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ABSTRACT

This paper presents simulations of nonlinear plate vibrations in re-
lation to sound synthesis of gongs and cymbals. The von Kármán
equations are shown and then solved in terms of the modes of the
associated linear system. The modal equations obtained constitute
a system of nonlinearly coupled Ordinary Differential Equations
which are completely general as long as the modes of the sys-
tem are known. A simple second-order time-stepping integration
scheme yields an explicit resolution algorithm with a natural par-
allel structure. Examples are provided and the results discussed.

1. INTRODUCTION

Nonlinear vibrations of plates constitute a large domain of research
which embraces fields ranging from mechanical and civil engi-
neering, to physics and sound synthesis [1, 2, 3, 4, 5]. The latter
is the subject of interest in this work, because plates are, geometri-
cally speaking, the simplest kind of idiophone although they share
the same salient dynamical features of idiophones of more com-
plex shape (bells, shells, gongs). Hence, numerical simulations of
plates offer appealing possibilities for sound synthesis with direct
applications to the sound of gongs and cymbals. However, be-
cause of the complexity of the nonlinear dynamics, time-domain
simulations have become a feasible possibility only in recent years,
when compared to sound synthesis of simpler systems such as lin-
ear bars [6] and plates [7]. The first complete study on full time-
domain simulations of the classic nonlinear plate equations (the
von Kármán equations) is due to Bilbao [8]. In this work a rect-
angular plate with simply-supported conditions is considered and
a solution given in terms of a stable, second-order, implicit Finite
Difference scheme. The stability condition is achieved through
numerical conservation of the energy of the system. Subsequent
work by Bilbao and Torin extended the case of a single plate to
a full 3D multi-plate environment, where the plates are coupled
through pressure waves in air [9]. On the other hand, a modal ap-
proach was proposed by Chadwick [10] to treat the case of shells.
More recently, a modal approach was proposed by these authors to
solve the von Kármán plate equations [11]. Such model is based on
the projection of the original system onto the linear modes. Time
integration is performed using the time-stepping scheme borrowed
from Bilbao [8] and adapted to the modal equations so to give
energy conservation mode by mode. Such approach, despite not
being per se "better" than Finite Differences, has anyhow proven
useful for a number of reasons, namely
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• for particular combinations of geometry and boundary con-
ditions, the modes are known analytically and therefore the
coupling coefficients and eigenfrequencies can be calcu-
lated with very high precision (the case of a circular plate
with a free boundary, notoriously difficult to treat using Fi-
nite Differences, falls into this category);

• damping can be implemented mode by mode resulting re-
sulting in a much more accurate (frequency-dependent) rep-
resentation of losses.

In turn, the modal approach should be regarded as a practical alter-
native to Finite Differences in the case of plates. In this work, the
modal approach is described and some applications shown. With
respect to [11], the time-stepping scheme selected in the present
work is a simpler Störmer-Verlet scheme instead of the more com-
plex implicit scheme. The simplification obtained through this
choice comes at a high cost: the stability of the resulting numer-
ical algorithm. It is, of course, the case to stress the importance
of numerical stability when dealing with sound synthesis routines:
as a general rule, an algorithm design unable to guarantee stability
should be frowned upon.

For the case of the nonlinear modal equations in this work,
however, an exception will be made. In fact, stable modal and
Finite Difference algorithms have been extensively studied in the
aforementioned works, and therefore the focus in this paper will be
on efficiency rather than stability. In addition, the Störmer-Verlet
scheme is perfectly adapted to the problem of the linear plate, be-
ing energy conserving and stable. The choice of this scheme is
justified on the basis that

• the resulting algorithm is explicit and therefore does not re-
quire to solve a linear system of algebraic equations;

• for the modal equations, the calculation of the nonlinear
term can be highly parallelised thus allowing fast computa-
tions.

