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Summary. This article is devoted to the derivation of reduced-order models (ROMs) for geometrically nonlinear structure. A particular
emphasis is put on comparing the Implicit condensation and expansion (ICE) method, which gives rise to a stress manifold to derive
a reduced basis, with the invariant manifold defining a nonlinear normal mode (NNM). When the nonlinear stiffness coefficients are
fully known, the ICE method reduces to a standard static condensation. Unfortunately, computing all the nonlinear (modal) coupling
coefficients is not at hand when dealing with discretization methods based on the Finite Element (FE) procedure. The main advantage of
the ICE method is thus to perform implicitely the static condensation, without the need of computing the coefficients. But the drawback
is that the method will not, in any case, produce a better estimation than what can be obtained with an explicit static condensation. In
particular, it is shown that the stress manifold tends to the invariant manifold only when a slow/fast decomposition of the system can
be assumed.

Introduction

Thin and lightweight structures are prone to experience large amplitude vibrations, thus giving rise easily to geomet-
ric nonlinearity. As a consequence, the dynamics of the system is much more complex and the need to derive efficient
reduced-order models (ROMs) more important.
When the spatial discretization of the structure is realized via the finite element method (FEM), specific problems arise
due to the calculation of the nonlinear restoring force. To efficiently compute the reduced nonlinear internal forces, non-
linear ROM techniques for FE structures are generally classified into intrusive and non-intrusive methods. Non-intrusive
methods take advantage of the usual outputs of any commercial FE code in order to derive, from algebraic operations on
these, the coefficients of the ROM [1]. On the other hand, intrusive methods need a fine knowledge of the computation
since elementary calculations are prescribed at the level of the element [2]. A widely used non-intrusive approach is the
Stiffness Evaluation Procedure (StEP) method, which was first proposed by Muravyov and Rizzi [3]. In this method,
one can directly retrieve the modal nonlinear coupling coefficients by prescribing selected static displacements to the
model [4, 5]. On the other hand, another method relies on the use of static applied loads instead of prescribed displace-
ments, and has been termed as the implicit condensation and expansion (ICE) method [6]. From the loadings and resulting
large-amplitude displacements, a so-called stress manifold can be constructed in order to reduce the dynamics [7].
This main goal of the paper is to compare the ICE method to the invariant manifold proposed by Shaw and Pierre in order
to define an NNM [8]. Invariant manifold theory is an efficient tool for interpreting many nonlinear dynamical phenom-
ena. The article is structured as follows: Section 2 is devoted to explaining the ICE method and the invariant manifold
approach. It is then shown in a general framework that if one assumes a slow/fast decomposition between the master and
slave coordinates, then the static condensation approach reduces to the invariant manifold approach, at the leading order.
Section 3 confirms these general findings by simplifying to a two degrees-of-freedom (dofs) system, for which explicit
analytical expressions can be derived by asymptotic expansions, leading to an accurate term-by-term comparison. Section
4 extends the results to the case of continuous structures.

Framework

In this study, we restrict ourselves to the dynamics of thin and lightweight structures experiencing large amplitude vibra-
tions, discretized using the FE procedure. Consequently our starting point is a semi-discrete equation of motion written
for each degrees-of-freedom of the mesh used to space discretize the system, reading :

Mq̈ + Kq + Γ(q) = F, (1)

with M the mass matrix arising from the FE discretization, K the linear stiffness matrix, q the vector of generalized
displacements (displacements at the nodes) with dimension N , F the external forcing, and Γ(q) the nonlinear part of the
stiffness. The modal basis is given by the combination of eigenvectors φi and eigenfrequencies ωi verifying

Kφi = ω2
i Mφi. (2)

By using the linear change of coordinates q = ΦX, with Φ the matrix of eigenvectors and X the modal coordinates, the
equations of the motion in the modal basis read :

Ẍp + ω2
pXp +

+∞∑
i=1

+∞∑
j≥i

αp
ijXiXj +

+∞∑
i=1

+∞∑
j≥i

+∞∑
k≥j

βp
ijkXiXjXk = 0, (3)
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This explicit formulation makes appear the quadratic and cubic nonlinear coupling coefficients αp
ij and βp

ijk, however for
the sake of brevity the equations of motion in modal space will also be written as

Ẍp + ω2
pXp + fp(X1, X2, ..., XN ) = 0. (4)

