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Abstract. A passive control of aeroelastic instabilities on a two-degrees-of-freedom (dofs) system is consid-
ered here using shape memory alloys (SMA) springs in their pseudo-elastic regime. SMA present a solid-solid
phase change that allow them to face strong deformations (∼ 10%); in the pseudo-elastic regime, an hysteresis
loop appears in the stress-strain relationship which in turn gives rise to an important amount of dissipated energy.
This property makes the SMA a natural candidate for damping undesired vibrations in a passive manner. A 2-
dofs system is here used to model the classical flutter instability of a wing section in an uniform flow. The SMA
spring is selected on the pitch mode in order to dissipate energy of the predominant motion. A simple model for
the SMA hysteresis loop is introduced, allowing for a quantitative study of the important parameters to optimize
in view of an experimental design.

1 Introduction

Aeroelastic instabilities are an important issue in aeronau-
tics, especially regarding the wing motions. Indeed, for
a coupled system airflow - flexible structure, like aircraft
wing, turbojet or bridge, a limit velocity exists above which
the flexible structure cannot evacuate the energy received
from the airflow anymore, then giving rise to strong or even
fatal deformations. These instabilities, usually described
under the generic term flutter instability, result from inter-
action between aerodynamic, inertial and elastic forces [1].
In this contribution, we focus on a passive control device
for mitigating the flutter instability by using springs com-
posed of shape memory alloys (SMA). In their pseudo-
elastic regime, SMA are known for showing the ability
of dissipating an important amount of energy thanks to
the hysteresis loop appearing in their stress-strain relation-
ship, and has thus already been used in numerous applica-
tions ranging from civil engineering, aeronautics to med-
ical industry [2,3]. Recent contributions have considered
the dynamical responses of SMA springs from the theo-
retical viewpoint [4–6] in order to properly quantify the
most proeminent features of the vibrations of simple sin-
gle dof systems. Experimentally, a torsion pendulum has
been recently used in order to clearly exhibit the soften-
ing effect of SMA oscillators [7]. The aim of this paper
is to investigate the effect of a SMA spring on the flut-
ter instability. More particularly, the most relevant param-
eters of a pseudo-elastic regime on the amplitudes of the
limit cycle oscillations (LCO) will be analyzed, in order to
quantify the effect of the dissipation brought by the hys-
teresis loop. The airfoil is modeled using the classical 2-
dofs system coupling pitch and heave motions [8]. In order
to exchange energy and create the possibility of a Hopf
bifurcation in the system, the minimal model should con-
tain at least a flexural (heave) and a torsional (pitch) mode.
The SMA nonlinear behaviour is described by an heuris-
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tic model where the proeminent parameters are left free to
vary. Numerical simulations are then conducted in order to
investigate the effect of the SMA on the LCO. In particu-
lar, it is shown that for certain parameter range, the SMA
spring can lead to a significant decrease of the amplitude
of the LCO.

2 2DOFs Airfoil model

2.1 Dynamic model

The model system under consideration is shown in Fig. 1.
A Lagrangian formulation is used to express the evolu-
tion of the altitudeh (heave) and the angle of attackα
(pitch) [8]. The kinetic energy readsT = 1

2mḣ2
+

1
2 Iαα̇2

+

S αḣα̇, and the potential energy readsV = 1
2kαα2

+
1
2khh2.

In these expressions,Iα is the inertial moment andS α the
static moment, the structural coupling between torsional
and flexural motions being fully quantified by the term
S αḣα̇. The source termsF andM (aerodynamic force and
moment) are classically derived from the lift coefficient
CL such asF = 1

2ρU
2S CL and M = eF, whereρ is the

fluid density,U the upstream airspeed andS the airfoil
section. We assume that the angle of attack remains small,
so that the lift coefficient depends linearly onα, so that
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Fig. 2.Real (solid lines) and imaginary (dotted lines) parts of the
solutions of the eigenvalue problem for Eq. (1) given as det(A) =
0, with A defined in Eq. (2). Parameters of the problem listed in
Table 3.Θ is a reduced velocity (see text).

CL = (∂CL/∂α)α (CL |α=0 = 0 because the airfoil is sym-
metric). We consider a pseudo-static motion,i.e. the airfoil
speedḣ is not neglected as compared to the upstream air-
speedU. Lagrange equations lead to the following dynam-
ical system :

[

m S α
S α Iα

] [

ḧ
α̈

]

+

[

1
2ρUS CL,α 0
− 1

2eρUS CL,α 0

] [

ḣ
α̇

]

+

[

Kh
1
2ρU

2S CL,α

0 Kα − 1
2eρU2S CL,α

] [

h
α

]

= 0

(1)

The flutter velocityU f , for which the flutter instability oc-
curs, is determined from (1). Assuming that the airfoil mo-
tion is harmonic,h = h̃ exp(pt) andα = α̃exp(pt) with
p ∈ C, replacing in Eq. (1) one finds

A
[

h̃
α̃

]

= 0, with

A =
[

mp2
+

1
2ρUS CL,αp + Kh S αp2

+
1
2ρU

2S CL,α

S αp2 − 1
2eρUS CL,αp Iαp2

+ Kα − 1
2eρU2S CL,α

]

(2)
Eq. (2) has non trivial solutions for det(A) = 0. This yields
a polynomial of the fourth order in the variablep, the solu-
tions of which are plotted in Fig. 2.U f is found as soon as
the real part of a root crosses zero and becomes positive.
An example is given in Fig. 2 which has been computed
using the parameter values of Table 3. The critical flutter
velocity is found for that case asΘ f ≃ 0.87, whereΘ is a

reduced velocity such thatΘ = U
b

√

Iα
Kα

(see section 3).

