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ABSTRACT 
The aim of the present paper is to compare two different 

methods available to reduce the complicated dynamics 
exhibited by large amplitude, geometrically nonlinear 
vibrations of a thin shell. The two methods are: the proper 
orthogonal decomposition (POD) and an asymptotic 
approximation of the Nonlinear Normal Modes (NNMs) of the 
system. The structure used to perform comparisons is a water-
filled, simply supported circular cylindrical shell subjected to 
harmonic excitation in the spectral neighbourhood of the 
fundamental natural frequency. A reference solution is obtained 
by discretizing the Partial Differential Equations (PDEs) of 
motion with a Galerkin expansion containing 16 eigenmodes. 
The POD model is built by using responses computed with the 
Galerkin model; the NNM model is built by using the 
discretized equations of motion obtained with the Galerkin 
method, and taking into account also the transformation of 
damping terms. Both the POD and NNMs allow to reduce 
significantly the dimension of the original Galerkin model. The 
computed nonlinear responses are compared in order to verify 
the accuracy and the limits of these two methods. For vibration 
amplitudes equal to 1.5 times the shell thickness, the two 
methods give very close results to the original Galerkin model. 
By increasing the excitation and vibration amplitude, 
significant differences are observed and discussed.  

 
Keywords: nonlinear vibrations, POD, nonlinear normal 
modes, shells. 

 
1. INTRODUCTION 
Reduced-order models are an attractive research topic in 
nonlinear dynamics of fluid and solid systems. From far, the 
two most popular methods used to build reduced-order models 
(ROMs) are the proper orthogonal decomposition (POD) and 
the nonlinear normal modes (NNMs) methods. The first one 
(POD, also referred to as the Karhunen-Loève method) uses a 
cloud of points in phase space, obtained from simulations or 
from experiments, in order to build the reduced subspace that 
will contain most information (Zahorian and Rothenberg 1981; 
Aubry et al. 1988; Sirovich 1987; Breuer and Sirovich 1991; 
Azeez and Vakakis 2001; Sarkar and Païdoussis 2003; 
Kerschen, et al. 2003; Amabili et al. 2003; Sarkar and 
Païdoussis 2004; Kerschen, et al. 2005; Amabili et al. 2006). 
The method is, in essence, linear, as it furnishes the best 
orthogonal basis, which decorrelates the signal components and 
maximizes variance.  
 Amabili et al. (2003, 2006) compared Galerkin and POD 
models of a water-filled circular cylindrical shell from 
moderate to extremely large vibration amplitudes. Accurate 
POD models can be build by using only POD modes with 
significant energy. In particular, Amabili et al. (2006) found 
that more proper orthogonal modes are necessary to reach 
energy convergence using time series extracted from more 
complex responses (chaotic or quasi-periodic) than from the 
periodic ones. Therefore by using complex response it is 
possible to build models with larger dimension, suitable to 
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describe with accuracy large variations of the system 
parameters. 
 The second method (NNMs), allows to construct and define 
the researched subspaces from specific properties of the 
dynamical systems, by adapting the reduction theorems 
provided by the mathematics: center manifold theorem (Carr 
1981; Guckenheimer and Holmes 1983) and normal form 
theory (Poincaré 1892; Iooss and Adelmeyer 1998; Elphick et 
al. 1987). Their application to vibratory systems led to two 
definitions of Nonlinear Normal Modes, which are equivalent 
in a conservative framework: either a family of periodic orbits 
in the vicinity of the equilibrium point (Rosenberg 1966; 
Mikhlin 1995; Vakakis et al. 1996), or an invariant manifold 
containing these periodic orbits (Shaw and Pierre, 1991). 
Numerous asymptotic methods have been proposed for their 
computation, by application of the center manifold theorem 
(Shaw and Pierre 1993), the normal form theory (Jézéquel and 
Lamarque, 1991, Touzé et al. 2004, Touzé and Amabili 2005), 
the conservation of energy for conservative systems (King and 
Vakakis 1994), or the method of multiple scales (Lacarbonara 
et al., 2003). Numerical procedures have also been proposed, 
recently by Jiang et al (2005a, b), who extended the method 
proposed by Pesheck et al. (2002) for conservative cases. 
Bellizzi and Bouc (2005) propose a numerical resolution of an 
extended KBM (Krylov-Bogoliubov-Mitropolsky) method, 
while Slater (1996) used continuation techniques to generate 
the NNM. 
 Application of the POD and NNMs methods to reduced-
order modelling enabled to show that a few degrees of freedom 
are generally enough to catch the nonlinear behaviour of many 
structures, versus the several necessary in the corresponding 
Galerkin models.  