ICE method
In the ICE method, the nonlinear restoring force is determined from a set of applied forces, which are generally selected
as being colinear to the master modes. The procedure gives rise to a stress manifold [7], relating the slave displacements
to the master ones by a functional relationship that has to be fitted from the outputs of the static solutions obtained.
In particular, the relationship involves displacements only, and not the velocity, a distinctive feature from the invariant
manifold. It is worth noticing that when the equation of motions are fully known, then the method is strictly equivalent to
a usual explicit condensation. Consequently, in order to derive analytical expressions to compare with NNMs, the static
condensation is here used. With the equations of motion of the system in the modal basis given by Eq.(4), let us separate
the unknowns betwwen the master coordinates X1, ..., Xm and the slave coordinates Xm+1, ..., Xs, ..., XN with N the
number of degrees of freedom (dofs). The master coordinates are the ones that are selected to derive the ROM while the
slave coordinates are those one wants to cancel out in a correct way. Static condensation consists in finding functional
relationships of the form

Xs = cs(X1, ..., Xm) (5)

that define the stress manifold, for all s ∈ [m + 1, N ], by simply neglecting the inertia of the slave coordinates. Hence
the unknown functions cs are found from the following equations, for s ∈ [m+ 1, N ] :

ω2
scs(X1, ..., Xm) + fs(X1, ..., Xm, cm+1(X1, ..., Xm), ..., cN (X1, ..., Xm)) = 0. (6)

then, the reduced-order models for the master coordinates reads :

∀ t ∈ [1,m], Ẍt + ω2
tXt + ft(X1, ..., Xm, cm+1(X1, ..., Xm), ..., cN (X1, ..., Xm)) = 0. (7)

When the full expressions of the functions fs are not explicitely known, the functions cs can be determined from a set
of static solutions with increasing values of an imposed external force. Then a fitting procedure is needed to extrapolate
the functional relationships from the generated data. The amplitudes of the imposed forcings, as well as the order of the
fitting functions are also unknowns that have to be selected with care.

Invariant manifold
Nonlinear normal modes have been defined as invariant manifold in phase space by Shaw and Pierre [8, 9]. They can be
computed thanks to the center manifold theorem [8, 9] or the normal form method [10]. In this contribution we select the
invariant manifold approach in order to draw out the comparison with the ICE method. A relationship between the slave
and master coordinates including both displacements Xp and velocities Yp = Ẋp, is assumed. The unknown are thus the
functions hs1 and hs2 such that Xs = hs1(X1, Y1, ..., Xm, Ym), and Ys = hs2(X1, Y1, ..., Xm, Ym), for s ∈ [m + 1, N ].
Following the general method of the invariant manifold, the unknown functions are solutions of the following partial
differential equations that describe the geometry of the invariant manifold in phase space:

m∑
i=1

∂hs1
∂Xi

Yi +
∂hs1
∂Yi

[
−ω2

iXi − fi
]

= hs2,
m∑
i=1

∂hs2
∂Xi

Yi +
∂hs2
∂Yi

[
−ω2

iXi − fi
]

= −ω2
sh

s
1 − fs. (8)

The general solution of these equations is difficult to compute and can be achieved via asymptotic expansions or numerical
methods. Once the unknown functions hs1 and hs2 have been obtained, the dynamics of the ROM are expressed as:

∀ t ∈ [1,m], Ẍt + ω2
tXt + ft(X1, ..., Xm, h

m+1
1 (X1, Y1, ..., Xm, Ym), ..., hN1 (X1, Y1, ..., Xm, Ym)) = 0. (9)

Comparison of stress manifold and invariant manifold
Let us assume that there is a slow/fast decomposition of the system, which means that the eigenfrequency ωt of the master
coordinates Xt, for t ∈ [1,m], is much smaller than those of the slave coordinates Xs, for s ∈ [m+ 1, N ], i.e. ωt � ωs.
This scaling can be reported into the equations of motion thanks to a small parameter ε. In order to express that the
slave coordinates are much more stiff (thus corresponding to fast oscillations), the dynamics of the system Eq. (8), can be
rewritten as:

∀ t ∈ [1,m], Ẍt + ω2
tXt + ft(X1, X2, ..., XN ) = 0, (10a)

∀ s ∈ [m+ 1, N ], Ẍs +
1

ε
ω2
sXs +

1

ε
fs(X1, X2, ..., XN ) = 0. (10b)

The equations describing the geometry of the invariant manifold, Eq. (8), rewritten with the slow/fast assumption, read:
m∑
t=1

(
∂hs1
∂Xt

Yt +
∂hs1
∂Yt

[
−ω2

tXt − ft
])

= hs2, (11a)

m∑
t=1

(
∂hs1
∂Xt

Yt +
∂hs1
∂Yt

[
−ω2

tXt − ft
])

