraries can occur and properties stated in I can not be safely used as an hypothesis. In
contrast, the collection and late-binding mechanisms ensure that all methods appearing
in I are indeed implemented in CE.

2.4 The Final Brick

As briefly introduced, a species needs to be complete to lead to executable code for its
functions and checkable proofs for its theorems and then, can be turned into a collection.
Hence, a collection represents the final stage of the inheritance tree of a species and
leads to an effective data representation with executable functions processing it. As
said before, to ensure modularity and abstraction, the representation of a collection
turns hidden. This means that any software component dealing with a collection will
only be able to manipulate it through the operations (methods) its interface provides.
This point is especially important since it prevents other software components from
possibly breaking invariants required by the internals of the collection.

2.5 Properties, Theorems and Proofs

FoCaL intends to encompass both the executable model (i.e. program) and properties
this model must satisfy. For this reason, theorems, properties and proofs are methods
dealing with logical instead of purely behavioural aspects of the system. Stating a prop-
erty entails that a proof of it will be finally built. For theorems, the proof is directly
embedded in the theorem. The compilation process submits proofs to the formal proof
assistant Coq which automatically checks that they are consistent.

No syntax is offered to express high-order properties as they are rather difficult to
manage by engineers not experts in logic theory. But special instances for induction and
termination proofs are to be provided.

Proofs are done by the developer as follows. It can be written in “FoCaLProof
Language”, a hierarchical proof language that allows to give hints and directions for a
proof. This script is submitted to an external theorem prover, Zenon4 developed by D.
Doligez. Zenon is a first order theorem prover based on the Tableaux method incorpo-
rating implementation novelties such as sharing[4]. From these hints Zenon attempts
4 see : http://focal.inria.fr/zenon/
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to automatically generate a proof and if it succeeds, expresses its proof as a Coq term
verified by Coq during the compilation process. Basic hints given by the developer to
Zenon are: “prove by definition of a method” (i.e. looking inside its body) and “prove
by property” (i.e. using the logical statement of a theorem or property”. Surrounding
this hints mechanism, the language allows to build the proof by stating assumptions
(that must obviously be demonstrated next) which can be used to prove lemmas or parts
for the whole property. We show below an example of such a demonstration.

theorem order_inf_is_infimum: all x y i in Self,
!order_inf(i, x) -> !order_inf(i, y) ->

!order_inf(i, !inf(x, y))
proof:

<1>1 assume x in Self, assume y in Self, assume i in Self,
assume H1: !order_inf(i, x), assume H2: !order_inf(i, y),
prove !order_inf(i, !inf(x, y))

<2>1 prove !equal(i, !inf(!inf(i, x), y))
by hypothesis H1, H2

property inf_left_substitution_rule,
equal_symmetric, equal_transitive

definition of order_inf
<2>f qed
by step <2>1

property inf_is_associative, equal_transitive
definition of order_inf

<1>f conclude
;

Like any automatic theorem prover,Zenonmay fail finding a demonstration. In this
case, FoCaL allows to write verbatimCoq proofs. The compiler provides a Coq script
“with a hole” which can be filled with the proof done by hand, then imported back to
the FoCaL source code as verbatimCoq code.

Finally, the assumed keyword is the ultimate proof backdoor, telling that no proof
is given thus the property is considered as an axiom. Obviously, a really safe develop-
ment should not make usage of such “proofs” since they bypass the formal verification
of software’s model and can break the global consistency. However, a development
may use external (trusted or not) code no property of which can be proved. Moreover,
whatever the reason, the user may choose to admit some properties. But any “assumed”
lemma should always be at least receive a textual justification inside an annotation. A
good practise is to submit such lemma to the FoCaL test tool to increase confidence.

2.6 Around the Language

All along the development cycle of a FoCaL program, the compiler keeps track of
dependencies between species, their methods, the proofs, . . . to ensure any modification
of component will be detected and its impact will be reported on those depending of it.

FoCaL considers two types of dependencies:
– The decl-dependency: a method A decl-depends on a method B if the declaration
of B is required to expressA.