The aim of the present study is to provide a full 
comparison of the results given by the two reduction methods 
on a realistic example: a water-filled circular cylindrical shell. 
The reference solution is obtained by the Galerkin method. Its 
convergence has been carefully checked (Pellicano et al. 2002), 
and experimental comparisons have been performed (Amabili 
2003). The construction of the POD model has been 
exhaustively explained in Amabili et al. (2003, 2006), whereas 
the asymptotic NNMs procedure used here is fully explained in 
Touzé and Amabili (2005). The peculiarity of the NNMs 
formulation is that damping is taken into account via an 
improvement of the real normal form calculation presented in 
Touzé et al. (2004). Comparisons will be drawn on two 
different cases. First, the ability of the methods to recover 
frequency-response curves will be investigated, for moderate 
values of the amplitude of the external force. Then, bifurcation 
diagrams for varying amplitude of the forcing, leading to 
complex dynamics, will be discussed. 
2. BASIC EQUATIONS FOR NONLINEAR VIBRATIONS 
OF FLUID-FILLED SHELLS 
A cylindrical coordinate system (O; x, r, θ) is chosen, with the 
origin O placed at the centre of one end of the shell. The 
displacements of the middle surface of the shell are denoted by 

u, v and w, in the axial, circumferential and radial directions, 
respectively; w is taken positive inwards. By using Donnell’s 
nonlinear shallow-shell theory, the equation of motion for 
finite-amplitude transverse deflection is given by Amabili and 
Païdoussis (2003) 
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where 3 12(1 )D E h ν 2⎡ ⎤= −⎣ ⎦  is the flexural rigidity, E Young’s 

modulus, ν the Poisson ratio, h the shell thickness, R the mean 
shell radius, ρ the mass density of the shell, c the coefficient of 
viscous damping, p the radial pressure applied to the surface of 
the shell by the contained fluid, and f is an external local 
excitation: 

( ) ( ) cos( )f f R R x x tδ θ θ δ ω= − − ,                                (2) 

where δ is the Dirac delta function, f  is the magnitude of the 

localized (point) force, and θ  and  give the angular and 
axial coordinates of the point of application of the force, 
respectively. The viscous damping model introduced in 
equation (1) is unrealistic; it will later be replaced by modal 
damping coefficients in the equations of motion. 

x

 In equation (1) the overdot denotes a time derivative, and F 
is the in-plane Airy stress function, which is given by the 
following compatibility equation (Amabili and Païdoussis 
2003): 
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In equations (1) and (3), the biharmonic operator is defined as 
2

4 2 2 2 2 2( )x R∂ ∂ ∂ ∂ θ⎡ ⎤∇ = +⎣ ⎦ . Donnell’s nonlinear 

shallow-shell equations are accurate only for modes with n ≥ 4. 
Attention is focused on simply supported, circumferentially 
closed circular cylindrical shells of length L. Moreover, u, v  
and w must be continuous in θ.  
 Excitations with frequency close to the natural frequency of 
the lowest modes of the shell are considered; low-frequency 
modes are associated with predominantly radial motion and are 
identified by the pair (m, n), where m is the number of axial 
half-waves and n is the number of circumferential waves. 
 The contained fluid is assumed to be incompressible, 
inviscid and irrotational, so that potential theory can be used to 
describe fluid motion. Liquid-filled shells vibrating in the low-
frequency range satisfy the incompressibility hypothesis very 
well. Nonlinear effects in the dynamic pressure and in the 
boundary conditions at the fluid-structure interface are 
neglected.  The shell prestress due to the fluid weight is also 
neglected. The fluid motion is described by the velocity 
potential Φ, which satisfies the Laplace equation; cavitation is 
assumed not to occur. Both ends of the fluid volume, 
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corresponding to the shell edges, are assumed to be open, so 
that a zero pressure is imposed there; this physically 
corresponds to a long shell periodically supported (e.g. with 
ring stiffeners) or it approximates a shell closed by very thin 
circular plates. The dynamic pressure p exerted by the 
contained fluid on the shell is given by Amabili (2003) 
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where ρ
F
 is the mass density of the internal fluid, In is the 

modified Bessel function of order n, and I  its derivative with 
respect to the argument.  

n′

 
3. REFERENCE SOLUTION AND REDUCED-ORDER 
MODELS 
3.1 GALERKIN METHOD 
 The Galerkin method, employing any set of basis functions 
ϕi, approximates the nonlinear partial differential equation 
(PDE) by transforming it into a finite set of coupled ordinary 
differential equations (ODEs), with the solution being 
expressed as 

1

( , ) ( ) ( ),
K

i i
i

w t q t ϕ
=

= ∑ξ                                         (5) 

where t is time,  is the vector of spatial coordinate (ξ ,x θ ) 
describing the shell middle surface Ω, qi(t) are the generalized 
coordinates, and K is the number of generalized coordinates 
(degrees of freedom), i.e. the number of basis functions 
assumed. The linear modal base is the best choice for 
discretizing the shell, as these are the eigenfunctions of the 
linear operator of the PDE. The orthogonality property of the 
eigenmodes allows decoupling the ODEs at the linear stage. 
Other sets of basis functions may be used, with the 
consequence that the ODEs are linearly coupled, and more 
functions are needed to attain convergence. The key question in 
the Galerkin method is the convergence of the solution. In 
order to have a reasonable number of degrees of freedom, it is 
important to use the most significant modes. In addition to the 
asymmetric mode directly driven into vibration by the 
excitation (driven mode), it is necessary to consider (i) the 
orthogonal mode having the same shape and natural frequency 
but rotated by /(2 )nπ  (companion mode), (ii) additional 
asymmetric modes, and (iii) axisymmetric modes. In fact, it has 
clearly been established that, for large-amplitude shell 
vibrations, the deformation of the shell involves significant 
axisymmetric oscillations inwards. According to these 
considerations, the radial displacement w is expanded by using 
the eigenmodes of the empty shell, which are unchanged for 
the completely filled shell (Amabili 2003): 
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where kn is the number of circumferential waves, m is the 
number of longitudinal half-waves (only odd values are used 
for symmetry), m m Lλ π= , and t is the time; Am,n(t), Bm,n(t) 
and Am,0(t) are the generalized coordinates that are unknown 
functions of t; the mode driven in resonance is (1, n), i.e. the 
mode for m = k = 1. The number of degrees of freedom used in 
the present numerical calculations is 16 (Amabili 2003). 

