1 oscillateur

N degrés de liberté

Applications

Intégrateurs temporels numériques conservatifs pour la dynamique non linéaire.

Application à la synthèse sonore

Cyril Touzé

IMSIA Institut des Sciences de la Mécanique et Applications Idustrielles CNRS - ENSTA ParisTech - EDF - CEA cyril.touze@ensta-paristech.fr

GDR DyNoLin

Dynamique des Structures et approches de dynamique non linéaire

Lundi 10 octobre 2016

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Applications

INTÉGRATEURS NUMÉRIQUES POUR LA DYNAMIQUE NON LINÉAIRE

Dynamique non linéaire

- comportements numériquement raides (contacts)
- grand nombre de degrés de liberté (turbulence d'ondes)

→ l'emploi de méthode numérique standard conduit souvent à des problèmes (stabilité, convergence)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Applications

INTÉGRATEURS NUMÉRIQUES POUR LA DYNAMIQUE NON LINÉAIRE

- Dynamique non linéaire
 - comportements numériquement raides (contacts)
 - grand nombre de degrés de liberté (turbulence d'ondes)

→ l'emploi de méthode numérique standard conduit souvent à des problèmes (stabilité, convergence)

- Propriétés fondamentales des systèmes
 - conservation de l'énergie
 - symplecticité
- Conserver ses invariants au niveau discret permet d'aboutir à des intégrateurs numériques de meilleure qualité.

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Applications

1 1 OSCILLATEUR

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

1 1 OSCILLATEUR

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

NOTATIONS

pas de temps : h, fréquence d'échantillonnage : f_e = 1/h
 incrément positif et négatif : e_{t+}(u) = u_{n+1}, e_{t-}(u) = u_{n-1}
 opérateurs de dérivation :

$$egin{aligned} \delta_{t+} &= rac{1}{h}(m{e}_{t+} - 1) \ \delta_{t-} &= rac{1}{h}(1 - m{e}_{t-}) \ \delta_{t.} &= rac{1}{2h}(m{e}_{t+} - m{e}_{t-}) \ \delta_{tt} &= rac{1}{h^2}(m{e}_{t+} - 2 + m{e}_{t-}) \end{aligned}$$

$$egin{aligned} \mu_{t+} &= rac{1}{2}(m{e}_{t+}+1) \ \mu_{t-} &= rac{1}{2}(1+m{e}_{t-}) \ \mu_{t.} &= rac{1}{2}(m{e}_{t+}+m{e}_{t-}) \end{aligned}$$

Intégration temporelle – schémas conservatifs C. Touzé

1 oscillateur

- 1 oscillateur linéaire Équation de
- Duffing Oscillateur à impact

N degrés de liberté

Applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

1 oscillateur linéaire

- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

1 1 OSCILLATEUR

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR HARMONIQUE

Équation du mouvement :

$$\ddot{u} + \omega_0^2 u = 0$$

avec conditions initiales $u(0) = u_0$, $\dot{u}(0) = v_0$. • solution en temps

$$u(t) = u_0 \cos \omega_0 t + \frac{v_0}{\omega_0} \sin \omega_0 t$$

Énergie

$$H = T + U = \frac{1}{2}\dot{u}^2 + \frac{1}{2}\omega_0^2 u^2$$

conservation de l'énergie en temps continu

$$\frac{\mathrm{d}H}{\mathrm{d}t}=0\quad\Rightarrow\quad H(t)=H_0.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

δ

$$f_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_t)u = 0$$
⁽¹⁾

(日)

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

1 oscillateur

1 oscillateur linéaire

- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$f_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_t)u = 0$$
⁽¹⁾

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t. u:

δ

$$\delta_{tt}u\delta_{t.}u + \omega_0^2(\theta u + (1-\theta)\mu_{t.}u)\delta_{t.}u = 0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$\delta_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_{t.})u = 0 \tag{1}$$

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t. u:

$$\delta_{tt} u \delta_{t.} u + \omega_0^2 (\theta u + (1 - \theta) \mu_{t.} u) \delta_{t.} u = 0$$

Identités remarquables:

$$\delta_{tt} u \delta_{t.} u = \frac{1}{h^2} \left(u_{n+1} - 2u_n + u_{n-1} \right) \frac{1}{2h} \left(u_{n+1} - u_{n-1} \right)$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$\delta_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_{t.})u = 0 \tag{1}$$

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t. u:

$$\delta_{tt} u \delta_{t.} u + \omega_0^2 (\theta u + (1 - \theta) \mu_{t.} u) \delta_{t.} u = 0$$

Identités remarquables:

$$\delta_{tt} u \delta_{t.} u = \frac{1}{2h^3} \left(u_{n+1}^2 - u_{n-1}^2 - 2u_n u_{n+1} + 2u_n u_{n-1} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$\delta_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_{t.})u = 0 \tag{1}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t. u:

$$\delta_{tt} u \delta_{t.} u + \omega_0^2 (\theta u + (1 - \theta) \mu_{t.} u) \delta_{t.} u = 0$$

$$\delta_{tt} u \delta_{t.} u = \frac{1}{h} \left[\frac{1}{2h^2} \left[(u_{n+1} - u_n)^2 - (u_n - u_{n-1})^2 \right] \right]$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$\delta_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_{t.})u = 0 \tag{1}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t. u:

$$\delta_{tt}u\delta_{t.}u + \omega_0^2(\theta u + (1-\theta)\mu_{t.}u)\delta_{t.}u = 0$$

$$\delta_{tt} u \delta_{t.} u = \delta_{t+} \left[\frac{1}{2h^2} \left(u_n - u_{n-1} \right)^2 \right]$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$f_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_t)u = 0$$
⁽¹⁾

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t. u:

δ

$$\delta_{tt} u \delta_{t.} u + \omega_0^2 (\theta u + (1 - \theta) \mu_{t.} u) \delta_{t.} u = 0$$

$$\delta_{tt} u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} (\delta_{t-} u)^2 \right)$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing Oscillateur à

impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$u_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_t)u = 0$$
⁽¹⁾

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

δ

$$\delta_{tt} u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} (\delta_{t-} u)^2 \right)$$
$$u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} u e_{t-} u \right)$$