The paper is composed as follows: in section 2 the equations are
presented along with the modal approach. Section 3 presents the
Störmer-Verlet integration scheme and resulting algorithm. Sec-
tion 4 presents two case studies; convergence of the coupling co-
efficients is shown. Section 5 discusses in more detail the simula-
tions obtained with scheme.

2. MODEL EQUATIONS

The literature presents a number of model equations describing
the nonlinear behaviour of plates. Such models rely on different
assumptions which simplify the complexity of the system [1]. In
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general, the nonlinearity of a plate is of geometric type, meaning
that nonlinear effects come into existence when the amplitude of
vibrations increases above a reference amplitude. In actual fact,
for such high amplitudes, flexural displacements must entail some
kind of in-plane motion which results in a coupling of the modes of
vibrations. Amongst the many possible models that describe such
dynamics, the von Kármán model represents a particularly attrac-
tive choice. Such model, in fact, describes with high degree of
accuracy the nonlinear dynamics of plates (at least for vibrations
up to a few times the thickness), despite a relatively straightfor-
ward extension of the underlying linear model (the Kirchhoff plate
equation). In the von Kármán model, the in-plane displacement is
originated by a second order correction to the linear strain tensor
[12]. Such correction results in a modal coupling for the flexural
modes. The von Kármán equations for the flexural displacement
w(x, t) are written as

ρhẅ +D∆∆w = L(w,F ) + p(x, t)−R(ẇ),

∆∆F = −Eh
2
L(w,w),

where ρ is the material volume density, h the plate thickness, and
D stands for flexural rigidity: D = Eh3/12(1− ν2), with E and
ν respectively Young modulus and Poisson ratio. ∆ represents the
two-dimensional Laplacian operator, while p(x, t) stands for the
normal external forcing, and R(ẇ) is a generic expression for the
viscous damping depending on the velocity field. The function
F (x, t) is known as Airy stress function and it accounts for the in-
plane displacement. The operator L is generally referred to as the
von Kármán operator or Monge-Ampère form in the literature and
may be expressed in intrinsic coordinates, for two functions f(x)
and g(x), as [13]

L(f, g) = ∆f∆g −∇∇f : ∇∇g,

where : denotes the doubly contracted product of two tensors.

2.1. Modal approach

The von Kármán equations are now solved formally using a modal
approach. This means that both the transverse and in-plane func-
tions are expanded onto a series of base functions corresponding
to the modes of the associated linear system (which form therefore
a complete set over the domain of the plate). Note that the fol-
lowing derivation is independent of the choice of the geometry of
the plate and of the boundary conditions. Let {Φk(x)}k≥1 be the
eigenmodes of the transverse displacement. These functions are
the solutions of the Sturm-Liouville eigenvalue problem

∆∆Φk(x) =
ρh

D
ω2
kΦk(x), (2)

together with the associated boundary conditions. In Eq. (2), ωk
stands for the kth radian eigenfrequency. The linear modes are
defined up to a constant of normalisation that can be chosen arbi-
trarily. For the sake of generality, Sw denotes the constant of nor-
malisation of the function Φ̄ = Sw

Φk(x)
‖Φk‖

. The norm is obtained
from a scalar product < α, β > between two functions α(x) and
β(x), defined as

< α, β >=

∫
S

αβ dS −→ ‖Φk‖2 =< Φk,Φk >,

where S represents the area of the plate.

The eigenmodes for the Airy stress function are denoted as
{Ψk(x)}k≥1. They satisfy the following eigenvalue problem

∆∆Ψk(x) = ζ4
kΨk(x), (3)

together with the associated boundary conditions for F . The linear
modes so defined are orthogonal with respect to the scalar product,
and are therefore a suitable function basis [14]. Orthogonality be-
tween two functions Λm(x, y),Λn(x, y) is expressed as

< Λm,Λn >= δm,n‖Λm‖2,

where δm,n is Kronecker’s delta.
The Partial Differential Equations (1) for the perfect plate are

discretised by expanding the two unknowns w and F along their
respective eigenmodes

w(x, t) = Sw

NΦ∑
k=1

Φk(x)