 The presence of pairs of modes having the same shape but 
different angular orientations, the first one described by 
cos( )nθ  (driven mode for the excitation given by equation (2)) 
and the other by sin( )nθ  (companion mode), in the periodic 
response of the shell leads to the appearance of a travelling 
wave around the shell in the θ direction when both these modes 
are active and when they have a relative time shift. This 
phenomenon is due to the axial symmetry of the system.  

 When the excitation has a frequency close to the resonance 
of a particular mode, say (m = 1, n), results for relatively low 
amplitude excitation (case of periodic response) show that (i) 
the generalized coordinates A1,n(t) and B1,n(t) have the same 
frequency as the excitation, (ii) the coordinates A1,2n(t), B1,2n(t), 
A3,2n(t), B3,2n(t) and all the coordinates associated with 
axisymmetric modes have twice the frequency of the excitation, 
and (iii) the coordinates A3,n(t), B3,n(t), A1,3n(t), B1,3n(t), A3,3n(t) 
and B3,3n(t)  have three times the frequency of the excitation. 
 Expansion (6) used for the radial displacement w satisfies 
identically the out-of-plane boundary conditions and the 
continuity of the circumferential displacement. The boundary 
conditions for the in-plane displacements give very complex 
expressions when transformed into equations involving w. 
Therefore, they are modified into simpler integral expressions 
that satisfy boundary conditions on the average (Amabili 
2003).  
 When the expansion of w, equations (6), is substituted in 
the right-hand side of equation (3), a partial differential 
equation for the stress function F is obtained, composed of the 
homogeneous and the particular solution.  
 Equations (4) and equation (6) present the same spatial 
distribution on the shell surface. Therefore, fluid pressure gives 
only an inertial effect, which is different for each mode of the 
expansion. Hence, the fluid is expected to change the nonlinear 
behaviour of the fluid-filled shell, as a consequence of the 
fundamental interaction among asymmetric and the 
axisymmetric modes. Usually the inertial effect of the fluid is 
larger for axisymmetric modes, thus enhancing the nonlinear 
softening type behaviour of the shell. 
 By use of the Galerkin method, 16 second-order, ordinary, 
coupled nonlinear differential equations are obtained for the 
variables Am,kn(t), Bm,kn (t) and Am,0(t), for m = 1,… M and k = 1, 
…3, by successively weighting the original equation (1) with 
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the functions that describe the shape of the modes retained in 
equation (6). These equations have very long expressions 
containing quadratic and cubic nonlinear terms and have been 
obtained by using the Mathematica 4 computer software 
(Wolfram 1999), in order to perform analytical integrals of 
trigonometric functions. The generic jth Lagrange equation is 
divided by the modal mass associated with , taking the 

following form 
jq

2 (
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 for j = 1,…K,  (7) 

where ˆ
jf  is projection of the nondimensionalized force, which 

must be set equal to zero in all the equations where 
,j m k nq B= , 

( )j
i pg  are coefficients of quadratic terms and  are 

coefficients of cubic terms; ζ

( )j
i pkh

j is the modal damping ratio, 
substituting here the unrealistic viscous damping introduced in 
equation (1). In equation (7) each generalized coordinate qj 
(and therefore the modal damping 

jζ  and circular frequency 

jω ) has to be referred to mode (m, n), i.e. qj = Am,n or Bm,n. For 

computational convenience a non-dimensionalization of 
variables is also performed: the time is divided by the period of 
the resonant mode and the vibration amplitudes are divided by 
the shell thickness h. It can be observed that nonlinear terms do 
not involve time derivative of qj. By introducing a dummy 
variable, the K second-order equations are transformed into 
2×K first-order nonlinear differential equations that are studied 
by using (i) the software AUTO 97 (Doedel et al. 1998) for 
continuation and bifurcation analysis of nonlinear ordinary 
differential equations, and (ii) direct integration of the 
equations of motion by using the DIVPAG routine of the 
Fortran library IMSL. Continuation methods allow following 
the solution path, with the advantage that unstable solutions can 
also be obtained; these are not ordinarily attainable by using 
direct numerical integration. The software AUTO 97 is capable 
of continuation of the solution, bifurcation analysis and branch 
switching by using pseudo-arclength continuation and 
collocation methods.  
 