1 oscillateur

1 oscillateur linéaire

- Équation de Duffing Oscillateur à
- impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$_{tt}u+\omega_0^2(\theta+(1-\theta)\mu_{t.})u=0 \tag{1}$$

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

δ

$$\delta_{tt} u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} (\delta_{t-} u)^2 \right)$$
$$u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} u \Theta_{t-} u \right)$$
$$\mu_{t.} u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} \mu_{t-} u^2 \right)$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing Oscillateur à

impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$u_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_t)u = 0$$
⁽¹⁾

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t.u:

δ

$$\delta_{t+}\left(\frac{1}{2}(\delta_{t-}u)^2+\omega_0^2\left(\theta\frac{1}{2}ue_{t-}u+(1-\theta)\frac{1}{2}\mu_{t-}u^2\right)\right)=0$$

$$\delta_{tt} u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} (\delta_{t-} u)^2 \right)$$
$$u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} u e_{t-} u \right)$$
$$\mu_{t.} u \delta_{t.} u = \delta_{t+} \left(\frac{1}{2} \mu_{t-} u^2 \right)$$

1 oscillateur

1 oscillateur linéaire

- Équation de Duffing Oscillateur à
- impact

N degrés de liberté

Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$d_{tt}u + \omega_0^2(\theta + (1 - \theta)\mu_{t.})u = 0$$
 (1)

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t.u:

δ

$$\delta_{t+}h = 0$$
 avec $h = t+u = \frac{1}{2}(\delta_{t-}u)^2 + \omega_0^2 \left(\theta \frac{1}{2}ue_{t-}u + (1-\theta)\frac{1}{2}\mu_{t-}u^2\right)$

1 oscillateur

1 oscillateur linéaire

- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

UNE FAMILLE DE SCHÉMAS

Introduisons un θ-schéma pour l'oscillateur harmonique sous la forme :

$$f_{tt}u + \omega_0^2(\theta + (1-\theta)\mu_t)u = 0$$
⁽¹⁾

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Cas particuliers:

$$\theta = 1 \quad : \quad \delta_{tt} u + \omega_0^2 u = 0$$

$$\theta = 0 \quad : \quad \delta_{tt} u + \omega_0^2 \mu_{t.} u = 0$$

Énergie discrète liée à ces schémas ?
 On multiplie (1) par la vitesse δ_t. u:

δ

$$\delta_{t+}h = 0$$
 avec $h = t+u = \frac{1}{2}(\delta_{t-}u)^2 + \omega_0^2 \left(\theta \frac{1}{2}ue_{t-}u + (1-\theta)\frac{1}{2}\mu_{t-}u^2\right)$

Conclusion

- famille de schéma conservatifs, pour tout $\theta \in [0, 1]$
- énergie discrète associée conservée à chaque pas de temps

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

$$\delta_{tt}u+\omega_0^2u=0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

$$u_{n+1} - 2u_n + u_{n-1} + h^2 \omega_0^2 u_n = 0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

$$u_{n+1} = (2 - h^2 \omega_0^2) u_n - u_{n-1}$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

(日)

$$u_{n+1} = (2 - h^2 \omega_0^2) u_n - u_{n-1}$$

Stabilité : on calcule la transformée en *z*: $u_n = z^n$, avec $z = e^{sh}$:

$$z^2 + (h^2 \omega_0^2 - 2)z + 1 = 0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$u_{n+1} = (2 - h^2 \omega_0^2) u_n - u_{n-1}$$

Stabilité : on calcule la transformée en *z*: $u_n = z^n$, avec $z = e^{sh}$:

$$z^2 + (h^2 \omega_0^2 - 2)z + 1 = 0$$

- Discriminant : $\Delta = h^2 \omega_0^2 (h^2 \omega_0^2 4)$
- Cas $\Delta < 0$, alors deux racines z_{\pm} complexes conjuguées telles que $|z_{\pm}| = 1$.

•
$$z_{\pm} = e^{j\omega_d h}$$
, où $\omega_d \neq \omega_0$

• solution discrète : $u_n = A\cos(\omega_d nh) + B\sin(\omega_d nh)$.

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

$$u_{n+1} = (2 - h^2 \omega_0^2) u_n - u_{n-1}$$

Stabilité : on calcule la transformée en *z*: $u_n = z^n$, avec $z = e^{sh}$:

$$z^2 + (h^2 \omega_0^2 - 2)z + 1 = 0$$

- Discriminant : $\Delta = h^2 \omega_0^2 (h^2 \omega_0^2 4)$
- Cas $\Delta < 0$, alors deux racines z_{\pm} complexes conjuguées telles que $|z_{\pm}| = 1$.

$$\mathbf{z}_{\pm} = \mathbf{e}^{j\omega_d h}$$
, où $\omega_d \neq \omega_0$

• solution discrète : $u_n = A\cos(\omega_d nh) + B\sin(\omega_d nh)$.

Conclusions

- Schéma stable ssi $\Delta < 0$, soit $h\omega_0 < 2$, ou encore $f_e > \pi f_0$.
- fréquence numérique ω_d différente de ω_0 :

$$\omega_d = \frac{1}{h} \operatorname{Arccos} \left(1 - \frac{h^2 \omega_0^2}{2} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

Fréquence numérique :

$$\omega_d = \frac{1}{h} \operatorname{Arccos} \left(1 - \frac{h^2 \omega_0^2}{2} \right)$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

Fréquence numérique :

$$\omega_d = \frac{1}{h} \operatorname{Arccos} \left(1 - \frac{h^2 \omega_0^2}{2} \right)$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$

э

Fréquence numérique :

$$\omega_d = \frac{1}{h} \operatorname{Arccos} \left(1 - \frac{h^2 \omega_0^2}{2} \right)$$

- Conclusion sur ce schéma:
 - conditionnellement stable : $h\omega_0 < 2$
 - conservatif
 - ordre 2, explicite, à deux pas
 - surestime la fréquence naturelle du problème continu

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$: énergies

Énergie discrète:

$$h = \frac{1}{2} \left(\delta_{t-} u \right)^2 + \omega_0^2 \left(\frac{1}{2} u \boldsymbol{e}_{t-} u \right)$$

Cas particulier $\theta = 1$: énergies

Énergie discrète:

$$h_{n} = \frac{1}{2} \left(\frac{u_{n} - u_{n-1}}{h} \right)^{2} + \frac{\omega_{0}^{2}}{2} u_{n} u_{n-1}$$

rosonnateu

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$: énergies

Énergie discrète:

$$h_{n} = \frac{1}{2} \left(\frac{u_{n} - u_{n-1}}{h} \right)^{2} + \frac{\omega_{0}^{2}}{2} u_{n} u_{n-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Positivité ?