‖Φk‖
qk(t),

F (x, t) = SF

NΨ∑
k=1

Ψk(x)

‖Ψk‖
ηk(t),

where qk(t) and ηk(t) represent respectively the modal transverse
displacement and the modal coordinate for the Airy stress func-
tion. The integers NΦ and NΨ are intended to be finite for any
numerical simulation. Following a standard projection technique
and using the orthogonality relationship leads to discretisation of
system (1) [15]. The discretised von Kármán equations read

q̈s + ω2
sqs + 2ξsωsq̇s =

− ES2
w

ρ

NΦ∑
k,m,n

[
NΨ∑
l=1

Hl
m,nE

s
k,l

2ζ4
l

]
qkqmqn + ps(t), (5)

The tensors appearing in Eq. (5) can be rewritten as

Hk
i,j =

∫
S

ΨkL(Φi,Φj)dS

‖Ψk‖ ‖Φi‖ ‖Φj‖

Esi,j =

∫
S

ΦsL(Φi,Ψj)dS

‖Φs‖ ‖Φi‖ ‖Ψj‖
.

and expresses the nonlinear coupling between in-plane and trans-
verse motions. Note that in Eq. (5), the modal external force has
been expressed as

ps(t) =
1

ρhSw‖Φs‖

∫
S

p(x, t)Φs(x)dS.

In general, one may choose a separable form for p(x, t) and con-
sider a Dirac delta for the space component (corresponding to point-
wise forcing). Hence

p(x, t) = δ(x− x0)P (t);→ ps(t) =
Φs(x0)

ρhSw‖Φs‖
P (t).

Note also that in the same equation a modal damping term has been
introduced as 2ξsωsq̇s. This choice is justified as metallic plates
are usually only slightly damped [16].

Eq. (5) may be further simplified by introducing the fourth-
order tensor Γsj,k,l as [13, 15]

Γsj,k,l =

NΨ∑
r=1

Hr
k,lE

s
j,r

2ζ4
r

. (6)
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Remarks. System (5) is composed of NΦ coupled Ordinary
Differential Equations (ODEs). The left-hand side is the equation
of a classic harmonic oscillator with loss, whereas the right-hand
side is composed of a generic forcing term ps(t) plus the nonlin-
ear coupling. This coupling involves the product of three modal
coordinates and therefore for small amplitudes of vibrations (say,
w � h) it becomes negligible. When w ≈ h the nonlinear term is
responsible for weakly nonlinear phenomena, notably amplitude-
dependent frequency of vibration which, thinking from the stand-
point of sound synthesis, is perceived as a pitch-bend. Finally,
when w > h nonlinearities dominate the dynamics acting as a
strong forcing term. Dynamically, this regime is characterised by
a cascade of energy from large to small wavelengths, whose prop-
erties constitute a topic of research on its own within the realm of
Wave Turbulence [4, 17, 18, 19, 20]. Typically, the cascade is per-
ceived as a crash or a shimmering sound, and is one of the most
dramatic examples of nonlinear phenomena in musical acoustics.
Remarkably, these three regimes are very well described by the
von Kármán equations, despite the absence of in-plane inertia. For
a study on the effect of such inertia term in the von Kármán sys-
tem, one may refer to [21].

3. TIME INTEGRATION

Time integration of system (5) is performed using a Störmer-Verlet
scheme. For that, time is discretised according to a sampling rate
fs = 1/k, where k is the time-step. Discrete time operators are
now introduced. The most obvious operator is the identity opera-
tor, denoted by

1qn = qn.

Note that the notation qn indicates that the vector q is evaluated
at the discrete time kn (it must not be confused with an exponent).
The backward and forward shift operators are, respectively,

et−q
n = qn−1; et+q

n = qn+1.