3.2 PROPER ORTHOGONAL DECOMPOSITION (POD) METHOD 
 The POD method optimally extracts the spatial information 
necessary to characterize the spatio-temporal complexity and 
inherent dimension of a system, from a set of temporal 
snapshots of the response, gathered from either numerical 
simulations or experimental data. In the present context, the 
temporal responses are obtained via the conventional Galerkin 
solution. The proper orthogonal modes obtained by the POD 
method will be used as a basis in conjunction with the Galerkin 

approach. The solution can be expressed by using the basis of 
the proper orthogonal modes (ξ)iψ , 

1

( , ) ( ) ( ),
K

i i
i

w t a t ψ
=

= ∑ξ ξ                                          (8) 

where ai are the proper orthogonal coordinates and K  is the 
number of proper orthogonal modes (degrees of freedom) used 
to build the POD model (in general, significantly lower than K 
in equation (5) necessary for the conventional Galerkin 
method).  
 The displacement field w is divided into its time-mean value 

( )w ξ  and the zero-mean response 

( )( , ) ( , ) ( )w t w t w= −ξ ξ ξ . In the POD method, the proper 

orthogonal modes are obtained by minimizing the objective 
function  

( )2( ) ( , )w tλ ψ= −ξ ξ              ,                     (9) Ω∀ ∈ξ

with  denoting the time-averaging operation and (ξ)ψ  the 

generic POD mode. Minimizing of the objective function (9) is 
obtained, after some mathematics, by solving the following 
eigenvalue problem:  
 

( , ) ( , ) ( )d ( )w t w t
Ω

ψ λψ′ ′ ′< > =∫ ξ ξ ξ ξ ξ ,                      (10) 

where ( , ) ( , )w t w t′< >ξ ξ  is the time-averaged spatial 
autocorrelation function.   
 A Galerkin projection scheme for determining proper 
orthogonal modes (POMs) semi-analytically, and in parallel to 
approximate the solution of the PDE has been developed in 
(Sarkar and Païdoussis 2003).  
 The optimal number of terms K  to be retained can be 
estimated by 

1 1
0.99K K

i ii i
λ λ

= =
≥∑ ∑  in equation (10); 

however, for each problem this cut-off value can be different. It 
would be useful to check the convergence of the solution by 
increasing the value ; over a certain value, the results can 
become less accurate, because the additional terms introduced 
in the expansion may be highly noise-polluted.  

K

 In some applications, it may be better to use time responses 
obtained for different system parameters in order to produce 
better proper orthogonal modes.  
 The POD method gives a set of equations of motion with 
exactly the same structure of those obtained with the 
conventional Galerkin method, equation (7), with the 
difference of a reduced order of degrees of freedom, i.e. 
K K< . Both travelling waves around the shell in opposite 
directions have been taken into account (one obtained by direct 
integration and the other by changing the sign to the 
generalized coordinates associated to sin(n θ) terms in equation 
(6)) to construct the POD reduced-order model; this is 
fundamental to reproduce the axisymmetry of the shell with no 
preferential direction. 
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3.3 ASYMPTOTIC NONLINEAR NORMAL MODES (NNMS) METHOD 
 Nonlinear Normal Modes (NNMs) are here defined as 
invariant manifold of the state space. They are moreover 
chosen tangent at the origin, which corresponds to the position 
of the structure at rest. An asymptotic procedure, based on the 
normal form theory, is used to compute the NNMs of the 
system. The method is here briefly recalled, the interested 
reader is referred to Touzé and Amabili (2005) for a complete 
description. In particular, it allows to take modal damping into 
account in the derivations, hence extending previous results 
obtained for conservative systems (Touzé et al. 2004). A third-
order asymptotic development is applied, in order to perform a 
nonlinear change of coordinates for the system of damped 
unforced equation of motion, corresponding to equation (7) 
with right-hand-side equal to zero. A real formulation is used, 
so that normal forms are expressed with oscillators. The 
dummy variable j jy q=  for the nondimensional velocity 

permits to recast the system of equations into first-order. The 
nonlinear change of coordinates is:  
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   (11) 
where rj is the transformed nondimensional displacement and sj 
is the transformed nondimensional velocity; other symbols are 
the transformation coefficients, known by analytical 
expressions. After substitution of (11) into (7), the dynamics, 
written with the newly introduced variables (rj, sj), is expressed 
in an invariant-based span of the state space by cancelling all 
the invariant-breaking terms (i.e. the non-resonant terms). As a 
result, proper truncations can now be realized, as all invariant-
breaking terms between oscillators in Eqs. (7), have been 
cancelled. The reduction can now be applied by simply 
selecting the most important normal coordinates for simulation 
(master coordinates), and cancelling all the others. In the case 
considered here, the minimum model must retain the NNMs 
corresponding to the driven mode (r1, s1, that are the 
continuations of A1,5

 

and 
1,5A ) and the companion mode (r2, s2, 

that are the continuations of B1,5

 

and 1,5B ), as these two modes 

have the same eigenfrequency (1:1 internal resonance). Finally, 
the reduced-order model (ROM) built by selecting these two 
pairs of coordinates writes: 
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2 (2) (2) 3
2 2 2 2 2 2 222 222 2 222 2 2

(2) (2) (2) 2 (2) 2
112 211 112 2 1 211 2 1
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112 1 1 2 222 2 2 121 211 1 2 1
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    (12b) 

where  are the coefficients of cubic terms in equation (7), ( )j
i p kh

( )j
ipkA , ( )j

ipkB  and ( )j
ipkC  arise from the cancellation of the 

quadratic terms, and are expressed by 

 ,                         (13a) ( ) ( ) ( ) ( ) ( )

1

S l i
j j l j

ipk il pk li pk
l i l

A g a g
≤

≥ =

= +∑ ∑ la
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1

S l i
j j l j
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l i l
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 ,                          (13c) ( ) ( ) ( ) ( ) ( )