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$: énergies

Énergie discrète:

$$h_{n} = \frac{1}{2} \left(\frac{u_{n} - u_{n-1}}{h} \right)^{2} + \frac{\omega_{0}^{2}}{2} u_{n} u_{n-1}$$

Positivité ?

$$h_{n} = \frac{1}{2h^{2}} \left(u_{n}^{2} + u_{n-1}^{2} \right) + \left(\frac{\omega_{0}^{2}}{2} - \frac{1}{h^{2}} \right) u_{n} u_{n-1}$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$: énergies

Énergie discrète:

$$h_{n} = \frac{1}{2} \left(\frac{u_{n} - u_{n-1}}{h} \right)^{2} + \frac{\omega_{0}^{2}}{2} u_{n} u_{n-1}$$

Positivité ?

$$h_n = u_n^2 + u_{n-1}^2 + 2h^2 \left(\frac{\omega_0^2}{2} - \frac{1}{h^2}\right) u_n u_{n-1}$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$: énergies

Énergie discrète:

$$h_{n} = \frac{1}{2} \left(\frac{u_{n} - u_{n-1}}{h} \right)^{2} + \frac{\omega_{0}^{2}}{2} u_{n} u_{n-1}$$

$$h_{n} = u_{n}^{2} + u_{n-1}^{2} + 2h^{2} \left(\frac{\omega_{0}^{2}}{2} - \frac{1}{h^{2}}\right) u_{n} u_{n-1}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

→ Forme quadratique en $(x, y) = (u_n, u_{n-1})$: $x^2 + y^2 + 2axy$, avec $a = h^2 \left(\frac{\omega_0^2}{2} - \frac{1}{h^2}\right)$.

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$: énergies

Énergie discrète:

$$h_{n} = \frac{1}{2} \left(\frac{u_{n} - u_{n-1}}{h} \right)^{2} + \frac{\omega_{0}^{2}}{2} u_{n} u_{n-1}$$

Positivité ?

$$h_n = u_n^2 + u_{n-1}^2 + 2h^2 \left(\frac{\omega_0^2}{2} - \frac{1}{h^2}\right) u_n u_{n-1}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

→ Forme quadratique en $(x, y) = (u_n, u_{n-1})$: $x^2 + y^2 + 2axy$, avec $a = h^2 \left(\frac{\omega_0^2}{2} - \frac{1}{h^2}\right)$.

■ Résultat : pour |*a*| < 1 : équation d'un paraboloide, défini positif.
1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 1$: énergies

Énergie discrète:

$$h_{n} = \frac{1}{2} \left(\frac{u_{n} - u_{n-1}}{h} \right)^{2} + \frac{\omega_{0}^{2}}{2} u_{n} u_{n-1}$$

Positivité ?

$$h_{n} = u_{n}^{2} + u_{n-1}^{2} + 2h^{2} \left(\frac{\omega_{0}^{2}}{2} - \frac{1}{h^{2}}\right) u_{n} u_{n-1}$$

→ Forme quadratique en $(x, y) = (u_n, u_{n-1})$: $x^2 + y^2 + 2axy$, avec $a = h^2 \left(\frac{\omega_0^2}{2} - \frac{1}{h^2}\right)$.

Résultat : pour |a| < 1 : équation d'un paraboloide, défini positif.

Condition de positivité de l'énergie discrète:

$$|a| < 1 \Rightarrow h\omega_0 < 2$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

→ équivalent à la condition de stabilité trouvée précédemment.

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = \mathbf{0}$

$$\delta_{tt}u + \omega_0^2 \mu_{t.}u = 0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = \mathbf{0}$

$$u_{n+1} - 2u_n + u_{n-1} + h^2 \frac{\omega_0^2}{2} (u_{n+1} + u_{n-1}) = 0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = \mathbf{0}$

$$u_{n+1} = \frac{2}{1 + \frac{\hbar^2 \omega_0^2}{2}} u_n - u_{n-1}$$

1 oscillateur

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

Cas particulier $\theta = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$u_{n+1} = \frac{2}{1 + \frac{\hbar^2 \omega_0^2}{2}} u_n - u_{n-1}$$

Stabilité. Polynôme caractéristique:

$$z^2 - \frac{2}{1 + \frac{\hbar^2 \omega_0^2}{2}}z + 1 = 0$$

• Discriminant :
$$\Delta = 4 \left(\frac{1}{(1+h^2\omega_0^2/2)^2} - 1 \right)$$

• $\forall h, \Delta < 0$: schéma inconditionnellement stable.

1 oscillateur

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

Cas particulier $\theta = 0$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$u_{n+1} = \frac{2}{1 + \frac{h^2 \omega_0^2}{2}} u_n - u_{n-1}$$

Stabilité. Polynôme caractéristique:

$$z^2 - \frac{2}{1 + \frac{\hbar^2 \omega_0^2}{2}}z + 1 = 0$$

Discriminant :
$$\Delta = 4 \left(\frac{1}{(1+h^2\omega_0^2/2)^2} - 1 \right)$$

■ \forall *h*, Δ < 0: schéma inconditionnellement stable.

Analyse énergétique:

$$h = rac{1}{2} (\delta_{t-} u)^2 + \omega_0^2 \left(rac{1}{2} \mu_{t-} u^2
ight)$$

~ énergie toujours positive!