Backward, centered and forward approximations to first time deriva-
tive are defined as

δt− ≡
1

k
(1− et−); δt· ≡

1

2k
(et+ − et−); δt+ ≡

1

k
(et+ − 1).

An approximation to the second time derivative can be constructed
by combining the previous operators. In such a way, a particular
form employed here is given by

δtt ≡ δt+δt− =
1

k2
(et+ − 2 + et−)

The Störmer-Verlet scheme is

δttq
n + Kqn + Cδt·q

n = −nln + pn.

In the equation above, the matrices K, C denote the normalised
stiffness and damping matrices (independent of the step n). In
practice, if NΦ denoted the length of the vectors, then these matri-
ces are NΦ ×NΦ; the two matrices are diagonal

Km,m = ω2
m; Cm,m = 2ξmωm. (7)

The vector nl is the vector of the nonlinear terms, acting as a cou-
pling. This is, simply

nlnm =
ES2

w

ρ

NΦ∑
j,k,l=1

Γmj,k,lq
n
j q

n
k q

n
l . (8)

Finally, p is the vector containing the forcing terms, i.e.

pnm =
Φm(x0)

‖Φm‖ρhSw
Pn.

Developing the discrete operators gives the following algebraic
system, to be solved for the variable qn+1(

INΦ

k2
+

C

2k

)
qn+1 =(

2INΦ

k2
−K

)
qn + pn − nln

+

(
C

2k
− INΦ

k2

)
qn−1, (9)

where INΦ is the NΦ ×NΦ identity matrix.

Remarks. Scheme (9) is second-order accurate and explicit:
the matrices multiplying the vectors are diagonal and therefore
each line in the system can be solved independently (without re-
quiring a linear system solver). This might seem puzzling at a first
glance because (5) is a system of coupled equations. Indeed, the
update of the modal scheme is composed of not only Eq. (9), but
also of Eq. (8): this is where coupling happens at each update.

More generally, the Störmer-Verlet scheme is symmetric and
symplectic, and is thus volume-preserving in phase space for Hamil-
tonian flows [22].

The associated discrete linear system is conservative under the
Störmer-Verlet algorithm. In practice, by setting to zero the forc-
ing (pn), damping (C) and nonlinear term (nln) in scheme (9),
the following relation can be derived [23]

δt+

NΦ∑
s=1

S2
w
ρh

2

[
(δt−q

n
s )2 + ω2

sq
n
s (et−q

n
s )
]

= 0,

or

δt+

NΦ∑
s=1

(τns + υns ) = 0

which corresponds to

d

dt

NΦ∑
s=1

S2
w
ρh

2

[
q̇2
s(t) + ω2

sq
2
s(t)

]
= 0.

or
d

dt

NΦ∑
s=1

(Ts + Us) = 0.

for the continuous case. In practice, τns and υns are the correspond-
ing discrete kinetic and potential energies of the linear plate, which
can be seen as the sum of uncoupled harmonic oscillators.

Conservation of discrete energy allows to derive a stability
condition for the scheme applied to the linear plate equation. Let
ω̂s denote the largest eigenfrequency of the system, then the scheme
is stable when [23]

k̂ <
2

ω̂s
. (10)
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Figure 1: Parallel structure of update (8) for the nonlinear term.
Each colour represents an operation that can be solved indepen-
dently in a parallel environment.

When this condition is enforced, then the discrete energies are
positive definite and the scheme is stable (i.e. the solutions are
bounded over time). This same condition can be extended to the
nonlinear system when the time integration scheme proposed in
[8] is applied. The resulting algorithm, however, becomes implicit
and the computational time increases.

A second remark has to do with the efficiency the scheme.
Most time is spent in updating the nonlinear term, (8). However,
such an update presents a highly parallel structure, being basi-
cally a series of products of matrices (see fig. 1). In MATLAB,
matrix multiplication is automatically assigned to multiple cores
when possible, but in theory many more (and faster) possibilities
are open to anyone wishing to port the modal code to other lan-
guages (C, CUDA, etc.).