= −1

ε
ω2
sh

s
1 −

1

ε
fs. (11b)
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Form the above Eq. (11b), hs1 is obtained by neglecting the ε terms thanks to the slow/fast assumption:

∀ s ∈ [m+ 1, N ], ω2
sh

s
1(X1, Y1, ..., Xm, Ym) + fs

(
X1, ..., Xm, h

m+1
1 , ..., hN1

)
= 0. (12)

This equation is completely equivalent to Eq. (6), which define the stress manifold. Hence, the function hs1 shall tend to
the cs, obtained with the static condensation; the only difference being the dependence on the velocities of hs1. If one
assumes that hs1 does not depend on the velocities, i.e.∀ t ∈ [1,m], ∂hs1/∂Yt = 0, then the solutions are fully equivalent,
and this can be used to derive another approximation regarding hs2 as:

hs2 =

m∑
t=1

∂hs1
∂Xt

Yt. (13)

This last relationhsips shows that, under the above assumptions, a simple relation holds between the two functions hs1
and hs2 defining the invariant manifold, in line with the displacement/velocity dependence of the initial system. More
generally, this simple derivation underline that stress manifold should tend to the invariant manifold, only if a slow/fast
assumption exist, which is in the line of previously reported results, see e.g. [11]. However, if the slave modes are not
stiff enough as compared to the master modes, then the ICE method may lose it accuracy, and using invariant manifolds
in order to derive efficient ROMs would be a better choice.

Type of nonlinearity
Now we are comparing the prediction of the type of nonlinearity between these two methods, defined as the harden-
ing/softening behaviour. In fact, one of the key points is whether a method can correctly predict the backbone curve of
a nonlinear oscillator, and reduced-order models can give a correct prediction at least to the first order. To that purpose,
let us assume that there is a single master coordinate Xp, and all other coordinates for s 6= p are vanishing. The ROM
will then consist of a single oscillator equation from which the type of nonlinearity can be derived. Also, if the single
nonlinear oscillator equation is truncated to the cubic order [10, 12], a perturbative solution aloows one deriving an ana-
lytical expression for the leading order term which dictates the hardening/softening behaviour. Consequently, the general
equations describing the stress manifolds, the invariant manifolds, and the dynamics within them, can be truncated up to
order three.
In the case of static condensation, the leading order term for Eq. (5) for all s 6= p reads

Xs = cs(Xp) ' −
αs
pp

ω2
s

X2
p +O(X3

p), (14)

such that the dynamics of the master mode on the stress manifold is expressed as

Ẍp + ω2
pXp + αp

ppX
2
p +

βp
ppp −

N∑
s=1
s6=p

αp
psα

s
pp

ω2
s

X3
p +O(X4

p) = 0. (15)

The frequency-amplitude relationship can be derived from this equation by a perturbative approach, see e.g.[10, 12],
leading to the following generic formula,

ωNL = ωp

(
1 + Γa2

)
, (16)

where ωNL is the nonlinear frequency, depending on amplitude a, and Γ is the coefficient defining the type of nonlinearity.
More specifically, positive values of Γ leads to a hardening type behaviour, while negative values means a softening
behaviour is at hand. The type of nonlinearity for the static condensation approximation ΓSC reads

ΓSC =
1

8ω2
p

3αp
ppp −

10(αp
pp)2

3ω2
p

−
N∑
s=1
s6=p

3αp
psα

s
pp

ω2
s

 . (17)

In the case of the invariant manifold approach, the individual expressions of slave coordinate can be found in [9, 13, 14],
with the assumption of a single master NNM, for all s 6= p, and up to the second order, the formulas read as:

Xs = hs1(Xp, Yp) = Ap
s,1X

2
p +Ap

s,2XpYp +Ap
s,3Y

2
p , (18a)

Ys = hs2(Xp, Yp) = Ap
s,4X

2
p +Ap

s,5XpYp +A2
s,5Y

2
p , (18b)



ENOC 2020, July 5-10, 2020, Lyon, France

where

Ap
s,1 =

(ω2
s − 2ω2

p)

ω2
s(4ω2

p − ω2
s)
αs
pp, (19a)

Ap
s,3 =

−2

ω2
s(4ω2

p − ω2
s)
αs
pp, (19b)

Ap
s,5 =

2

4ω2
p − ω2

s

αs
pp, (19c)

Ap
s,2 = Ap

s,4 = Ap
s,6 = 0. (19d)