– The def-dependency: a method (and more especially a theorem) A def-depends on
a method B if the definition of B is required to state A (and more especially, to
prove the property stated by the theorem A).

The redefinition of a function may invalidate the proofs that use properties of the
body of the redefined function. All the proofs which truly depend on the definition are



6 Philippe Ayrault, Thérèse Hardin, and François Pessaux

then erased by the compiler and must be done again in the context updated with the
new definition. Hence an important point is the choice of the most interesting level in
the hierarchy where to write a proof.

FoCaL currently supports two target languages: OCaml[10] and Coq[11]. Code
generation towards OCaml allows to build an executable: all the logical aspects are
discarded since they can’t be expressed in this language and don’t lead to executable
code. Code generation towardsCoq provides a formal model of the program, including
computational and logical aspects: all computationalmethods and logicalmethodswith
their proofs are compiled. Thus the consistence of the whole FoCaL development can
be checked by Coq.

However the compilation model (i.e. the structure of a collection, of a species, of
a method) remains very simple. It is the same in both target languages and uses a few
set of basic constructs: records (i.e. structures), functions and simple modules (not even
functors).

Note that references are not currently allowed as it is not so easy to handle memory
management at the proof level. However functional views of memory are used in several
developments. We currently consider to add data-flow programming features and their
logical counterparts to ease reactive systems development.

The tool called FOCDOC [3] automatically generates documentation, ensuring that
the documentation of a component is always consistent with respect to its implemen-
tation. This tool uses its own XML format that contains information coming not only
from structured comments (that are parsed and kept in the program’s abstract syntax
tree) and FoCaL concrete syntax but also from type inference and dependence analy-
sis. From this XML representation and thanks to some XSLT style-sheets, it is possi-
ble to generate HTML or LATEX files. In the same way, it is possible to produce UML
models [5] as means to provide a graphical documentation (class diagrams) for FoCaL
specifications. The use of graphical notations appears quite useful when interactingwith
end-users, as these tend to be more intuitive and easier to grasp than their formal (or
textual) counterparts. This transformation is based on a formal scheme and captures ev-
ery aspect of the FoCaL language, so that it has been possible to prove the soundness
of this transformation (semantic preservation).

Although this documentation is not the complete safety case, it can helpfully con-
tribute to its elaboration.

As a conclusion of this presentation, FoCaL is not at all a “All-in-One” language, it
helps to define strict boundaries between phases of a development. Consistency between
phases is ensured by a powerful dependency calculus and a proof system. FoCaL user
is guided to maintain the global consistency of a complete development, even during
the maintenance phase.

There exist several systems and languages having the same purposes like B[16],
CASL[13], RAISE[15]. . . True comparison with these systems is out of the scope of
this paper (but is considered in a forthcoming paper). It seems to us that the originality
of FoCaL is its unified language along the different phases which allows to provide the
assessor a complete package built in conformity with the related standards.

Differently from CASL[13] that is strongly oriented towards ADT, hence without
effective representation of data and computation, FoCaL lets the user go until speci-
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fying them (and adds an abstraction layer to prevent users from having access to in-
ternal effective implementation). FoCaL produces executable code and related proofs
whereas CASL emphasises on the specification phase despite the fact that institutions
are provided to link specifications to some SML or Java code[14]. RAISE[15] provides
a large range of specification and programming concepts. In contrast, FoCaL offers a
limited set of concepts but they can be altogether translated to Coq to ensure a global
consistency of the whole development.

2.7 FoCaL development cycle

As recalled in the introduction, the development of a critical system must follow a strict
development cycle, compliant with standards. In [7] we proposed a development life
cycle taking advantages of all features of FoCaL and compliant with the main Stan-
dards in the field of critical software development ([1], [2],...). It is based on a V-cycle,
decomposed into five (mandatory) phases: requirements/specification, architecture/de-
sign, implementation and low level testing, integration/validation testing and the longest
one, the maintenance phase. It also covers some transverse processes like generation of
the documentation or formal traceability between phases. Transverse processes are pro-
cesses that should be applied once during all phases. The main characteristics of this
life cycle are :
– a strong boundary between phases, especially between the specification phase and
the architecture/design one. Specification phase ends when all safety requirements
can be proved using the functional requirements and the glue assumptions (see
below). Architecture/design phase ends with the implementation of the functional
requirements into executable code.