4. CASE STUDIES

System (5) is completely general, meaning that the integration
scheme (9) can be applied as long as the coupling coefficients (6)
are known together with the radian frequencies in Eq. (2). In gen-
eral, analytic solutions are not available for given geometry and
boundary conditions, but there are important cases which consti-
tute an exception. Two of such cases are presented now: a circular
plate with free boundary and a rectangular plate with simply sup-
ported boundary.

4.1. Free Circular Plate

A circular plate of radius awith a free edge is first considered. The
boundary conditions then read, for the two unknowns w(r, θ, t)
and F (r, θ, t) [24] (an index after a comma indicates a derivative
in that direction)

∀t, ∀θ ∈ [0, 2π], at r = a :

w,rr +
ν

a
w,r +

ν

a2
w,θθ = 0 ,

w,rrr +
1

a
w,rr −

1

a2
w,r +

2− ν
a2

w,rθθ −
3− ν
a3

w,θθ = 0 ,

F,r +
1

a
F,θθ = 0 , F,rθ +

1

a
F,θ = 0 .

Despite a seemingly complex form of the boundary conditions,
an analytical solution exists in the form of Bessel functions. The
eigenfrequencies are then obtained as the zeros of such functions.
The eigenfunctions are here denoted by either a single integer num-
ber p - sorting the frequencies from small to large - or by a pair
(kc, kd), where kc denotes the number of nodal diameters and kd
the number of nodal circles. As it is usual with circular symme-
try, asymmetric modes with kc 6= 0 are degenerated so that two

CIRCULAR PLATE

mode label p ω̄p Γ̄pp,p,p Nconv
Ψ

1,2 1 1.90 ·100 3
3 1.8 8.58 ·100 4

4,5 2.3 1.70·101 4
715,716 527.7 8.44·106 65

846 627.6 2.86·106 36
881,882 658.1 1.78·106 50

RECTANGULAR PLATE

mode label p ω̄p Γ̄pp,p,p Nconv
Ψ

1 1 2.00·101 12
20 13.9 9.50·103 286
72 48.1 1.07·105 239
336 208.7 2.50·106 25
422 261.5 5.88·106 103
589 361.9 1.23·107 132

Table 1: Convergence of the nondimensional coupling coefficients
Γ̄pp,p,p for the circular plate and a rectangular plate with aspect ra-
tio 2/3. Modes are sorted according to increasing eigenfrequency.
Nconv

Ψ indicates upper bounds of the number of in-plane modes
needed for displayed accuracy. The normalised eigenfrequencies
ω̄p are also shown.

eigenvectors are found for the same eigenfrequency. For the cir-
cular plate, eigenfrequencies for both the transverse and in-plane
problems are analytic so that the numerical values of {ωi, ζj}i,j≥1

used to feed the model can be considered exact. In the truncation
process, the number of in-plane modes NΨ may be selected ac-
cording to the desired accuracy for the cubic coupling coefficient
Γpp,p,p defined in Eq. (6), see e.g. [24, 15, 25]. As explained in
[24], some specific rules exist, so that, for a given transverse mode
p, only a few in-plane modes participate with a non-vanishing con-
tribution to the summation in Eq. (6). The rules are as follows:

• For a purely axisymmetric mode Φ(0,kd), only the axisym-
metric in-plane modes {Ψ(0,i)}i≥1 participate to the sum-
mation.

• For an asymmetric mode Φ(kc,kd) with kc 6= 0, then the
coupling involve only axisymmetric in-plane modes {Ψ(0,i)}i≥1

as well as asymmetric in-plane modes having twice the num-
ber of nodal diameters {Ψ(2kc,i)}i≥1.