1

S l i
j j l j

ipk il pk li pk
l i l

C g c g
≤

≥ =

= +∑ ∑ lc

where  are the coefficients of quadratic terms in equation 

(7). Forcing term has been added at the end of the process and 
now appears in Eq. (12a). This is the second approximation 
used for building this ROM, as a time-invariant manifold is 
used. The most accurate solution would have consisted in 
constructing a periodically forced invariant manifold, see e.g. 
(Jiang et al. 2005b). However, this results in a very complicated 
formulation and time-consuming numerical calculations for 
constructing the ROM. The proposed method has the advantage 
of the simplicity, the quickness of the computation, and allows 
deriving a differential model that could be used easily for 
parametric studies. However, it is valid, strictly speaking, only 
for small values of 

( )j
i lg

f̂ . 
 With the NNMs method, the original 16 degree of freedom 
of the conventional Galerkin model have been reduced to two 
in equation (12). However, differently to POD method, the 
structure of the equations of motion is changed. In fact, 
quadratic nonlinear terms have been cancelled, but cubic terms 
involves both the transformed nondimensional displacement 
and the transformed nondimensional velocity.  
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3.4 DISCUSSION 
After presentation of the two reduction methods, a first 

discussion on their theoretical settings is here provided in order 
to underline their abilities and limitations.  

The POD method, which consists in finding the best 
orthogonal hyper-planes that contains most information, is 
essentially a linear method. This can be seen as an advantage 
since few manipulations, involving linear algebra only, are 
needed to construct the ROM. The key formula of the method, 
Eq. (14), is an eigenvalue problem. On the other hand, the 
linear essence of the method may be a drawback, as curved 
subspaces are generally more suitable to capture clouds of 
points with complicated shapes. A NNM, being an invariant 
manifold in state space, is a curved subspace, so that the NNMs 
reduction method is essentially nonlinear. The invariance 
property is the key that allows finding the lowest dimensional 
subspaces that contains dynamical properties, since dynamical 
motions do not stay within any other subspace that do not share 
this invariance property. This is the main advantage of the 
NNMs method as compared to the POD. It is expected that 
fewer NNM are necessary than POD modes. This will be 
illustrated in sections.  

The POD method is global in the sense that it is able to 
capture any motion in state space and furnishes the adapted 
basis for decomposing it. This is an advantage as compared to 
the asymptotic NNMs method used here, which relies on a 
local theory. The third-order development, Eq. (11), is valid for 
small values of the modal amplitudes. Moreover, the use of a 
time-invariant manifold prevents for reliable results for large 
values of the amplitude of external forcing. When increasing 
the non-linearities by feeding more energy into the system, the 
results provided by the asymptotic NNMs method are awaited 
to deteriorate. This is not the case for the POD, if one has taken 
care to construct its POD-based ROM with clouds of points 
that are significant for a large range of values of the 
nonlinearity. In this context, it has already been argued 
(Kerschen 2003, Amabili et al. 2006) that a chaotic response is 
the best candidate for building the POD.  

Finally, the two methods differ radically in the way the 
ROM is built. For the POD, one must mandatory have a 
response of the system to be able to build the ROM. In the 
present context of a completely theoretical model, this is a 
drawback since one must compute time responses to be in 
position of reducing. Moreover, it has been underlined by 
Amabili et al. (2003, 2006) that the choice of these time 
responses is not an easy task that could not be done blindly. By 
comparison, the asymptotic NNMs method do not need any 
response of the system, but dynamical properties only, that are 
here provided by Eq. (7), i.e. after projection of the PDE with 
the Galerkin method. With at hand the eigenvalues of the linear 
part (eigenfrequencies ωj and damping coefficients ζj) and the 
nonlinear coefficients ( )j

i lg and , the nonlinear change of 

coordinates, Eq. (11), can be applied directly to obtain the 
ROM. As the coefficients in Eq. (11) are computed once and 

for all, application of the method is easy and do not ask for 
computation time. In the next section, all these conclusions will 
be illustrated with the numerical results. 

( )j
i pkh

 
4. NUMERICAL RESULTS 
The simply supported, water-filled circular cylindrical shell 
(without imperfections) investigated by Amabili (2003) is 
considered, with the following dimensions and material 
properties: L = 520 mm, R = 149.4 mm, h = 0.519 mm, E = 
2.06 × 1011 Pa, ρ = 7800 kg/m3, ρ

F
 = 1000 kg/m3 and ν = 0.3.  

(a) 
 

(b) 
 ω/ω1,n

 
FIGURE 1. Maximum amplitude of vibration versus excitation 
frequency, excitation 3 N; conventional Galerkin model, 16 
dofs. (a) Maximum amplitude of 1, ( )nA t , driven mode; (b) 

maximum amplitude of , companion mode; 1, branch 

“1”; 2, branch “2”; BP, pitchfork bifurcation; TR, Neimark-
Sacker (torus) bifurcations. ▬▬, stable periodic solutions; ▬  
▪  ▬, stable quasi-periodic solutions;  ▬   ▬, unstable periodic 
solutions. 

1, ( )nB t
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Numerical calculations have been performed for the 
fundamental mode (m = 1, n = 5) of the water-filled shell. The 
natural frequency ω1,n of this mode is 79.21 Hz, according to 
Donnell’s theory of shells; modal damping ζ1,n = 0.0017 is 
assumed. The two reduction methods will be compared on their 
ability to recover frequency-response curves and time 
responses, for moderate values of the amplitude of forcing, 
respectively 3 N and 8 N.  