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 0$

$$\omega_d = \frac{1}{h} \operatorname{Arccos} \left(\frac{1}{1 + h^2 \omega_0^2 / 2} \right)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Cas particulier $\theta = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

1 oscillateur

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

Cas particulier $\theta = 0$

- Conclusion sur ce schéma (θ = 0):
 - inconditionnellement stable
 - conservatif
 - ordre 2, explicite, à deux pas
 - sous-estime la fréquence naturelle du problème continu

1 oscillate

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

FAMILLE DE SCHÉMA

Pour la famille de schéma: δ_{tt}u + ω₀²(θ + (1 - θ)μ_t)u = 0
 Condition de stabilité :

si
$$\theta \ge \frac{1}{2}$$
 : $h\omega_0 < \frac{2}{\sqrt{2\theta - 1}}$
si $\theta < \frac{1}{2}$: inconditionnellement stable

FAMILLE DE SCHÉMA

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pour la famille de schéma: δ_{tt}u + ω₀²(θ + (1 - θ)μ_t)u = 0
 Condition de stabilité :

si $heta \ge rac{1}{2}$: $h\omega_0 < rac{2}{\sqrt{2 heta - 1}}$ si $heta < rac{1}{2}$: inconditionnellement stable

Fréquence numérique : $\omega_d = \frac{1}{h} \operatorname{Arccos} \left(\frac{1 - \theta h^2 \omega_0^2/2}{1 + (1 - \theta) h^2 \omega_0^2/2} \right)$

Intégration temporelle – schémas conservatifs C. Touzé

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

FAMILLE DE SCHÉMA

Pour la famille de schéma: δ_{tt}u + ω₀²(θ + (1 - θ)μ_t)u = 0
 Condition de stabilité :

- si $heta \geq rac{1}{2}$: $h\omega_0 < rac{2}{\sqrt{2 heta 1}}$ si $heta < rac{1}{2}$: inconditionnellement stable
- Fréquence numérique : $\omega_d = \frac{1}{h} \operatorname{Arccos} \left(\frac{1 \theta h^2 \omega_0^2/2}{1 + (1 \theta) h^2 \omega_0^2/2} \right)$
- Déviation en cents : 1200log₂ (^{ωd}/_{ω0}).
 100 cents : intervalle musical d'un demi-ton

Intégration temporelle – schémas conservatifs C. Touzé

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

1 oscillateur

1 oscillateur linéaire

- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

cas θ=1, ω₀=1, u₀=1 et v₀=0; h =0.125 (50 points/période).
 Aux temps courts (solution analytique en rouge, numérique en noir)

ILLUSTRATIONS, $\theta = 1$

Aux temps longs (après 150 périodes) :

- 990

1 oscillateur

1 oscillateur linéaire

Équation de Duffing Oscillateur à

impact

N degrés de liberté

Applications

Illustrations, $\theta = 1$

■ cas θ =1, ω_0 =1, u_0 =1 et v_0 =0; h =0.125 (50 points/période).

Conservation de l'énergie: représentation de H(t) et $(H(t) - H_0)/H_0$

▲□▶▲□▶▲□▶▲□▶ ■ のくで

1 oscillateur

1 oscillateur linéaire

- Équation de Duffing
- Oscillateur à impact
- N degrés de liberté
- Applications

cas θ=0, ω₀=1, u₀=1 et v₀=0; h =0.125 (50 points/période).
 Aux temps courts (solution analytique en rouge, numérique en noir)

ILLUSTRATIONS, $\theta = 0$

Aux temps longs (après 50 périodes) :

1 oscillateur

1 oscillateur linéaire

Équation de Duffing Oscillateur à

impact

N degrés de liberté

Applications

Illustrations, $\theta=0$

■ cas θ=0, ω₀=1, u₀=1 et v₀=0; h =0.125 (50 points/période).

Conservation de l'énergie: représentation de H(t) et $(H(t) - H_0)/H_0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

ILLUSTRATIONS, TEMPS LONGS

ω₀=1, u₀=1 et v₀=0; h =0.125 (50 points/période).
 Comparaisons de l'erreur sur l'estimation de la fréquence après 200 périodes.

 $\theta = 1$

= ∽<</p>

 $\theta = 0$

 $\theta = 0.8$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UN SCHÉMA EXACT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Soit le schéma suivant:

$$u_{n+1} - 2\cos(\omega_0 h)u_n + u_{n-1} = 0$$

Ce schéma est exact.

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UN SCHÉMA EXACT

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Soit le schéma suivant:

$$u_{n+1} - 2\cos(\omega_0 h)u_n + u_{n-1} = 0$$

Ce schéma est exact.

- Discriminant du polynôme caractéristique : $\Delta = 4\cos^2(\omega_0 h) - 4 = -4\sin^2(\omega_0 h).$
- racines : $z_{\pm} = \cos(\omega_0 h) \pm j \sin(\omega_0 h) = e^{j\omega_0 h}$ $\rightarrow \omega_d = \omega_0$.

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UN SCHÉMA EXACT

Soit le schéma suivant:

$$u_{n+1} - 2\cos(\omega_0 h)u_n + u_{n-1} = 0$$

Ce schéma est exact.

- Discriminant du polynôme caractéristique : $\Delta = 4\cos^2(\omega_0 h) - 4 = -4\sin^2(\omega_0 h).$
- racines : $z_{\pm} = \cos(\omega_0 h) \pm j \sin(\omega_0 h) = e^{j\omega_0 h}$ $\rightsquigarrow [\omega_d = \omega_0].$

h=0.31, 20 points par périodes

・ロト・西ト・西ト・西ト・日・ シック・

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UN SCHÉMA EXACT

Soit le schéma suivant:

$$u_{n+1} - 2\cos(\omega_0 h)u_n + u_{n-1} = 0$$

Ce schéma est exact.

- Discriminant du polynôme caractéristique : $\Delta = 4\cos^2(\omega_0 h) - 4 = -4\sin^2(\omega_0 h).$
- racines : $z_{\pm} = \cos(\omega_0 h) \pm j \sin(\omega_0 h) = e^{j\omega_0 h}$ $\rightsquigarrow [\omega_d = \omega_0].$

h=1.25, 5 points par périodes

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

UN SCHÉMA EXACT

Soit le schéma suivant:

$$u_{n+1} - 2\cos(\omega_0 h)u_n + u_{n-1} = 0$$

Ce schéma est exact.