– the implementation phase consists in assembling collections and proving the glue
assumptions made on the parametrised species.

– the use of the FoCaL dependencies calculus and documentation generation to gen-
erate formal traceability and to help maintenance.

In this paper, we mainly focus on requirements specification, architecture/design
and implementation phases as we build the voter. Integration/validation testing phase is
considered in the work of M. Carlier [6].

The development cycle is strongly based on the establishment of the specification
through requirements expression. We distinguish four kinds of requirements:
– Functional requirements describe the relations between inputs and outputs of the
system and what is expected on the behaviour of the system without referring to
any specific solution.

– Non-functional requirements describe all constraints that the systemmust meet, like
time and space bounds, safety integrity levels to achieve, portability needs. . . These
requirements are pretty difficult to express by a first-order formula. They are put
inside annotations, so are kept along the compilation process and figure in the com-
piled documentation.

– Safety requirements coming from the results of the safety studies. They ensure that
the functional requirements will never trigger a Feared Event. They are considered
as requirements on functional requirements.
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– As a species can be parametrised, proofs of functional and/or safety requirements
sometimes need assumptions on the functions and properties of the collection pa-
rameters. These assumptions are called glue assumptions. They are proved at the
coding level just before final building of the whole system.

All the requirements but some non-functional ones are expressed as FoCaL prop-
erties.

3 Overview of the voter

3.1 Generic definition

Sensors may exhibit various kinds of errors like bias offset, scale factor or transient
faults due to sensitivity to spurious or environmental factors (temperature, pressure,. . . ).
Redundancy is one of the major techniques used to guard safety critical systems against
such transient faults. There exists many kinds of redundancy, depending on which char-
acteristics (safety, reliability or both) should be privileged for the system. Roughly
speaking, each redundant component performs the same work and, when one of them
fails, the voter has to detect it and to select an output value among the other, then has to
go on providing the service.

Usually, a voter is used to elaborate the output from the input values given by the
redundant components. Voters are used, for example, for temperature acquisition by
multiple sensors in a boiler, or elaboration of the emergency brake signal of a train
from several computer replicas. . . The basic principle of a voter is to compare its input
values according to a given consistency relation, and then to output one value depending
on a voting policy. The point is that, in redundant systems, the voter is the component
that must be perfect (as far as possible obviously). A failure of the voter is considered
as a major weakness of the system.

A voter system must fulfil three main requirements:
– reliable and correct choice of one non faulty input among its n inputs 5
– detection of errors on inputs
– localisation of the source of the error and report of a diagnosis related to it6

The elaboration of the output value follows a two-stages process:

1. the inputs comparison, which takes 2 or more inputs and compares them accord-
ing to a “consistency law”. There are many kinds of such consistency laws: strict
equality, equality within a certain tolerance, most recent input, max or min values
. . .

2. the arbitration, by a voting policy algorithm which produces the output value. This
algorithm is the heart of a voter and determines its classification and its main prop-
erties (majority vote, selection of the most restrictive vote, selection of the most
recent value . . . ).

5 We wilfully limit the voter specification to a function that returns one of its inputs. Other more
complex voters can be found in [8].

6 The third requirement is sometimes optional depending on which dependability characteristic
is emphasised.
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A pre-processing of the inputs can also be performed by a filtering process. It anal-
yses input values by in-line “acceptance tests” and eliminates values recognised wrong,
a way to eliminate some transient faults. The inputs that succeed the filtering process
are then sent to the voter7.

In the following, we focus on voters with 3 inputs. Our choice is motivated by the
fact that 3 inputs is the minimal number for a voter to deal both with safety and relia-
bility characteristics. Taking the case where agreement between 2 sensors is sufficient
to ensure the required safety level of a system. Using a voter with 2 inputs meets the
safety requirements. But, in case of one failure on a sensor, you need to stop or run your
application in a degraded mode. Adding a third sensor permits to continue the service
in case of one fault. Most of the time, the cost of the third sensor is far less than the
unavailability of the whole system. This kind of voter is a widespread voter architecture
in safety critical systems (i.e. Triple Modular Redundancy).