Hence for a given mode p, the convergence of the summation for
Γpp,p,p is achieved within a small subset of all the possible in-plane
modes. Let Nconv

Ψ be the cardinal of this subset of admissible
modes. The convergence of three coefficients Γpp,p,p is shown in
Fig. 2, for three different modes of high frequencies. It is seen that
convergence is assured even for such high-order coefficients. An
axisymmetric mode with a many nodal circles, mode (0,18) has
been selected together with a purely asymmetric one, mode (50,0),
and a mixed mode : (24,8). Table 1 presents the converged val-
ues of a few nondimensional coefficients. For asymmetric modes
(kc, kd) with kc 6=0, the modes are degenerate.
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RECTANGULAR PLATE
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Figure 2: Plots of a few nondimensional values of coupling coeffi-
cients, Γ̄pp,p,p. (a)-(c): Circular plate. Numbers in brakets are (kc,
kd) corresponding to nodal circles and diameters. (e)-(f): Rectan-
gular plate of aspect ratio 2/3. Numbers in brakets are (k1, k2) of
Eq. (12).

4.2. Simply-Supported Rectangular Plate

Consider a rectangular plate of lateral dimensions Lx, Ly . Let n,
t denote the normal and tangential directions to the boundary δS.
Simply-supported boundary conditions may be given as

∀t, ∀x ∈ δS :

w = w,nn + νw,tt = 0,

F,nt = F,tt = 0. (11)

Such conditions, despite not describing a load-free edge (a desir-
able case for sound synthesis), have the advantage of being par-
ticularly simple. The solution for the transverse modes, in fact, is
given in terms of sine functions [14]

Φk(x) = sin
k1πx

Lx
sin

k2πy

Ly
for integers k1, k2.

The eigenfrequencies are then easily obtained as

ω2
k =

D

ρh

[(
k1π

Lx

)2

+

(
k2π

Ly

)2
]2

. (12)

The conditions for the in-plane function, on the other hand, can
be worked out to yield a simplified form. Consider in fact the
following conditions

F = F,n = 0 ∀x ∈ δS;

it is clear that these conditions are sufficient (but not necessary) to
satisfy (11) [13]. Such conditions, along with Eq. (3), reduce the

quest for the eigenfunctions Ψk to the clamped plate problem. De-
spite not having a closed-form solution, this problem was recently
shown to have a semi-analytical solution based on the Rayleigh-
Ritz method, yielding ∼ 400 eigenfunctions and associated fre-
quencies with precision to, at least, four significant digits [15].
As opposed to the circular case, it is difficult to have an a priori
knowledge on the coupling rules. This is because the form of the
in-plane eigenfunctions is not known analytically, and thus only a
numerical investigation can help in laying out coupling rules. As
for the circular case, coefficients of the kind Γpp,p,p are investi-
gated. In general, when either k1 or k2 is small, convergence is
quite fast, see for example fig. 2(f). However, modes for which
neither k1 or k2 is small, convergence is much slower and presents
a staircase-like behaviour, like in fig. 2(d). Nonetheless, table 1
shows accuracy to a few decimal digits is still assured even for
coefficients involving high-frequency modes.

Remarks. Table 1 shows the convergence of the nonlinear
coupling coefficients. With respect to other numerical techniques,
namely Finite Differences, such order of convergence is out-of-
reach for reasonable sample rates [15]. This remark should be kept
in mind when comparing the efficiency (or numerical burden) of
the modal method versus a Finite Difference scheme: for the same
degree of accuracy, Finite Differences are much less efficient than
modes.

On the other hand, the two case studies presented here are
somewhat an exception as they have analytical or semi-analytical
solutions for the modes. When facing a case for which the modes
are not known, the modal approach becomes somewhat less ap-
pealing than other numerical methods.

5. SIMULATIONS

Now that the coupling coefficients are eigenfrequencies have been
calculated for the case studies, scheme (9) may be applied. First,
excitation and loss are presented, and then results of simulations
shown.

5.1. Excitation

For pointwise forcing, two different excitation mechanisms will be
considered here: 1. a strike and 2. a sinusoidal forcing.