- Discriminant du polynôme caractéristique : $\Delta = 4\cos^2(\omega_0 h) - 4 = -4\sin^2(\omega_0 h).$
- racines : $Z_{\pm} = \cos(\omega_0 h) \pm j \sin(\omega_0 h) = e^{j\omega_0 h}$ $\rightsquigarrow [\omega_d = \omega_0].$

h=10

・ロト・西ト・西ト・西ト・日・ シック・

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

SCHÉMA EXACT - CAS AMORTI

(日)

Pour l'oscillateur linéaire amorti : ü + 2ξω₀ u + ω₀² u = 0
 schéma exact:

$$u_{n+1} - e^{-\xi\omega_0 h} \left[e^{h\omega_0 \sqrt{\xi^2 - 1}} + e^{-h\omega_0 \sqrt{\xi^2 - 1}} \right] u_n + e^{-2\xi h\omega_0} u_{n-1} = 0$$

1 oscillateur linéaire

Équation de

Oscillateur à impact

SCHÉMA EXACT - CAS AMORTI

Pour l'oscillateur linéaire amorti : $\ddot{u} + 2\xi\omega_0\dot{u} + \omega_0^2u = 0$ schéma exact:

$$u_{n+1} - e^{-\xi\omega_0 h} \left[e^{h\omega_0 \sqrt{\xi^2 - 1}} + e^{-h\omega_0 \sqrt{\xi^2 - 1}} \right] u_n + e^{-2\xi h\omega_0} u_{n-1} = 0$$

Illustrations, $\omega_0=1$, $u_0=1$, h=2.

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

SCHÉMA EXACT - CAS AMORTI

Pour l'oscillateur linéaire amorti : ü + 2ξω₀ ù + ω₀² u = 0
 schéma exact:

$$u_{n+1} - e^{-\xi\omega_0 h} \left[e^{h\omega_0 \sqrt{\xi^2 - 1}} + e^{-h\omega_0 \sqrt{\xi^2 - 1}} \right] u_n + e^{-2\xi h\omega_0} u_{n-1} = 0$$

Illustrations, $\omega_0=1$, $u_0=1$, h=2.

A D > A P > A D > A D >

э

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

SCHÉMA EXACT - CAS AMORTI

Pour l'oscillateur linéaire amorti : ü + 2ξω₀ ù + ω₀² u = 0
 schéma exact:

$$u_{n+1} - e^{-\xi\omega_0 h} \left[e^{h\omega_0 \sqrt{\xi^2 - 1}} + e^{-h\omega_0 \sqrt{\xi^2 - 1}} \right] u_n + e^{-2\xi h\omega_0} u_{n-1} = 0$$

Illustrations,
$$\omega_0=1$$
, $u_0=1$, $h=2$.

イロト 不得 トイヨト イヨト

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

1 1 OSCILLATEUR

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

EQUATION DE DUFFING

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Équation de Duffing :

Énergie

$$\ddot{u} + \omega_0^2 u + \gamma u^3 = 0$$

$$H = \frac{1}{2}\dot{u}^2 + \frac{1}{2}\omega_0^2 u^2 + \frac{1}{4}\gamma u^4$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

EQUATION DE DUFFING

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Équation de Duffing :

$$\ddot{u} + \omega_0^2 u + \gamma u^3 = 0$$

Énergie

$$H = \frac{1}{2}\dot{u}^2 + \frac{1}{2}\omega_0^2 u^2 + \frac{1}{4}\gamma u^4$$

schéma le plus simple:

- cas θ=1 pour la partie linéaire
- terme non linéaire à l'instant courant

$$\delta_{tt}u + \omega_0^2 u + \gamma u^3 = 0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

EQUATION DE DUFFING

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Équation de Duffing :

$$\ddot{u} + \omega_0^2 u + \gamma u^3 = 0$$

Énergie

$$H = \frac{1}{2}\dot{u}^2 + \frac{1}{2}\omega_0^2 u^2 + \frac{1}{4}\gamma u^4$$

schéma le plus simple:

- cas θ=1 pour la partie linéaire
- terme non linéaire à l'instant courant

$$\delta_{tt}u + \omega_0^2 u + \gamma u^3 = 0$$

$$u_{n+1} - 2u_n + u_{n-1} + h^2 \omega_0^2 u_n + h^2 \gamma u_n^3 = 0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

EQUATION DE DUFFING

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Équation de Duffing :

$$\ddot{u} + \omega_0^2 u + \gamma u^3 = 0$$

Énergie

$$H = \frac{1}{2}\dot{u}^2 + \frac{1}{2}\omega_0^2 u^2 + \frac{1}{4}\gamma u^4$$

schéma le plus simple:

- cas θ=1 pour la partie linéaire
- terme non linéaire à l'instant courant

$$\delta_{tt}u + \omega_0^2 u + \gamma u^3 = 0$$

$$u_{n+1} - 2u_n + u_{n-1} + h^2 \omega_0^2 u_n + h^2 \gamma u_n^3 = 0$$

→ schéma de Störmer-Verlet.
ce schéma n'est pas conservatif.

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

ÉQUATION DE DUFFING

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Famille de schémas conservatifs pour l'équation de Duffing:

 $\delta_{tt} u + \omega_0^2 (\theta_1 + (1 - \theta_1) \mu_{t.}) u + \gamma \left(\theta_2 u^2 + (1 - \theta_2) \mu_{t.} (u^2) \right) \mu_{t.} u = 0$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

ÉQUATION DE DUFFING

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Famille de schémas conservatifs pour l'équation de Duffing:

 $\delta_{tt} u + \omega_0^2 (\theta_1 + (1 - \theta_1)\mu_{t.}) u + \gamma \left(\theta_2 u^2 + (1 - \theta_2)\mu_{t.}(u^2)\right) \mu_{t.} u = 0$

- Énergie discrète associée:
 - cas $\theta_2=1$: identité remarquable : $u_n^2 \mu_{t.}(u_n) \delta_{t.}(u_n) = \delta_{t+\frac{1}{4}}(u_n^2 u_{n-1}^2)$
 - cas $\theta_2 = 0$: $\mu_{t.}(u_n^2)\mu_{t.}(u_n)\delta_{t.}(u_n) = \delta_{t+\frac{1}{4}}\mu_{t-}u_n^4$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