The reduced-order dynamics on the invariant manifold writes

Ẍp + ω2
pXp + αp

ppX
2
p +

βp
ppp +

N∑
s=1
s6=p

αp
psA

p
s,1

X3
p +

N∑
s=1
s6=p

αp
psA

p
s,3XpY

2
p = 0. (20)

The type of nonlinearity ΓIM for the invariant manifold approach reads:

ΓIM =
1

8ω2
p

3βp
ppp −

10(αp
pp)2

3ω2
1

−
N∑
s=1
s6=p

3ω2
s − 8ω2

p

ω2
s − 4ω2

p

αp
psα

s
pp

ω2
s

 . (21)

Comparing the two predictions given by Eqs. (17) and (21), it is shown that the static condensation does not take into
account 2:1 internal resonance. The formula obtained from the invariant manifold approach is correct, mainly because the
reduction subspace is an NNM having the property of invariance embedded in its definition so that trajectories simulated
in the reduced subspace also exist for the complete system. These facts have already been underlined in general studies
concerned with the correct prediction of the type of nonlinearity, see e.g. [10, 18, 19, 20]. It is worthy to notice that if for
all s, ωs � ωp, then the ΓIM and ΓSC would return equivalent value. This indicates that the static condensation approach
gives reliable result only when the slow/fast decomposition is at hand.

Results on two-dofs systems

General results
In this section, we illustrate the general findings on the simplified case of a two degrees-of-freedom (dofs) system, having
only two coordinates X1 and X2, with X1 selected as the master coordinate and X2 as the slave one. The idea is that
under such a simplification, asymptotic expansions are easier to handle and one is able to give more insights to the general
formula given just above, and explain in more detail how the static condensation will tend to the invariant manifold
approach under the slow/fast assumption. All expansions are compared up to the third-order for consistency.
The nonlinear internal force in Eq. (4) for p = 1, 2 now reads:

fp(X1, X2) = αp
11X

2
1 + αp

12X1X2 + αp
22X

2
2 + βp

111X
3
1 + βp

112X
2
1X2 + βp

122X1X
2
2 + βp

222X
3
2 . (22)

Assuming that X1 is the master coordinate and X2 the slave and applying static condensation, the relationship X2 =
c(X1) can be rewritten as:

ω2
2c(X1) +α2

11X
2
1 +α2

12X1c(X1) +α2
22c(X1)2 + β2

111X
3
1 + β2

112X
2
1c(X1) + β2

122X1c(X1)2 + β2
222c(X1)3 = 0. (23)

The solution for c can be found based on an asymptotic expansion:

X2 = c(X1) = k2X
2
1 + k3X

3
1 +O(X3), (24)

which is stopped here at order 3 but no maximal order of the polynomial expansion can be inferred from Eq. (24). A direct
analytical solution for the ki coefficients are computed by term-by-term identification of the coefficients of same power.
The quadratic and cubic coefficients read:

k2 =
−α2

11

ω2
2

, (25a)

k3 =
−β2

111ω
2
2 + α2

12α
2
11

ω4
2

. (25b)

Thus, the geometry of the stress manifold up to cubic terms is given by:

X2 = c(X1) =
−α2

11

ω2
2

X2
1 +
−β2

111ω
2
2 + α2

12α
2
11

ω4
2

X3
1 (26)
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For the invariant manifolds, general expressions for the coefficients of the asymptotic expansions have already been
derived in [9, 13, 14]. The two unknown functions describing the geometry of the invariant manifold can be written up to
order three as:

X2 = h1(X1, Y1) = A1
11X

2
1 +A1

12X1Y1 +A1
22Y

2
1 +B1

111X
3
1 +B1

112X
2
1Y1 +B1

122X1Y
2
1 +B1

222Y
3
1 , (27a)

Y2 = h2(X1, Y1) = A2
11X

2
1 +A2

12X1Y1 +A2
22Y

2
1 +B2

111X
3
1 +B2

112X
2
1Y1 +B2

122X1Y
2
1 +B2

222Y
3
1 . (27b)

where the full expressions for the quadratic terms and cubic terms are given by

A1
11 =

(ω2
2 − 2ω2

1)

ω2
2(4ω2

1 − ω2
2)
α2
11, (28a)

A1
22 =

−2

ω2
2(4ω2

1 − ω2
2)
α2
11, (28b)

A2
12 =

2

4ω2
1 − ω2

2

α2
11, (28c)

A1
12 = A2

11 = A2
22 = 0, (28d)

B1
111 =

ω2
2(4ω2

1 − ω2
2)(7ω2

1 − ω2
2)β2

111 + (9ω2
1ω

2
2 − 18ω4

1 − ω4
2)α2

11α
2
12 + (2ω4

2 − 12ω4
1 − 10ω2

1ω
2
2)α1

11α
2
11

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

, (28e)