Strikes are of course the most direct way to excite a plate. In
general, one wishes to have control on the "loudness" and "bril-
liance" of the sound. To a first approximation, these parameters
may be controlled by making use of a relatively simple form for
the excitation, a raised cosine. This function is defined as

P (t) =

{
P̄
2

[1 + cos (π(t− t0)/Twid)] if |t− t0| ≤ Twid ;
0 if |t− t0| > Twid .

It is seen that one has control over two parameters: Twid, or half
of the total contact duration, and P̄ , the maximum amplitude. As
a rule of thumb, one may use a shorter Twid and a larger P̄ to
increase the "loudness" and "brightness" of the output. See also
fig. 3(a).

Sinusoidal forcing (see fig. 3(b)) may instead by applied to
observe the system undergo two bifurcations, leading first to a
quasi-periodic and then to a turbulent motion. Perceptually, the
three regimes are very well recognisable ranging from an almost
monochromatic sound to a loud, shimmering cascade.

DAFX-5



Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

60 80 100

5

10

15

20
Twid

Twid

(a)

t [10−5s]

P
[N

]

0 5 10 15 20

−4

−2

0

2

4 (b)

t [s]
P

[N
]

Figure 3: (a): examples of raised cosine functions used to simulate
a strike, in the case of "hard" contact (dashed) and "soft" contact
(thick). (b): example of sinusoidal forcing of frequency 1Hz and
amplitude 5N increased linearly to a steady value and then de-
creased.
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Figure 4: Examples of damping coefficients ξi(ω) (dots) and re-
sulting damping laws γ(ω) = 2ξiωi (thick lines). (a): ξi = 2/ωi.
(b): ξi = 2 · 10−5. (c): damping law as measured by Humbert
[26] for a plate of thickness h = 0.5mm, ξi = 8 · 10−3ω−0.4

i . (d):
ξi = 5/[ωi(exp(32− ωi/2500) + 1)].

5.2. Loss

For sound synthesis, loss bears about a lot of perceptual informa-
tion. One of the advantages of the modal approach is that a com-
plex decay can be simulated by setting by hand the modal damping
coefficients ξm in Eq. (7). For example, if one wishes to simulate a
damping law which dissipated energy at the same rate at all scales,
one may set ξm = c/ωm; a linear damping law is obtained for
ξm = c for constant c. Of course, the possibilities are endless, see
also fig. 4

5.3. Examples

Fig. 6 reports the simulations for three different cases: 1. a soft
strike; 2. a hard strike; 3. a sinusoidally forced plate. For nonlin-
ear dynamics, in the case of a strike, the pictorial example of fig.
5 shows one snapshot immediately after a strike and one at later
moment when the profile is fully turbulent.

The plate under consideration is a small rectangular plate of

Figure 5: Snapshots of displacement field on top of a plate just af-
ter a strike (left) and during fully developed nonlinear state (right),
with the presence of large and small wavelengths.

dimensions 21cm× 18cm × 1mm. For this plate, the eigenfre-
quencies are such that ω250/2π = 21610Hz, suggesting that even
a relatively small number of modes suffices to reproduce a rich
sound spanning a large interval of the audible range. The output
can be extracted by recording the displacement at one point on
the plate, wn0 , and by taking a discrete time derivative in order to
high-pass the frequency spectrum.

Because instability may set in, one must set the sampling fre-
quency to a reasonably high rate in order to obtain convergence.
The reference sampling rate in this case is given by Eq. (10),
which gives the stability condition for the linear plate. Because
in this case the dynamics is nonlinear, one has to guess a value of
the sampling rate which assures convergence, but which remains
sufficiently small in order to allow fast computations. Empirically,
it is found that for

ksim = k̂/2

the solution converges even for a strongly nonlinear dynamics (at
least for vibrations up to 2−3 times the thickness) and hence such
is the time-step selected for the simulations.