2.2 SMA model

The SMA spring is assumed to behave in a pseudo-elastic
manner, which is briefly recalled in Fig. 3. This nonlinear
behaviour is characterized by a solid-solid phase change
between two different states. The first one is calledausten-
ite, is stable at large temperatures and is the natural state of
the spring at rest. The microstructure of the austenite phase
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Fig. 3. Pseudo-elastic behaviour of SMA and its microstructure
for each phase.

is also sketched in Fig. 3. When deformed, the microstruc-
ture of the SMA turns into a new phase, energetically sta-
ble at small temperatures, and for which the microstructure
is now oriented, called themartensite phase. The points in
the stress-strain space where the transformations start and
finish are usually denoted with the subscriptss (start) and
f (finish), so that for instanceM f refers to the point where
the martensitic transformation has been fully accomplished
in the SMA structure. The path followed in the stress-strain
relationship is not the same when the material is charged
or decharged, thus an hysteresis loop appears as illustrated
in Fig. 3. This hysteretic behaviour is the most salient fea-
ture of the pseudo-elastic behaviour of SMAs. The dissi-
pated energy during a cycle is proportional to the area of
the hysteresis loop so that the more the loop area is large,
the more energy is prone to be dissipated in the device.

The nonlinear behaviour of single dof SMAs can be
derived from a general, three-dimensional model infered
from thermodynamical laws and then reduced by consid-
ering ad-hoc assumptions, seee.g. [6]. In this contribution,
a simple heuristic model is used instead as it has the capac-
ity to retrieve the main features of the dynamical behaviour
within a light computational framework. It is built on the
behaviour sketched in Fig. 3 by approximating each part
of the diagram by a linear relationship. An internal auxil-
iary variable playing the role of the fraction of martensite
is defined so as to keep the memory of the precedent state
of the material in a dynamical simulation. For simplifica-
tion, it is assumed that the slope of the purely austenitic
and purely martensitic phases are the same, as well as the
slopes during the reverse or transverse transformations, so
that the main characteristics of the SMA are defined byK1

andK2 only as shown in Fig. 3. It is also assumed that the
behaviour of the spring is symmetric in traction and com-
pression. Internal loops are described following the sketch
in Fig. 3. The SMA is then fully described with the fol-
lowing set of parameters illustrated in Fig. 3:K1, K2, A f ,
hl andH. With these parameters, the loop area is equal to
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rα µ xα Ω γ CL,α

0.5 1/10π 0.2 0.5 0.4 2π

Table 1.Non dimensional aeroelastic parameters.

hlH
√

1+ K2
1

√

1+ K2
2 cos(arctan(1/K1)+arctan(K2)). Hence

the control parameters of this loop arehl, H, K1 andK2.
After the flutter instability, the wing experiences large-

amplitude motions especially on the pitch mode, whereas
the amplitude of the motion of the heave mode remains
fairly small. In order to take advantage of the dissipative
properties of the SMA, it appears logical to include a SMA
spring on the torsional motion, whereas the flexural spring
is left unchanged with a linear behaviour law.

2.3 Final model

The final model with a SMA torsional spring in order to
control the pitch mode is derived by inserting the nonlinear
behaviour of the SMA spring on the second equation of (1).
It reads:

[

m S α
S α Iα

] [

ḧ
α̈

]

+

[

1
2ρUS CL,α 0
− 1

2eρUS CL,α 0

] [

ḣ
α̇

]

+

[

Kh
1
2ρU

2S CL,α

0 − 1
2eρU2S CL,α

] [

h
α

]

=

[

0
−FS MA

NL (α)

]

,

(3)

whereFS MA
NL is the nonlinear restoring force of the SMA

depicted in Fig. 3.
The problem is then reduced to a nondimension system

of equations
[

1 xα
xα r2

α

] [

y′′

α′′

]

+

[

µCL,αΘ 0
−µγCL,αΘ 0

] [

y′

α′

]

+

[

Ω2 µCL,αΘ
2

0 −µγCL,αΘ
2

] [

y

α

]

=

[

0
− f S MA

NL (α)

]

,

(4)

with y = h
b , τ =

Kαt
Iα
, ()′ = d

dτ ,

rα =
√

Iα
mb2 , µ =

ρbS
2m , xα =

S α
mb , Θ = U

b

√

Iα
Kα
,

Ω =

√

KhIα
mKα
, γ = e

b , and f S MA
NL =

FS MA
NL Iα

mb2Kα
.