B1
122 =

6ω2
2(4ω2

1 − ω2
2)β2

111 + (8ω2
2 − 18ω2

1)α2
11α

2
12 − 20ω2

2α
1
11α

2
11

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

, (28f)

B2
112 =

3ω2
2(4ω2

1 − ω2
2)(3ω2

1 − ω2
2)β2

111 + (11ω2
1ω

2
2 − 3ω4

2 − 18ω4
1)α2

11α
2
12 − 10ω2

2(3ω2
1 − ω2

2)α1
11α

2
11

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

, (28g)

B2
222 = B1

122, (28h)

B2
111 = B2

122 = B1
112 = B1

222 = 0. (28i)

The coefficients derived from the invariant manifold approach shows singularities when internal resonances exist between
the eigenfrequencies, this feature is not retrieved by the static condensation. Also, the dependence on the eigenfrequencies
is playing a much more important role in the expressions giving the geometry of the invariant manifold in phase space. If
one assumes that ω2 � ω1, the nonlinear relationships between slave and master coordinates simplifies to :

X2 =
−α2

11

ω2
2

X2
1 +

2α2
11

ω4
2

Y 2
1 +

−ω2
2β

2
111 + α2

12α
2
11 − 2α1

11α
2
11

ω4
2

X3
1 +

6ω2
2β

2
111 − 8α2

11α
2
12 + 20α1

11α
2
11

ω6
2

X1Y
2
1 , (29a)

Y2 = −2α2
11

ω2
2

X1Y1 +
−3ω2

2β
2
111 + 3α2

11α
2
12 − 10α1

11α
2
11

ω4
2

X2
1Y1 +

6ω2
2β

2
111 − 8α2

11α
2
12 + 20α1

11α
2
11

ω6
2

Y 3
1 . (29b)

One can see that the quadratic terms in X2
1 in Eqs. (26) and (29a) are exactly the same. The dependence on the velocity

master variable Y1 is not present for the stress manifold, however this dependence is proportional to 1/ω4
2 in (29a) for the

quadratic term in Y 2
1 , one order of magnitude smaller than the term in X2

1 , scaling as 1/ω2
2 , and thus can be considered

as negligible. The coefficients for the cubic term in X3
1 are almost the same in the two expressions. Recalling that the

slow/fast assumption should also hold for the nonlinear stiffness so that α2
12 � α1

11 and rewriting the terms α2
12α

2
11 −

2α1
11α

2
11) in theX3

1 coefficient in (29a) as α2
11(α2

12−2α1
11), one can therefore draw a conclusion that bothX3

1 coefficients
tends to have the same values under the slow/fast assumption. Finally the last cubic term inX1Y

2
1 in (29a) scales as 1/ω4

2 ,
which is also one order of magnitude smaller and can thus be neglected.
Consequently, the above comparison show that the results given by the static condensation tend to those given by the
invariant manifold approach if a slow/fast decomposition holds. The dependence on the velocity is one order of magnitude
smaller and thus tends to disappear. One can also observe that the Eq. (13) now specifying to

h2 '
∂h1
∂X1

Y1, (30)

also holds, if and only if one also assumes α2
12 � α1

11, which is the case if the slow/fast dynamics is assumed.
Now, we are comparing the reduced-order dynamics given by the two methods up to order three. The dynamics of the
master coordinate X1 with the stress manifold is given by Eq. (7) and reads:

Ẍ1 + ω2
1X1 + α1

11X
2
1 +

(
β1
111 −

α1
12α

2
11

ω2
2

)
X3

1 = 0. (31)

The dynamics with the invariant manifold, with X2 given by Eq. (29a), reads:

Ẍ1 + ω2
1X1 + α1

11X
2
1 +

(
(ω2

2 − 2ω2
1)

ω2
2(4ω2

1 − ω2
2)
α1
12α

2
11 + β1

111

)
X3

1 +

(
−2

ω2
2(4ω2

1 − ω2
2)
α1
12α

2
11

)
X1Y

2
1 = 0, (32)
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which simplifies to the following with ω2 � ω1:

Ẍ1 + ω2
1X1 + α1

11X
2
1 +

(
β1
111 −

α1
12α

2
11

ω2
2

)
X3

1 +
2α1

12α
2
11

ω4
2

X1Y
2
1 = 0, (33)

Comparing Eq. (33) with (31), one can observe that the cubic term in X3
1 is the same, confirming again that the stress

manifold gives reliable results only under the slow/fast assumption. The supplementary term in X1Y
2
1 for the invariant

manifold is negligible because it scales as 1/ω4
2 .