Fig. 6(a)-(b) is the typical case of weakly nonlinear vibra-
tions, with amplitude w ∼ h. To simulate a soft strike using a
raised cosine, the particular parameters employed here are Twid =
1ms, P̄ = 100N. The damping coefficients are set as ξi = 8 ·
10−3ω−0.4

i . The total number of modes retained is fairly small,
NΦ = 100, covering frequencies up to 9000Hz. The number of
in-plane modes is NΨ = 50. In this case, the modes are weakly
coupled giving rise to pitch-bends and amplitude-dependent fre-
quency of vibration. The damping law selected allows to simulate
a very enjoyable decay, with complex auditory cues.

Fig. 6(c)-(d) represents the case of strong nonlinear dynam-
ics. The plate is activated by a raised cosine with Twid = 0.8ms,
P̄ = 300N. Damping coefficients and number of modes are the
same as for the previous case. Here, the amplitude of vibrations
has a maximum at 2h, indicating that more nonlinear phenomena
may set in. In fact, by looking at the velocity spectrogram one can
notice that just after the strike the modes are not very well distin-
guishable: this is a trace of a turbulent dynamics corresponding to
a shimmering sound typical of gongs. After this initial transient,
loss removes energy from the system until the modes are again
perfectly distinguishable, and eventually killed.

Perhaps the most interesting case is represented in fig. 6(e)-
(f). In this case the plate is activated by a sinusoid close to the
5th eigenfrequency of the system. The amplitude of the sinusoid
is increased from 0 to 116N in 1s, then kept steady for 5s and
eventually decreased to zero in 2s. The plate undergoes 2 bifur-
cations denoted in the spectrogram by thick dashed lines: at the
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Figure 6: Numerical simulations of a rectangular plate with dimensions 21cm× 18cm × 1mm. (a)-(b): Time series of displacement and
velocity spectrogram of "soft" strike, with P̄ = 100N, Twid = 1ms, ξi = 8 · 10−3ω−0.5

i , NΨ = 50, NΦ = 100. (c)-(d): Time series
of displacement and velocity spectrogram of "hard" strike, with P̄ = 300N, Twid = 0.8ms, ξi = 8 · 10−5ω−0.4

i ,NΨ = 50, NΦ = 100.
(e)-(f): Time series of displacement and velocity spectrogram of sinusoidally forced plate, with sinusoid of frequency 1.02f5 and maximum
amplitude 116N, increased linearly for 1s, kept steady for 5s, and then decreased to zero in 2s; ξi = 4 · 10−3ω−0.4

i , NΦ = 72, NΨ = 60;
dashed lines on spectrogram indicate bifurcations from a linear regime, to a quasi-periodic regime, to a turbulent regime.
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start one can clearly hear a monochromatic sound at the selected
frequency; after the first bifurcation the same frequency is mod-
ulated by higher harmonics; and after the second bifurcation all
the modes are activated in a turbulent bath. The damping law se-
lected are able to give the sound a natural richness with complex
harmonic relations.

Calculation times in MATLAB are quite fast. For the strikes
(i.e. NΨ = 50, NΦ = 100, ksim = k̂/2) the calculation time is
about 8 times real-time, on a machine equipped with an Intel i7
CPU at 2.40kHz. For the sinusoid (i.e. NΨ = 50, NΦ = 60,
ksim = k̂/2) the calculation time is about 1.5 times real-time.

6. CONCLUSIONS

This work presented an explicit modal scheme for the nonlinear
plate equations. For the cases which present a semi-analytic so-
lution for the modes, it was shown that the eigenfrequencies and
coupling coefficients can be calculated to a very high precision.
The modal update is completely general as long as such frequen-
cies and coefficients are known. Two case studies were presented,
including the important case of a circular plate with a free bound-
ary. Numerical simulations were provided to show that the modal
scheme can simulate efficiently a complex dynamics, resulting in
very realistic sound synthesis.
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