ÉQUATION DE DUFFING

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Famille de schémas conservatifs pour l'équation de Duffing:

$$\delta_{tt}u + \omega_0^2(\theta_1 + (1-\theta_1)\mu_{t.})u + \gamma \left(\theta_2 u^2 + (1-\theta_2)\mu_{t.}(u^2)\right)\mu_{t.}u = 0$$

Énergie discrète associée:

• cas $\theta_2 = 1$: identité remarquable : $u_n^2 \mu_{t.}(u_n) \delta_{t.}(u_n) = \delta_{t+\frac{1}{4}}(u_n^2 u_{n-1}^2)$ • cas $\theta_2 = 0$: $\mu_{t.}(u_n^2) \mu_{t.}(u_n) \delta_{t.}(u_n) = \delta_{t+\frac{1}{4}} \mu_{t-} u_n^4$

$$\begin{split} h &= \quad \frac{1}{2} (\delta_{t-} u)^2 + \omega_0^2 \left(\theta_1 \frac{1}{2} u e_{t-} u + (1-\theta_1) \frac{1}{2} \mu_{t-} u^2 \right) \\ &+ \frac{\gamma}{4} \left(\theta_2 u^2 (e_{t-} u)^2 + (1-\theta_2) \mu_{t-} u^4 \right) \end{split}$$

→ terme NL de l'énergie discrète positif → propriétés de stabilité héritée du choix de θ_1 .

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

ÉQUATION DE DUFFING

Famille de schémas conservatifs pour l'équation de Duffing:

$$\delta_{tt} u + \omega_0^2 (\theta_1 + (1 - \theta_1) \mu_{t.}) u + \gamma \left(\theta_2 u^2 + (1 - \theta_2) \mu_{t.} (u^2) \right) \mu_{t.} u = 0$$

- Énergie discrète associée:
 - cas $\theta_2=1$: identité remarquable : $u_n^2\mu_{t.}(u_n)\delta_{t.}(u_n) = \delta_{t+\frac{1}{4}}(u_n^2u_{n-1}^2)$
 - cas $\theta_2 = 0$: $\mu_{t.}(u_n^2)\mu_{t.}(u_n)\delta_{t.}(u_n) = \delta_{t+\frac{1}{4}}\mu_{t-}u_n^4$

$$h = \frac{1}{2} (\delta_{t-} u)^2 + \omega_0^2 (\theta_1 \frac{1}{2} u e_{t-} u + (1 - \theta_1) \frac{1}{2} \mu_{t-} u^2) + \frac{\gamma}{4} (\theta_2 u^2 (e_{t-} u)^2 + (1 - \theta_2) \mu_{t-} u^4)$$

 \rightsquigarrow propriétés de stabilité héritée du choix de θ_1 .

■ Cas θ₂=0 (et θ₁=1) :

$$\delta_{tt} u + \omega_0^2 u + \gamma \mu_{t.} (u^2) \mu_{t.} u = 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

ÉQUATION DE DUFFING

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Famille de schémas conservatifs pour l'équation de Duffing:

$$\delta_{tt}\boldsymbol{u} + \omega_0^2(\theta_1 + (1 - \theta_1)\mu_{t.})\boldsymbol{u} + \gamma \left(\theta_2 \boldsymbol{u}^2 + (1 - \theta_2)\mu_{t.}(\boldsymbol{u}^2)\right)\mu_{t.}\boldsymbol{u} = \boldsymbol{0}$$

- Énergie discrète associée:
 - cas $\theta_2=1$: identité remarquable : $u_n^2\mu_{t.}(u_n)\delta_{t.}(u_n) = \delta_{t+\frac{1}{4}}(u_n^2u_{n-1}^2)$
 - cas $\theta_2 = 0$: $\mu_{t.}(u_n^2) \mu_{t.}(u_n) \delta_{t.}(u_n) = \delta_{t+\frac{1}{4}} \mu_{t-} u_n^4$

$$h = \frac{1}{2} (\delta_{t-} u)^2 + \omega_0^2 (\theta_1 \frac{1}{2} u e_{t-} u + (1 - \theta_1) \frac{1}{2} \mu_{t-} u^2) + \frac{\gamma}{4} (\theta_2 u^2 (e_{t-} u)^2 + (1 - \theta_2) \mu_{t-} u^4)$$

 \rightsquigarrow terme NL de l'énergie discrète positif \rightsquigarrow propriétés de stabilité héritée du choix de θ_1 .

Cas θ₂=0 (et θ₁=1) :

$$u_{n+1} - 2u_n + u_{n-1} + h^2 \omega_0^2 u_n + h^2 \frac{\gamma}{4} (u_{n+1} + u_{n-1}) (u_{n+1}^2 + u_{n-1}^2) = 0$$
1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

Famille de schémas conservatifs pour l'équation de Duffing:

$$\delta_{tt}u + \omega_0^2(\theta_1 + (1-\theta_1)\mu_{t.})u + \gamma \left(\theta_2 u^2 + (1-\theta_2)\mu_{t.}(u^2)\right)\mu_{t.}u = 0$$

ÉQUATION DE DUFFING

- Énergie discrète associée:
 - cas $\theta_2=1$: identité remarquable : $u_n^2 \mu_{t.}(u_n) \delta_{t.}(u_n) = \delta_{t+\frac{1}{4}}(u_n^2 u_{n-1}^2)$
 - cas $\theta_2 = 0$: $\mu_{t.}(u_n^2) \mu_{t.}(u_n) \delta_{t.}(u_n) = \delta_{t+\frac{1}{4}} \mu_{t-} u_n^4$

$$h = \frac{1}{2} (\delta_{t-} u)^2 + \omega_0^2 (\theta_1 \frac{1}{2} u e_{t-} u + (1 - \theta_1) \frac{1}{2} \mu_{t-} u^2) + \frac{\gamma}{4} (\theta_2 u^2 (e_{t-} u)^2 + (1 - \theta_2) \mu_{t-} u^4)$$

 \rightsquigarrow terme NL de l'énergie discrète positif \rightsquigarrow propriétés de stabilité héritée du choix de θ_1 .