Numerical results on a mass connected to two bars
In this section, we consider a two dofs system introduced in [10], consisting of a mass connected to two nonlinear bars
and oscillating in the plane. In this case, the equation of motion contains quadratic and cubic terms. By using asymptotic
expansions to derive the first terms of the solution of the invariant manifold and the static condensation, one can realize a
term-by-term comparison and contrast the similarities between the two methods. The equations of motion read:

Ẍ1 + ω2
1X1 +

ω2
1

2
(3X2

1 +X2
2 ) + ω2

2X1X2 +
ω2
1 + ω2

2

2
X1(X2

1 +X2
2 ) = 0,

Ẍ2 + ω2
2X2 +

ω2
2

2
(3X2

2 +X2
1 ) + ω2

1X1X2 +
ω2
1 + ω2

2

2
X2(X2

1 +X2
2 ) = 0.

(34)

The main goal of this section is to compare the results provided by the static condensation and those obtained with NNMs,
in terms of the geometry of the manifold used to reduce the dynamics, and expression of the dynamics onto this reduced
subspace.
By replacing α and β in Eq. (24) with known coefficients given in Eq. (34), the static condensation gives the following
formula for the stress manifold up to the third order :

X2 = c2(X1) = −1

2
X2

1 +
ω2
1

2ω2
2

X3
1 . (35)

For the geometry of the manifolds, only focusing onX2 = h1(X1, Y1) for comparison in the plane (X1, X2), the Eq. (27a)
reads

X2 = h1(X1, Y1) = A1
11X

2
1 +A1

22Y
2
1 +B1

111X
3
1 +B1

122X1Y
2
1 . (36)

which is also stopped here at order 3 because the derivation of higher-order terms leads to difficult and lenghty expressions
needing for a symbolic computation processor. The coefficients A1

11, A1
22, B1

111 and B1
122 are given below, together with

their approximate value when one considers the slow/fast assumption ω2 � ω1:

A1
11 =

ω2
2 − 2ω2

1

2(4ω2
1 − ω2

2)

ω2�ω1−−−−−→ −1

2
,

A1
22 =

−1

4ω2
1 − ω2

2

ω2�ω1−−−−−→ 1

ω2
2

,

B1
111 =

(ω4
2 − 18ω4

1 − 3ω2
1ω

2
2)ω2

1ω
2
2

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

ω2�ω1−−−−−→ ω2
1

−ω2
2

,

B1
122 =

(−11ω2
2 − 9ω2

1)ω2
1ω

2
2

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

ω2�ω1−−−−−→ 11ω2
1

ω2
2

.

(37)

These expressions indicate that the invariant manifold method gives more general results that tends to retrieve those
given by static condensation at the leading order only, when a slow/fast assumption holds. Substituting the values of the
coefficients A1

11, A1
22, B1

111 and B1
122 obtained with the slow/fast asumption into Eq. (36), one obtains

X2 = h1(X1, Y1) ' −1

2
X2

1 +
1

ω2
2

Y 2
1 −

ω2
1

ω2
2

X3
1 +

11ω2
1

ω2
2

X1Y
2
1 , (38)

which can be compared to Eq. (35) directly, showing that there are additional terms implying the velocities in the invariant
manifold, and the cubic term in X3

1 is not the same for the two methods, however, the differences are scaling according
to 1/ω2

2 , thus these are negligible. Consequently, the leading order term is the first quadratic term in Eqs. (35) and (38)
so that a cut of both stress and invariant manifold in the plane (X1, X2), and with slow/fast decomposition, should show
a parabola scaling as − 1

2X
2
1 .

NLet us now compare the results given by the reduced-order dynamics. Of utmost importance for the ROM is its ability
to correctly predict the backbone curve. Using static condensation up to order three, replacing the master coordinate X2

by Eq. (35) and substutiting into Eq. (3), leads to the following reduced-order dynamics :

Ẍ1 + ω2
1X1 +

3ω2
1

2
X2

1 +
ω2
1

2
X3

1 = 0. (39)
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This equation can be compared to the reduced dynamics given by the invariant manifold approach, by replacing the master
coordinate X2 by the relationship of X2 = h1(X1, Y1), and also substutiting into Eq. (3), up to order 3 :

Ẍ1 + ω2
1X1 +

3ω2
1

2
X2

1 +
ω2
1(4ω2

1 + ω2
2)

2(4ω2
1 − ω2

2)
X3

1 +
ω2
2

ω2
2 − 4ω2

1

X1Y
2
1 = 0. (40)