Our choice could be even more generic. It is indeed possible to specify an “n out
of m” voter and then to instantiate n and m with the needed value. But this solution
needs to highly complicate the voter specification and implementation for a small added
value. Indeed only some n and m values are generally used; 1oo2 for reliability, 2oo2
for safety, 2oo3 or 2oo4 for safety and reliability and the concerns are so different that
this “sharing by genericity” is just useless.

3.2 The 2oo3 voter specification

The 2oo3 voter, used for our example, selects one value from three independent inputs
if at least two of them are consistent. Moreover, we also want to detect the faulty value.
So, a second output is added to the voter in order to qualify the first result. Table 1
summarises all cases, described as follows:

– perfect match: the three inputs are consistent, the value and index of one of them
are returned.

– partial match: two of the three inputs are consistent together, but the third one is
not. One of the consistent values and the index of the inconsistent one are returned.
This enables identifying a failure on this input.

– range match: One input is consistent with the two others which are mutually in-
consistent. The consistent value and the associated index are returned. This can
arise when the consistency law is not transitive (i.e. equality within a tolerance). In
this case, the system can go on working with the most plausible value.

– no match: all the inputs are inconsistent two per two. The voter cannot take a
decision since the majority rule is not applicable.

The specification of the no match case seems, at first sight, satisfactory: no value is
output as there is no good candidate. At the specification level, this behaviour is accept-
able, but a choice has to be made during the design phase: the component connected to
the voter is waiting for two values (the index of the component and the flag). It will be
its own concern to decide what to do with the first output, according to the second.
7 Filtering is different from the input comparison as it works on one single input in opposition
to the consistency law which compare at least two inputs.
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Consistency between inputs Returned Diag
v1 and v2 v1 and v3 v2 and v3 Value Index Qualifier
Yes Yes Yes v1 sensor 1 perfect match
Yes Yes No v1 sensor 1 partial match
Yes No Yes v2 sensor 2 partial match
No Yes Yes v2 sensor 3 partial match
Yes No No v1 sensor 3 range match
No Yes No v3 sensor 2 range match
No No Yes v2 sensor 1 range match
No No No ? ? no match

Table 1. Transfer function

3.3 The 2oo3 properties

Functional requirements should describe the voting policy. Each line of the table 1 is
transposed in a functional requirement. For example, for a perfect match, the require-
ment is:

∀v1, v2, v3 in value, consistency(v1, v2)∧
consistency(v1, v3) ∧ consistency(v2, v3)
⇒ voter(v1, v2, v3) = (v1, 1, perfect match)

Table 1 makes also assumptions on symmetry and reflexivity of the consistency
law8. This leads to define the following glue assumptions:

∀v1, v2 in value, consistency(v1, v2) ⇒ consistency(v2, v1)
and
∀v in value, consistency(v, v)

A voter should also meet some safety requirements. Whatever is the order of the
input values, the voter has to return a compatible output value. Thus a notion of “com-
patible output value” is introduced by properties P1 and P2. P1 says that if input values
can be compared and output values are consistent and qualifiers are the same then the
output values are compatible. P2 says that by default all output values are compatible
for inconsistent input values (i.e. there is no choice made for inconsistent input values).

P1 : ∀vala, valb in value, ∀qual in qualifier,
qual %= no match ∧ consistency(vala, valb)
⇒ compatible(vala, valb, qual, qual)
P2 : ∀vala, valb in value,
compatible(vala, valb, no match, no match)
and
∀v1, v2, v3, vala, valb in value, quala, qualb in qualifier
voter(v1, v2, v3) = (vala, , quala) ⇒
voter(v2, v1, v3) = (valb, , qualb) ⇒
compatible(vala, valb, quala, qualb)

8 Note that the voter does not need transitivity for the consistency law. Use of a transitive con-
sistency law will remove the partial match qualifier.