Cas θ₂=0 (et θ₁=1) :

$$u_{n+1} - 2u_n + u_{n-1} + h^2 \omega_0^2 u_n + h^2 \frac{\gamma}{4} (u_{n+1} + u_{n-1}) (u_{n+1}^2 + u_{n-1}^2) = 0$$

- schéma implicite (équation cubique en u_{n+1} à résoudre à chaque pas de temps)
- difficulté supplémentaire dans la mise en œuvre

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

EQUATION DE DUFFING - SCHÉMA EXPLICITE CONSERVATIF

(日)

Le cas θ_2 =1 donne lieu à une récursion à deux pas explicite

$$\delta_{tt}u + \omega_0^2(\theta_1 + (1-\theta_1)\mu_{t.})u + \gamma u^2\mu_{t.}u = 0$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

EQUATION DE DUFFING - SCHÉMA EXPLICITE CONSERVATIF

(日)

■ Le cas θ₂=1 donne lieu à une récursion à deux pas explicite

$$u_{n+1} = \frac{2 - h^2 \omega_0^2 \theta_1}{1 + (1 - \theta_1) h^2 \omega_0^2 / 2 + \gamma h^2 u_n^2 / 2} u_n - u_{n-1}$$

1 oscillateur

1 oscillateur linéaire

Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

EQUATION DE DUFFING - SCHÉMA EXPLICITE CONSERVATIF

Le cas θ₂=1 donne lieu à une récursion à deux pas explicite

$$u_{n+1} = \frac{2 - h^2 \omega_0^2 \theta_1}{1 + (1 - \theta_1) h^2 \omega_0^2 / 2 + \gamma h^2 u_n^2 / 2} u_n - u_{n-1}$$

■ Illustration : ω_0 =1, γ =5, θ_1 =0.8, *h*=0.0628.

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

1 oscillateur linéaire Équation de

Oscillateur à impact

N degrés de liberté

Applications

1 1 OSCILLATEUR

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR À IMPACT - CONTACT UNILATÉRAL

Masse m, raideur k, mur rigide à distance d

 $m\ddot{u} + ku = -f$

Force de contact régularisée :

$$f(u) = K \left[u - d \right]_+^\alpha$$

• si
$$u > d$$
, $f(u) = K(u - d)^{\alpha}$

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR À IMPACT - CONTACT UNILATÉRAL

Masse m, raideur k, mur rigide à distance d

 $m\ddot{u} + ku = -f$

Force de contact régularisée :

$$f(u) = K \left[u - d \right]_+^\alpha$$

- **K**, α : paramètres de pénalisation
- [.]₊ : partie positive
- si $u \leq d, f = 0$
- si u > d, $f(u) = K(u d)^{\alpha}$
- Force de contact dérive d'un potentiel

$$f = \frac{\mathrm{d}\Phi}{\mathrm{d}u}, \quad \mathrm{avec} \qquad \Phi(u) = \frac{1}{lpha+1} \left[u-d\right]_+^{lpha+1}$$

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR À IMPACT - CONTACT UNILATÉRAL

Masse m, raideur k, mur rigide à distance d

 $m\ddot{u} + ku = -f$

Force de contact régularisée :

$$f(u) = K \left[u - d \right]_+^\alpha$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- **K**, α : paramètres de pénalisation
- [.]₊ : partie positive
- si $u \leq d, f = 0$
- si u > d, $f(u) = K(u d)^{\alpha}$
- Force de contact dérive d'un potentiel

$$f = rac{\mathrm{d}\Phi}{\mathrm{d}u}, \quad ext{avec} \qquad \Phi(u) = rac{1}{lpha+1} \left[u-d
ight]_+^{lpha+1}$$

Énergies

$$m\ddot{u}\dot{u} + ku\dot{u} = -\frac{\mathrm{d}\Phi}{\mathrm{d}u}\dot{u}$$

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR À IMPACT - CONTACT UNILATÉRAL

Masse m, raideur k, mur rigide à distance d

 $m\ddot{u} + ku = -f$

Force de contact régularisée :

$$f(u) = K \left[u - d \right]_+^\alpha$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- **K**, α : paramètres de pénalisation
- [.]₊ : partie positive
- si $u \leq d, f = 0$
- si u > d, $f(u) = K(u d)^{\alpha}$
- Force de contact dérive d'un potentiel

$$f = rac{\mathrm{d}\Phi}{\mathrm{d}u}, \quad ext{avec} \qquad \Phi(u) = rac{1}{lpha+1} \left[u-d
ight]_+^{lpha+1}$$

Énergies

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{2}m\dot{u}^{2}+\frac{1}{2}ku^{2}\right)=-\frac{\mathrm{d}}{\mathrm{d}t}\left(\Phi(u)\right)$$

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR À IMPACT - CONTACT UNILATÉRAL

Masse m, raideur k, mur rigide à distance d

 $m\ddot{u} + ku = -f$

Force de contact régularisée :

$$f(u) = K \left[u - d \right]_+^\alpha$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- **K**, α : paramètres de pénalisation
- [.]₊ : partie positive
- si $u \leq d, f = 0$
- si u > d, $f(u) = K(u d)^{\alpha}$
- Force de contact dérive d'un potentiel

$$f = rac{\mathrm{d}\Phi}{\mathrm{d}u}, \quad ext{avec} \qquad \Phi(u) = rac{1}{lpha+1} \left[u-d
ight]_+^{lpha+1}$$

Énergies

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 0, \quad \text{avec} \qquad H = \frac{1}{2}m\dot{u}^2 + \frac{1}{2}ku^2 + \Phi(u)$$

OSCILLATEUR À IMPACT

schéma conservatif

$$m\delta_{tt}u + k(\theta + (1 - \theta)\mu_{t.})u = -f_n,$$

avec $f_n = \frac{\delta_{t-}\Phi_{n+1/2}}{\delta_{t.}u},$ et $\Phi_{n+1/2} = \mu_{t+}\Phi(u_n)$
soit $f_n = \frac{\Phi(u_{n+1}) - \Phi(u_{n-1})}{u_{n+1} - u_{n-1}}$