Using now the slow/fast assumption in Eq. (40), one obtains :

Ẍ1 + ω2
1X1 +

3ω2
1

2
X2

1 −
ω2
1

2
X3

1 +X1Y
2
1 = 0. (41)

Comparing Eqs. (39) and (41), it is shown that even with the slow/fast assumption, the reduced-order dynamics given by
the two methods are different. Again, the invariant manifold approach gives rise to velocity-dependent terms, contrary to
the static condensation.
Now a comparison of the outcomes of the two methods will be discussed, since the dynamics produced by the two ROMs
could be misleaded by a term-by-term comparison, it is better to focus on the prediction of the type of nonlinearity, as
already exemplified in previous demonstration. Using the value of ΓSC given in Eq. (17) and replacing the quadratic
coefficients by their values, we obtained ΓSC = −3/4 for static condensation, i.e. a constant value that do not depend on
the parameter of the system. On the other hand, using Eq. (21) shows that

ΓIM =
−3ω2

1 + ω2
2

4ω2
1 − ω2

2

. (42)

Interestingly, the type of nonlinearity predicted by the IM approach has a divergence at the 2:1 internal resonance, a
classical feature due to the strong coupling arising in the two modes in this region, and tends to -1 when ω2 � ω1. This
means that a persistent error in the prediction of the type of nonlinearity is given by the static condensation even when
the slow/fast assumption holds. This conclusion is a bit different from the one obtained in section , which is due to the
particular values of the quadratic coefficients αp

ij . Indeed, being fully dependent on ω1 and ω2, their relative values when
applying the slow/fast assumption has a direct consequence on the results.
Fig. 1(a)-(d)-(g) compares the exact invariant manifold obtained by numerical continuation of periodic orbits to the stress
manifold obtained with the exact static condensation. These figures clearly underline that the stress manifold is the same
subspace than the invariant manifold when a slow/fast decomposition is at hand. However, even though the reduced
dynamics is projected on the same subspace, the projection method is not strictly equivalent. Consequently the approxi-
mation of the oscillation frequency, given by the backbone curves in Fig. 1(c)-(f)-(i) do not tend to the same results.

Numerical examples on continuous structures

In order to better compare the two methods, a clamped-clamped beam discretized with the FE procedure, is investigated
and reduced to a single mode is targeted. The dimensions of the beams are selected as: length L = 1m, width b = 0.05m,
thickness h = 0.001m. Material properties are selected as: density ρ = 7800kg/m3, Young modulus E = 2.1e11pa,
and PoissonâĂŹs ratio v = 0 in order to better mimic the assumptions of the theory of beams. This assumption has been
used (e.g. in [7]) when comparisons with theoretical results from beam theory are needed. The beam is discretized with
100 elements in the length and 4 elements in the width, to make sure the mesh of the FE model is small enough to has its
first 10 eigenfrequencies converged. In this paper, the calculations have been realized with the open-source finite element
software Code_aster, with DKT elements.
With the finite element model, a simple case of a single master mode (the fundamental flexural mode) is investigated
for comparing between the ICE method and the NNM approach. The ICE method is derived by first applying a set of
body forces to the structure, i.e. to Eq. (1), these load cases should be proportional to the first mode F = λ1φ1 for
varying values of the parameter λ1, where φ1 denotes the fundamental mode. From the displacement computed by the FE
model, the modal displacements can be retrieved by projecting again along φ1, so that a nonlinear relationship between the
displacement and the scaling factors λ1 is numerically obtained, and the nonlinear restoring force for the reduced-order
model can be retrieved by fitting this relationship.
The fitting procedure for a single coordinate to construct the ROM by the ICE method is illustrated at the bottom right
corner in Fig. 2. 50 values of λ1 have been selected, where the load scales are chosen to obtain displacement in the range
of ±1.5 times of thickness. Such that the ROM given by the ICE method with a polynomial expansion is expressed as

q̈1 + ω2
1q1 + γ1111q

3
1 = F. (43)