Development of a Generic Voter under FoCaL 11

Another safety requirement allocated to a voter is that the output value is always
one of the inputs.

∀v1, v2, v3 in value,
vote(v1, v2, v3) = v1 ∨ vote(v1, v2, v3) = v2 ∨ vote(v1, v2, v3) = v3

4 Development of the voter

4.1 Global architecture

The voter specification closely follows the description given in Section 3. Indeed sep-
aration of the voting policy and the inputs management eases reuse and independent
evolution of parts of the voter. The whole specification of the voter is thus split into two
major parts. The part concerning the voting policy is introduced by the species Voter
(see fig. 1) which specifies the voting policy algorithm and the glue assumptions made
on the inputs of the voter, represented by parameters. The second part, which concerns
values, is itself split into two parts, the first one describing what is supposed/needed on
the “basic” types (like naturals, integers, booleans) and functions on them, the second
one (the species Values) specifying inputs as “complex values” (like integers with
tolerance, integers modulo n) built upon basic types and ensuring that glue assump-
tions could be satisfied. Consistency between the two parts is guaranteed by the FoCaL
dependency and proof mechanisms.

Fig. 1. Voter decomposition

4.2 The voting policy

Specification phase The aim is to specify the data-flow interfaces and the requirements
for the system without referring to any specific solution. In FoCaL, data-flow inter-
faces are encoded by functions declarations and requirements by properties on these
functions.

Specification of the voting policy is performed with a two levels approach. The first
level corresponds to the specification of a most general voter. It gives the signatures and
the generic properties of all 2oo3 voters, making no assumption on the voting policy.
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The second level, derived from the first one, specifies the voting policy and gives the
proof of the generic properties.

The specification of the generic 2oo3 voter is represented by a species ”Voter 2oo3”
with two parameters: a collection V for the values submitted to the vote, a collection
Diag for diagnosis prescriptions. The species provides a single signature vote. It also
gives the safety requirements allocated to the voter. In order to ease reading, we add a
shortcut to extract the value from of output value.

species Gen_2oo3_voter( V is Value, Diag is Basics_object) =

signature vote in V -> V -> V -> (V * Diag);

(* Shortcut to extract the value *)
let output_value(p in V * Diag) in V = basics#fst(p);

(* Safety requirements of a voter *)
property voter_returns_an_input_value:
all v1 v2 v3 in V,

output_value(vote(v1, v2, v3)) = v1
\/ output_value(vote(v1, v2, v3)) = v2
\/ output_value(vote(v1, v2, v3)) = v3
end;;

A species can be derived from this generic species for any choice of a voting policy.
These derived species define the ”voting policy”, the glue properties required on the
input values (through the collection parameter of interface Value) and give a proof
of the generic properties. As an example, see the specification of a majority voter with
identification of the faulty inputs as defined in section 3.

(* Specification of the diagnostics output *)
species My_diag(C is Sensor, Q is Qualifier) inherits Basics_object =
... end;;

(* Specification of the majority voter *)
species Majority_voter(V is Value, C is Sensor, Q is Qualifier, Diag
is My_diag(C, Q)) inherits
Gen_2oo3_voter(V, Diag) =

(* Functional requirements of the majority vote *)
(* Vote with 3 consistent values returns a perfect_match and *)
(* the value of the first sensor. *)
property perfect_vote :
all v1 v2 v3 in V,
(V!consistency_law(v1, v2) /\ V!consistency_law(v2, v3) /\
V!consistency_law(v1, v3))

->
(output_value(vote( v1, v2, v3)) = v1) /\
(output_diag(vote( v1, v2, v3)) = Diag!constr(C!sensor_1, Q!perfect_match)))

...
(* Glue assumptions on parametrized species *)
property consistency_law_is_symmetric :
all v1 v2 in V,
V!consistency_law(v1, v2) -> V!consistency_law(v2, v1);

...
(* Proof of the safety requirements *)
proof of voter_returns_an_input_value =
...
end;;

To create the specification of the “majority voter”, we use two main features of the
FoCaL language. First, we use the FoCaL inheritance mechanism to create a species
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having all declarations, definitions and properties defined in the species Gen 2oo3
voter. Then, we instantiate parameters of Gen 2oo3 voter with a more specific
species (i.e. My diag). Note that, the dependency calculus ensures consistence be-
tween the different occurrences of formal and effective parameters.