3 Results and Discussion

The aeroelastic parameters for the two-dofs system have
been selected according to [8], they are listed in Table 3.
Eq. (4) is integrated in time with a fourth-order Runge-
Kutta scheme. The initial condition is generally prescribed
as a small perturbation on the heave mode. To gain insight
on the critical parameter values, the flutter speedΘ f can
be derived analytically from the equations of motion. Re-
ferring to section 1, one can use the fact that at the critical
velocityΘ f , one of the real part of the roots vanishes. As-
suming thenp purely imaginary, separating real and imag-
inary parts in the 4th-order equation inp, and grouping the
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Fig. 4. Evolution of the heaveh (blue line) and pitchα (green
line) as function of time, for three different reduced velocities: (a)
Θ = 0.86 (b)Θ = 0.91 (c)Θ = 0.93. The curve are normalized to
their maximal value.

terms to eliminatep, the following expression is found, for
whichΘ f is solution

A1Θ
2 − A2 = 0

with



















A1 = µCL,α(r2
α + γxα)

A2 = r2
αxα

thus Θ f =

√

A2

A1
=

√

r2
αxα

µCL,α(r2
α + γxα)

= 0.87. (5)

WhenΘ < Θ f , the airfoil motion decreases and tends
to zero, see Fig.4(a). WhenΘ ≥ Θ f , the flutter instabil-
ity occurs and the position at rest is not stable anymore.
However, the energy of the LCO can be dissipated by the
SMA, so that for a certain range of reduced velocity, the
amplitude of the motion saturates thanks to the nonlin-
ear behaviour of the SMA, as illustrated in Fig.4(b). When
the motion amplitudes of the LCO are beyond the end of
the martensitic transformation, the potential of dissipation
of the SMA is reached, so that divergent motions are re-
trieved. The critical speed above which the motion diverges
again is denotedΘc.

3.1 Influence of SMA parameters

The key parameter in order to optimize the passive con-
trol of the flutter instability is obviouslyΘc, indeed the
largerΘc, the larger the range of flow velocities for which
the LCO amplitude is controlled. However, due to intrin-
sic physical behaviour of the SMA, the loop area cannot be
selected as large as theoretically desired. An important fea-
ture is given byhl, indeed the smaller ishl, the sooner the
martensitic transformation will be activated so that the en-
ergy dissipation will occur rapidly. Let us investigate our
last SMA parameter which is the ratioK1/K2, the LCO
amplitude is plotted vs the airflow speed in Fig.5 for differ-
ent ratioK1/K2. These calculations are made by increasing
and then decreasing the airflow speed step by step, a cubic
stiffness is added to the model in order to saturate the sys-
tem after the critical speed, the loop area is the same for all
simulations. Some remarkable behaviour can be observed:
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Fig. 6. Total energyetot versus time for the aeroelastic system
(parameters of Table 3), with and without SMA, and forΘ = 0.9.

– WhenΘ is decreasing, the LCO remains afterΘ < Θ f

for large ratioK1/K2 and smallhl.
– There is an important gap afterΘ exceedΘc regardless

of hl andK1/K2.

Thus one must pay attention to the critical velocity, be-
cause just as the upstream speed is equal toΘc, the SMA
will strongly increase the value ofαLCO and damage the
structure.

3.2 Energy exchange

From section 2.1 the total energy reads

Etot =
1
2

(

mḣ2
+ Iαα̇

2
+ Kαα

2
+ Khh2

)

+ S αḣα̇.

Then the nondimensional energy is

etot =
1
2

(

ẏ2 + r2
αα̇

2
+ kαα

2
+ Ω2y2

)

+ xαẏα̇. (6)

Its evolution is plotted in Fig. 6 for system with and with-
out SMA, for an airflow velocityΘ such that:Θ f < Θ <
Θc. For each cycle the energy increase of the system with-
out SMA corresponds exactly to the energy dissipated by
the SMA in its internal loop (for example right after the
system with SMA enters in its first internal loop this loop
dissipates 1.198 10−4 and during this time the system with-
out SMA grew 1.189 10−4). Hence in this regime, the en-
ergy saturates to a finite value.

4 Conclusion

Whether one want to harvest energy or avoid devastating
intabilities, the control of aeroelastic flutter is a critical is-
sue. An option is discussed here by using SMA springs
in pseudo-elastic behaviour, in order to use the potential
of dissipation of such materials. A numerical study with a
simple heuristic model for the behaviour of the SMA has
shown that the amplitude of the LCO after the flutter veloc-
ity can be significantly reduced by adding a SMA spring on
the pitch mode of the two-dofs aeroelastic system. How-
ever, once the damping capacity of the SMA is reached,
the LCO amplitudes are larger than those obtained with a
simple cubic spring. These findings have to be further in-
vestigated by considering different important effects of the
SMA that have not been taken into account, in particular
the dependence of the hysteresis loop on the frequency, as
well as the asymmetry of the material behaviour. These
preliminary findings will be confronted to experiments in
order to confirm the potential of the SMA as a passive de-
vice for controlling the flutter instability. Preliminary re-
sults with aeroelastic parameters fitted to the experiments
reported in [9] show an important increase ofΘc so that the
LCO amplitudes should be controlled on a larger range of
flow velocities.
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