where γ1111 is obtained from the fitting procedure. Numerical results show that one obtains γ1111 = 5.2310e + 09. Here
only the cubic term appears because of the symmetry reasons, since the beam is a flat, symmetric structure.
With the StEP method a converged reduced-order models based on the linear eigenmodes can be derived, see e.g. [15, 16,
17]. By using first flexural and 2nd, 4th and 6th in-plane modes as a basis, which is sufficient to ensure convergence, the
associated quadratic and cubic coefficients can be computed. Quadratic coefficients appear due to the membrane/flexural
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Figure 1: (a),(d),(g) Invariant manifold (yellow) in space (X1, Y1, X2), compared with the exact stress manifold (blue). (b),(e),(h)
Comparisons of stress and invariant manifolds in the plane (X1, X2) for the two-dofs system. The static condensation up to order 3 (red
dashed) and up to order 9 (violet) is compared to the exact invariant manifold (black line) and its third-order analytical approximation
(blue dash–dotted). (c),(f),(i) Comparison of backbone curves computed from the full model (black, unstable part in dashed line), the
static condensation up to order 3 and 9 (red and purple) and the invariant manifold up to order three (blue). The first order of nonlinear
frequency of the third order invariant manifold, Eq. (42) (brown curve), the first order of nonlinear frequency of the third order static
condensation (green curve). (a)-(c) ωmaster = 1 and ωslave =

√
3.5. (d)-(f) ωmaster = 1 and ωslave = 5. (g)-(i) ωmaster = 1 and

ωslave = 10.
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Figure 2: (a): Comparison of ROMs with FE solution for a clamped-clamped beam, statically excited at center with an increasing
loading value. The FE solution (black line) is compared to three reduced order models: a single mode obtained with the ICE method
(blue dashed line), a four mode projection using the SteP method (red line), and the reduction to a single NNM from this four mode
solution (brown line). Upper left corner: The meshs in the FE model of the beam. Bottom right corner: illustration of the fitting
procedure for the ICE method: blue stars represent the outputs obtained from static applied force on the FE model, red curve is the
fitted polynomial of order 3. (b): Frequency response curves in the vicinity of the first eigenfrequency, for three different amplitudes of
the forcing: 0.00525N (blue), 0.00875N (black), 0.01225N (red). The full line predictions of the ROM developed by the ICE method,
given by Eq. (43), are obtained by numerical continuation, and is compared to direct time integration on the full FE model (stars).

coupling [15], and the first three of this family is sufficient to ensure convergence. Hence, from these known coefficients,
a reduced-order model composed of this four eigenmodes can be constructed in order to reduce the dynamics to a single
dof, the classical static condensation is applied to lead an equation in the form of Eq. (43),

γ̃1111 = β1
111 −

4∑
p=2

α1
1pα

p
11

ω2
p

, (44)

where the β and α are the nonlinear stiffness coefficients computed from the StEP method. The γ̃111 is computed numer-
ically to be 5.2308e + 09, showing in this case that the ROM built by implicit condensation is equivalent with explicit.
Finally, on the ROM developed with the StEP method, one can apply the reduction to a single NNM, thus obtaining a
reduced dynamics reading

q̈1 + ω2
1q1 + γ̄1111q

3
1 +B1

111q1q̇
2
1 = F. (45)

The result of the coefficients are γ̄1111 = 5.2308e+ 09 and B1
111 = 1.2506. As expected, the three methods gives exactly

the same results and in the frame of the previous demonstration. Indeed, in-plane modes are in very high eigenfrequencies
so that the slow/fast assumption is at hand, thus, all the methods give the same results. In order to be more intuitive, Fig. 2
(a) illustrates a test with static concentrated force applied at the center of the beam. The maximum displacement, which
is computed with the three single mode dynamics, agrees the result given by the full FE solution very well up to 1.5 times
the thickness. Fig. 2 (b) shows nonlinear dynamical frequency response in the vicinity of the first eigenfrequency with a
Rayleigh damping of the form Cs = 1.34[M ] has been selected, corresponding to a damping ratio of 2 percent for the
first mode. The dotted points donates the corresponding full FE solution, computed by direct numerical integration. The
response of the ROMs have been computed by numerical continuation using Manlab.

Conclusions

This paper addressed a comparison between implicit condensation and expansion (ICE) method and NNMs defined as in-
variant manifolds in phase space. The main advantage of the ICE method is to implicitely compute the static condensation
of the slave degrees of freedom, without the need to compute all their couplings with the master variables. But the stress
manifold produced by this method is not invariant and does not depend on the velocities, so that it can be safely used only
if a slow/fast decompostion exists between slave and master coordinate. Another drawback of the ICE method also relies
on the fitting procedure that is needed once the applied static loadings have been computed. Increasing the number of
master modes makes this step more and more difficult and numerous problems arise in the accuracy of the obtained results.
For all these reasons, ROMS built from general theorems from the dynamical systems theory, using invariant manifolds,
seems to be more appropriate since they can be sued safely without extra assumptions (such as slow/fast separation), and
without the tedious ftting procedure, see e.g. [21, 22].
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