The new species contains the functional specification of the 2oo3majority voter, the
glue assumptions on parameters and the proof of safety properties under those assump-
tions (done with Zenon). We can compile the FoCaL model to an OCaml file and a
Coq file. The first one contains only typed functions declarations that can be used as
an external interface for a development. The second one contains a proof term of the
safety properties that can already be checked by the Coq prover.

Architecture/design phase This phase introduces the architectural choices to answer
the specification requirements. It provides definition of the functions and the representa-
tion of the species. From the majority voter specification, we have sufficient information
to propose an implementation of the functional requirements and to provide a proof that
this code fulfils them.
species Imp_Majority_voter(V is Value, C is Sensor, Q is Qualifier,
Diag is My_diag(C, Q)) inherits Majority_voteur(V, C, Q, Diag) =
(* Implementation of the vote function *)
let vote( v1 in V, v2 in V, v3 in V) in V * Diag =
let c1 = V!consistency_law( v1, v2) in
let c2 = V!consistency_law( v1, v3) in
let c3 = V!consistency_law( v2, v3) in
if c1 then

if c2 then
if c3 then

(v1, Diag!constr(C!sensor_1, Q!perfect_match))
...
(* Proof of the vote property *)
proof of perfect_vote =
by property V!consistency_law_reflexive, Diag!equal_reflexive

definition of vote, output_diag, output_value;
end;;

Transition between specification and design is also made using inheritance. Here
parameters are kept while a definition is provided to the declaration, using the FoCaL
functional language. Proofs of the functional properties are made using Zenon. Giving
a FoCaL interface (and thus at least a specification species) for the input values, the
sensor and the qualifier, this species can be compiled: type-checking can be done and
a translation of the whole species contents (including Zenon proofs) into a Coq term
can be obtained to be immediately assessed. Thus we have a species that implements
a 2oo3 majority voter, which can be used with any kind of input values respecting the
required glue properties.

Multiple inheritance can be used at design level to provide an existing representation
to a specification species. For instance the implementation species Imp vote status
is a “merge” of two species: the specification species Sp vote status which pro-
vides the functional requirements and the species Integers which provides the rep-
resentation and its basic properties. The dependency calculus ensures compatibility be-
tween these inherited species.
(* Specification species for a set of vote status *)
species Sp_vote_status inherits Setoid =
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(** The 3 values are inconsistent *)
signature no_match : Self;
(** 1 value is consistent with the two other which are mutually inconsistent *)
signature range_match : Self;

...
end;;

(* Design of the vote status *)
species Imp_vote_status inherits Sp_vote_status, Integers =

(* Definition of the set elements *)
let no_match = 0;;
...
end;;

Definitions can also be changed at any level to fit new needs. In this case, the FoCaL
compiler computes all definitions and properties impacted by the redefinitions and asks
to provide a new proof of the impacted properties.

4.3 Building a voter

At this stage, we have several species representing all components of the voter. In order
to obtain runnable code a species should be transformed into a collection. Thus a voter
collection has to be created from the voter species and collections representing the val-
ues and the diagnosis. Firstly, we choose the nature of input values (here the collection
Coll int with tol), finalise the diagnosis (here the collection Coll my diag).
Secondly, we create a species which inherits from the implementation of the voter ap-
plied to effective parameters and we provide a proof for the glue assumptions. This step
ensures “compatibility” between species. Then, as the new species is now complete, we
can create a collection.
species Majority_voter_on_int_with_tol inherits
Imp_Majority_voter(Coll_value, Coll_sensor, Coll_int_with_tol, Coll_my_diag) =
proof of consistency_law_is_symmetric =

by property Coll_int_with_tol!consistency_law_symmetric;
...
end ;;

collection Coll_int_imp_vote_tol implements Sp_int_imp_vote_tol ;;