 The response of the fundamental mode of the water-filled 
shell to harmonic point excitation of 3 N at / 2x L=  and 

 has been computed by using the conventional Galerkin 
model with 16 degrees of freedom (dofs); result is given in 
Figure 1. The solution presents a main branch “1” 
corresponding to zero amplitude of the companion mode 

; this branch has pitchfork bifurcations (BP) at 

0θ =

1, ( )nB t

1,/ nω ω = 0.9714 and at 1.0018, where branch “2” appears. 

This new branch corresponds to participation of both 1, ( )nA t  

and , giving a travelling wave response. Branch “2” 

undergoes two Neimark-Sacker (torus) bifurcations (TR), at 
1, ( )nB t

1,/ nω ω = 0.9716 and 0.9949. Amplitude-modulated (quasi-

periodic) response is indicated in Figure 1 for 
1,0.9716 / 0.9949nω ω< < , i.e. bracketed by the two Neimark-

Sacker bifurcations. 
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(b) 
FIGURE 2. Time response at excitation frequency 1,/ nω ω = 

0.991, excitation 3 N; conventional Galerkin model, 16 dofs: 
(a) modal coordinate  associated to the driven mode; (b) 

modal coordinate  associated to the companion mode. 
1, ( )nA t

1, ( )nB t
The quasi-periodic time response of the shell for excitation 

of 3 N at frequency 1,0.991 nω ω= , branch “2”, is reported in 

Figure 2 for the most significant generalized coordinates. This 
time response, which is more suitable than simple periodic 
responses to construct accurate POD models (Amabili et al. 

2003), has been used to build a POD model. Both travelling 
waves around the shell in opposite directions have been taken 
into account (one obtained by direct integration and the other 
by changing the sign to the generalized coordinates associated 
to sin(n θ) terms in equation (8)) to construct the POD reduced-
order model. The optimal number of proper orthogonal modes 
K  to be retained in the reduced-order model can be estimated 
by plotting 

1

K K
ii i 1 iλ λ

= =∑ ∑  as a function of K ; three proper 

orthogonal modes absorb practically all of the shell energy for 
the response at 1,/ nω ω = 0.991; therefore three proper 

orthogonal modes are used in the POD model. The first proper 
orthogonal mode is the driven mode, the second is the 
companion mode and the third is the axisymmetric mode. 

 Responses obtained by using the conventional Galerkin 
method (16 dofs) and by using the POD method (3 dofs) 
compare very well for excitation of 3 N, as shown in Figure 3 
for both driven and companion modes; the main difference is a 
slight shift on the right of the first bifurcation point of branch 
“1”. It can also be observed that the natural frequency 
computed with the POD model is practically identical to the 
one computed with the Galerkin model. Figure 3 also shows 
the response computed with the NNMs method with only two 
degrees of freedom. It can be observed that also the response 
computed with the NNMs method compare very well with the 
original Galerkin model, with the curves just very slightly 
shifted in the left and with exact qualitative behaviour. In this 
case the maximum vibration amplitudes reach about 1.5 h for 
the driven mode and 0.9 h for the companion mode. 

 In order to compare results also in time domain, the quasi-
periodic responses ( 1,/ nω ω = 0.991, excitation 3 N) computed 

with the POD and NNMs models are reported in Figures 4 and 
5, respectively; this response is more critical to be reproduced 
by reduced-order models than simple periodic responses. 
Whereas the response computed with the POD is in reasonably 
good agreement with the one in Figure 2 obtained with the 
Galerkin model, the response calculated by using the NNMs 
model is practically coincident with this.  

 Figure 6 has been obtained with the same three models 
(Galerkin, NNMs and POD for which the same equations 
obtained with time response for excitation of 3 N has been 
used), but for excitation of 8 N. In this case the maximum 
vibration amplitudes reach about 3 h for the driven mode and 
2.5 h for the companion mode; differences among the three 
models become much more significant than in the previous 
case. In particular, the POD model is relatively close to the 
original Galerkin model, the main difference being the first 
bifurcation point of branch “1”, which is now significantly 
shifted on the right giving rise to a significant difference in the 
qualitative behaviour of the two models. The NNMs model has 
qualitatively the same behaviour of the original Galerkin 
model, but the response is significantly shifted on the left 
giving rise to model overestimating the softening nonlinearity 
of the system.  
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FIGURE 3. Maximum amplitude of vibration versus excitation 
frequency, excitation 3 N; conventional Galerkin model, POD 
model with 3 modes and NNMs model with 2 modes. (a) 
Maximum amplitude of 1, ( )nA t , driven mode; (b) maximum 

amplitude of , companion mode. ▬▬,  conventional 

Galerkin model (16 dofs); ⎯⎯, POD model (3 dofs);  ▬   ▬, 
NNMs model (2 dofs). 

1, ( )nB t

 
 It can be observed here that the POD model could be 

improved by using a time response computed for excitation of 
8 N to find the proper orthogonal modes; however it is 
interesting here to investigate the robustness of a reduced order 
model to changes in the system parameters, therefore it is 
convenient to use the same model. On the other hand, the 
NNMs model is built once and for all, and may not been 
changed when varying the amplitude of the forcing. The 
observed differences with the reference solution are the 
consequences of the two approximations used to build it: 
asymptotic development and time-invariant manifold. 
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FIGURE 4. Time response at excitation frequency 1,/ nω ω = 

0.991, excitation 3 N; POD model, 3 dofs: (a) modal coordinate 
1, ( )nA t  associated to the driven mode; (b) modal coordinate 

 associated to the companion mode. 1, ( )nB t
 

84 86 88 90 92
Time H Ls

−1

−0.5

0

0.5

1
A
1,
nHt

Lêh

(a) 

84 86 88 90 92
Time sH L

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

B 1
,n
HtL

êh

(b) 
FIGURE 5. Time response at excitation frequency 

1,/ nω ω = 

0.991, excitation 3 N; NNMs model, 2 dofs: (a) modal 
coordinate 1, ( )nA t  associated to the driven mode; (b) modal 

coordinate  associated to the companion mode. 1, ( )nB t
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FIGURE 6. Maximum amplitude of vibration versus excitation 
frequency, excitation 8 N; conventional Galerkin model, POD 
model with 3 modes and NNMs model with 2 modes. (a) 
Maximum amplitude of 1, ( )nA t , driven mode; (b) maximum 

amplitude of , companion mode. ▬▬,  conventional 

Galerkin model (16 dofs); ⎯⎯, POD model (3 dofs);  ▬   ▬, 
NNMs model (2 dofs). 

1, ( )nB t

 
 

5. CONCLUSIONS 
Results show that both the proper orthogonal decomposition 
(POD) and the nonlinear normal modes (NNMs) methods are 
suitable to build reduced order model of a water-filled shell. In 
particular, a larger reduction of the model is possible by using 
the NNMs method. However, the asymptotic formulation used 
here in the NNMs method does not make it suitable to study 
very large vibration amplitudes, where the POD model 
performs better.  
 These results have to be related to the properties of the two 
methods. The nonlinear character of the invariant manifolds 

that defines NNMs allows better reduction than the POD 
method, which is a linear decomposition. On the other hand, 
the global nature of the POD provides very robust results even 
for complex dynamics.. However, it has been found that, 
although being an approximation, the qualitative behaviour of 
the NNMs compares very well with the original solution, until 
the validity limits are attained. It has been found numerically 
that these limits are not that small: amplitude of vibration up to 
3h.  
 Construction of the NNM-based reduced-order model with 
the asymptotic method is direct and does not need for intensive 
computations, as a single nonlinear change of coordinates, 
computed once and for all, is required. The method can be thus 
blindly applied, provided the Galerkin projection has been 
performed on a large number of modes. On the other hand, for 
the POD, particular care must be placed in the choice of the 
time responses used to build it, as already discussed in Amabili 
et al. (2003).  

To conclude, the investigations conducted here show that 
for moderate vibration amplitude, the asymptotic NNMs 
method provides more reduced equations that always recover 
the qualitative behaviour. However, the method must be 
modified in order to bypass its main limitation, which is due to 
the asymptotic development. Unfortunately, only numerical 
solutions are possible, thus leading to an intense numerical 
effort in order to build the reduced-order model. Hence, for 
very large vibration amplitude and large range of parameter 
variations, the POD method still performs better due to its 
global nature. 
 

ACKNOWLEDGMENTS 
The first author (M.A.) gratefully acknowledges fundamental 
cooperation on related topics with Francesco Pellicano, 
Michael P. Païdoussis and Abhijit Sarkar. The second author 
(C.T.), gratefully acknowledges Gérard Iooss for stimulating 
discussions on the mathematical aspects of the problems dis-
cussed herein. 

REFERENCES 
Amabili, M., 2003. Theory and experiments for large-amplitude vibrations of 

empty and fluid-filled circular cylindrical shells with imperfections. 
Journal of Sound and Vibration 262, 921-975. 

Amabili, M., Païdoussis, M. P., 2003. Review of studies on geometrically 
nonlinear vibrations and dynamics of circular cylindrical shells and panels, 
with and without fluid-structure interaction. Applied Mechanics Reviews 
56(4), 349-381. 

Amabili, M., Sarkar, A., Païdoussis, M. P., 2003. Reduced-order models for 
nonlinear vibrations of cylindrical shells via the proper orthogonal 
decomposition method. Journal of Fluids and Structures 18, 227-250. 

Amabili, M., Sarkar, A. Païdoussis, M. P., 2006. Chaotic vibrations of circular 
cylindrical shells: Galerkin versus reduced-order models via the proper 
orthogonal decomposition method. Journal of Sound and Vibration 290, 
736-762. 

Aubry, N. Holmes, P., Lumley, J. L., Stone, E., 1988. The dynamics of coherent 
structures in the wall region of a turbulent boundary layer. Journal of Fluid 
Mechanics 192, 115-173. 

 9 Copyright © 2006 by ASME 



Azeez, M. F., Vakakis, A. F., 2001. Proper orthogonal decomposition (POD) of 
a class of vibroimpact oscillations. Journal of Sound and Vibration 240, 
859-889. 

Bellizzi, S., Bouc, R., 2005. A new formulation for the existence and 
calculation of nonlinear normal modes. Journal of Sound and Vibration 
287, 545-569.  

Breuer, K. S., Sirovich, L., 1991. The use of the Karhunen-Loève procedure for 
the calculation of linear eigenfunctions. Journal of Computational Physics 
96, 277-296. 