The collection Coll int imp vote tol is ready to use.
let s = Coll_int_imp_vote_tol!output_value(voter( 1, 3, 5);;

(* Results of several calls *)
Voter for integer with a tolerance of 2
v1 : 1, v2 : 3, v3 : 5 --> val : sensor_2 , res : partial_match
v1 : 1, v2 : 2, v3 : 5 --> val : sensor_3 , res : range_match
v1 : 4, v2 : 5, v3 : 5 --> val : sensor_1 , res : perfect_match
v1 : 1, v2 : 4, v3 : 7 --> val : sensor_1 , res : no_match

When a component is a COTS (Commercial Off The Shelf) or a very low level
component as I/O drivers, one cannot produce a proof of its functional properties. In
the same way, we do not want to prove well known or highly used components. In order
to consolidate our confidence level of such components, works are currently performed
by M. Carlier[6] to generate test cases from FoCaL functional requirements. These test
cases can be ran on the external component to validate it. Verification of the voter using
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M. Carlier tool has been achieved. It shows that the FoCaL life cycle we propose is
fully compliant with the validation of external components.

4.4 Re-usability

Many other implementations can fit the generic voter. For example, S. Dajani-Brown
proposes a 2oo3 voter for avionics purpose[9]. This voter is based on a classical 2oo3
architecture with an high availability (voter provides an output even when only one
input is available). Following our development cycle, we implemented this voter within
FoCaL by changing the voting policy and the value representation. Then we carried out
successfully all the proof of the generic voter properties (voter always returns one of
the input values, voter is insensitive to inputs order).

5 Conclusion and further works

This paper illustrates how a safety life cycle can be developed using FoCaL features
like inheritance, parametrisation by collections, properties and proofs. This develop-
ment process respects boundaries between development phases, produces a certified
and efficient code, is compliant with standards and thus, eases the assessment process
required before commissioning. Several other examples have been developed following
the same methodology like hierarchical automata’s, physical input acquisition. . . These
developments give similar results on the development process.

In this paper, due to a lack of space, we only gave a short glimpse on FoCaL test-
ing. However we used the testing tool (still in development), not only to do classical
tests on outputs of the voter but also when encountering some difficulties in proofs, to
validate expression of some requirements. We appreciated a lot to have at our disposal,
at any stage of the development cycle, a proof tool and a test tool working on the same
expressions. This is indeed a FoCaL feature which is of great help when expressing
some requirements, when wondering about the validity of some lemmas, when some
proofs are out of reach. In this last case, some of the corresponding statements are con-
sidered as axioms during proof process, a point which weaknesses the logical approach
but is unavoidable in practice, thus increasing confidence by testing the statement is
welcomed.

More generally, we emphasise the great facilities given by the coordination of Fo-
CaL programming features (typing, inheritance, late binding, etc.) and FoCaL logical
features (statements, proofs) through syntactical means controlled by dependency cal-
culus. Indeed, having the possibility to introduce a statement using names not yet asso-
ciated to a definition and to prove it under hypothesis submitted to a delayed proof obli-
gation, allows to detect anomalies sooner in the life cycle and the diagnostic provided
by the compiler helps to repair them. Yet it is possible to criticise the choice of a func-
tional language for source code. Having no notion of internal state for species can be
considered as a weakness. But first, there is no difficulty to translate, if needed, FoCaL
definitions into some imperative language: the compiler uses only very basic features of
programming languages (simple records and modules). Second, a lot of static analysers
rebuild a functional version of imperative code to perform their analyses. In FoCaL this
functional version is directly at hand, a point which will be exploited to integrate static
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analysers in FoCaL, in the near future as the new compiler was conceived to easily
include such extensions.

Using the theorem prover Coq as an assessor while having near all proofs quite
automatically done with Zenon and having the choice of either doing the remaining
ones directly in the Coq environment build by the FoCaL compiler or assuming their
statement appears as a good compromise between the confidence level and the cost of
the development. Yet the choice of Coq can be questioned. As the compiler does not
use truly specific features of Coq, other theorem provers based on type theories and a
flavor of Curry-Howard isomorphism can be chosen.
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