Carr, J., 1981. Applications of centre manifold theory. Springer-Verlag, New-
York. 

Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, 
B., Wang, X., 1998. AUTO 97: Continuation and Bifurcation Software for 
Ordinary Differential Equations (with HomCont). Concordia University, 
Montreal, Canada. 

Elphick, C., Tirapegui, E., Brachet, M., Coullet, P., Iooss, G., 1987. A simple 
global characterization for normal forms of singular vector fields. Physica 
D 29, 95–127. 

Guckenheimer, J., Holmes, P., 1983. Non-linear oscillations, dynamical systems 
and bifurcations of vector field. Springer, New-York.  

Iooss, G., Adelmeyer, M., 1998. Topics in bifurcation theory. World Scientific, 
New-York, second edition. 

Jézéquel, L., Lamarque, C. H., 1991. Analysis of non-linear dynamical systems 
by the normal form theory. Journal of Sound and Vibration 149, 429– 459. 

Jiang, D., Pierre, C., Shaw, S., 2005a. The construction of non-linear normal 
modes for systems with internal resonance. International Journal of Non-
linear Mechanics 40, 729–746. 

Jiang, D., Pierre, C., Shaw, S., 2005b. Nonlinear normal modes for vibratory 
systems under harmonic excitation. Journal of Sound and Vibration 288, 
791–812.  

Kerschen, G., Feeny, B. F., Golinval, J.-C., 2003. On the exploitation of chaos 
to build reduced-order models. Computer Methods in Applied Mechanics 
and Engineering 192, 1785-1795. 

Kerschen, G., Golinval, J.-C., Vakakis, A. F., Bergman, L. A., 2005. The method 
of proper orthogonal decomposition for dynamical characterization and 
order reduction of mechanical systems: an overview. Nonlinear Dynamics 
41, 147-169. 

King, M. E., Vakakis, A. F., 1994. Energy-based formulation for computing 
nonlinear normal modes in undamped continuous systems. Journal of 
Vibration and Acoustics 116, 332-340. 

Lacarbonara, W., Rega, G., Nayfeh, A. H., 2003. Resonant non-linear normal 
modes. Part I: analytical treatment for structural one-dimensional systems. 
International Journal of Nonlinear Mechanics 38, 851-872. 

Mikhlin, Yu. V., 1995. Matching of local expansions in the theory of non-linear 
vibrations. Journal of Sound and Vibration 182, 577-588. 

Pellicano, F., Amabili, M., Païdoussis, M. P., 2002. Effect of the geometry on 
the non-linear vibration of circular cylindrical shells. International Journal 
of Non-Linear Mechanics 37, 1181-1198. 

Pesheck, E., Pierre, C., Shaw, S., 2002. A new Galerkin-based approach for 
accurate non-linear normal modes through invariant manifolds. Journal of 
Sound and Vibration 249, 971–993. 

Poincaré, H., 1892. Les méthodes nouvelles de la mécanique céleste. Gauthiers-
Villars, Paris. 
Rosenberg, R. M., 1966. On non-linear vibrations of systems with many 

degrees of freedom. Advances in Applied Mechanics 9, 155-242. 
Sarkar, A., Païdoussis, M. P., 2003. A compact limit-cycle oscillation model of a 

cantilever conveying fluid. Journal of Fluids and Structures 17, 525-539. 
Sarkar, A., Païdoussis, M. P., 2004. A cantilever conveying fluid: coherent 

modes versus beam modes. International Journal of Non-Linear 
Mechanics 39, 467-481. 

Shaw, S., Pierre, C., 1991. Non-linear normal modes and invariant manifolds. 
Journal of Sound and Vibration 150, 170-173. 

Shaw, S. W., Pierre, C., 1993. Normal modes for non-linear vibratory systems. 
Journal of Sound and Vibration 164, 85–124. 

Sirovich, L., 1987. Turbulence and dynamics of coherent structures, Part I: 
coherent structures. Quarterly of Applied Mathematics 45, 561-571. 

Slater, J. C., 1996. A numerical method for determining nonlinear normal 
modes. Nonlinear Dynamics 10, 19 –30. 

Touzé, C., Amabili, M., 2005. Non-linear normal modes for damped 
geometrically non-linear systems: application to reduced-order modeling of 
harmonically forced structures. Journal of Sound and Vibration 
(submitted). 

Touzé, C., Thomas, O., 2006. Non-linear behaviour of free-edge shallow 
spherical shells: Effect of the geometry. International Journal of Non-
linear Mechanics (accepted). 

Touzé, C., Thomas, O., Chaigne, A., 2004. Hardening/softening behaviour in 
nonlinear oscillations of structural systems using non-linear normal modes. 
Journal of Sound and Vibration 273, 77–101. 

Vakakis, A. F., Manevich, L. I., Mikhlin, Yu. V., Philipchuck, V. N., Zevin, A. 
A., 1996. Normal modes and localization in non-linear systems. Wiley, 
New-York. 

Wolfram, S., 1999. The Mathematica Book, 4th edition. Cambridge University 
Press, Cambridge, UK. 

Zahorian, S. A., Rothenberg, M., 1981. Principal component analysis for low-
redundancy encoding of speech spectra. Journal of the Acoustical Society 
of America 69, 519-524. 

 

 10 Copyright © 2006 by ASME 