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR À IMPACT

schéma conservatif

$$m\delta_{tt}u + k(\theta + (1 - \theta)\mu_{t.})u = -f_n,$$

avec $f_n = \frac{\delta_{t-}\Phi_{n+1/2}}{\delta_{t.}u},$ et $\Phi_{n+1/2} = \mu_{t+}\Phi(u_n)$
soit $f_n = \frac{\Phi(u_{n+1}) - \Phi(u_{n-1})}{u_{n+1} - u_{n-1}}$

Conservation de l'énergie discrète : terme de collision:

$$\frac{\delta_{t-}\Phi_{n+1/2}}{\delta_{t.}u}\delta_{t.}u$$

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR À IMPACT

schéma conservatif

$$m\delta_{tt}u + k(\theta + (1 - \theta)\mu_{t.})u = -f_n,$$

avec $f_n = \frac{\delta_{t-}\Phi_{n+1/2}}{\delta_{t.}u},$ et $\Phi_{n+1/2} = \mu_{t+}\Phi(u_n)$
soit $f_n = \frac{\Phi(u_{n+1}) - \Phi(u_{n-1})}{u_{n+1} - u_{n-1}}$

Conservation de l'énergie discrète : terme de collision:

$$\frac{\delta_{t-}\Phi_{n+1/2}}{\delta_{t-}U}\delta_{t-}U = \delta_{t-}\Phi_{n+1/2}$$

1 oscillateur

1 oscillateur linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

OSCILLATEUR À IMPACT

schéma conservatif

$$m\delta_{tt}u + k(\theta + (1 - \theta)\mu_{t.})u = -f_n,$$

avec $f_n = \frac{\delta_{t-}\Phi_{n+1/2}}{\delta_{t.}u},$ et $\Phi_{n+1/2} = \mu_{t+}\Phi(u_n)$
soit $f_n = \frac{\Phi(u_{n+1}) - \Phi(u_{n-1})}{u_{n+1} - u_{n-1}}$

• Conservation de l'énergie discrète : $\delta_{t-}h = 0$, avec

$$h = \frac{1}{2}m(\delta_{t-}u)^{2} + k\left(\theta\frac{1}{2}ue_{t-}u + (1-\theta)\frac{1}{2}\mu_{t-}u^{2}\right) + \Phi_{n+1/2}$$

1 oscillateur linéaire Équation de Duffing Oscillateur à impact N degrés de

OSCILLATEUR À IMPACT

schéma conservatif

$$m\delta_{tt}u + k(\theta + (1 - \theta)\mu_{t.})u = -f_n,$$

avec $f_n = \frac{\delta_{t-}\Phi_{n+1/2}}{\delta_{t.}u},$ et $\Phi_{n+1/2} = \mu_{t+}\Phi(u_n)$
soit $f_n = \frac{\Phi(u_{n+1}) - \Phi(u_{n-1})}{u_{n+1} - u_{n-1}}$

• Conservation de l'énergie discrète : $\delta_{t-}h = 0$, avec

$$h = \frac{1}{2}m(\delta_{t-}u)^{2} + k\left(\theta\frac{1}{2}ue_{t-}u + (1-\theta)\frac{1}{2}\mu_{t-}u^{2}\right) + \Phi_{n+1/2}$$

Résolution pratique :

$$u_{n+1} - 2u_n + u_{n-1} + \frac{kh^2}{m} \left(\theta u_n + (1-\theta)\frac{u_{n+1} + u_{n-1}}{2}\right)$$
$$= -\frac{h^2}{m} \left[\frac{\Phi(u_{n+1}) - \Phi(u_{n-1})}{u_{n+1} - u_{n-1}}\right]$$

~ Newton-Raphson...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

OSCILLATEUR À IMPACT

1 oscillateur

linéaire Équation de Duffing

Oscillateur à impact

N degrés de liberté

Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

1 OSCILLATEU

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

1 OSCILLATEU

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

Systèmes Hamiltoniens, transformations symplectiques

- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

DÉFINITIONS

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Systèmes dynamiques :

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, t), \quad \mathbf{y} \in \mathbb{R}^d.$$

 Système Hamiltonien : coordonnées généralisées (p, q), p = [p₁, ..., p_d]^t, espace des phases de dimension 2d, Hamiltonien H(p, q). Équations du mouvement:

$$\dot{p}_i = -rac{\partial H}{\partial q_i}, \ \dot{q}_i = rac{\partial H}{\partial p_i},$$

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

Systèmes dynamiques :

$$\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, t), \quad \mathbf{y} \in \mathbb{R}^d.$$

 Système Hamiltonien : coordonnées généralisées (**p**, **q**), **p** = [*p*₁, ..., *p_d*]^t, espace des phases de dimension 2*d*, Hamiltonien *H*(**p**, **q**). Équations du mouvement:

$$\dot{p}_i = -rac{\partial H}{\partial q_i}, \ \dot{q}_i = rac{\partial H}{\partial p_i},$$

Écriture sous forme plus compacte:

$$\dot{\mathbf{y}} = \mathbf{J}^{-1} \nabla H(\mathbf{y}),$$

avec $\mathbf{y} = (\mathbf{p}, \mathbf{q})$ et \mathbf{J} la matrice définie par:

$$\mathbf{J} = \left(\begin{array}{cc} \mathbf{0} & \mathbf{I}_d \\ -\mathbf{I}_d & \mathbf{0} \end{array} \right)$$

DÉFINITIONS

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

DÉFINITIONS

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1 oscillateur

Intégration temporelle – schémas

conservatifs C Touzé

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

Intégrale première du mouvement (invariants, constantes du mouvement, quantité conservée...) Pour un système dynamique autonome : y intégrale première *I*(y) fonction non-constante vérifiant :

 $l'(\mathbf{y})\mathbf{f}(\mathbf{y}) = 0$ pour tout \mathbf{y} .

DÉFINITIONS

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1 oscillateur

Intégration temporelle – schémas

conservatifs C Touzé

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

Intégrale première du mouvement (invariants, constantes du mouvement, quantité conservée...) Pour un système dynamique autonome : y = f(y), intégrale première /(y) fonction non-constante vérifiant :

 $l'(\mathbf{y})\mathbf{f}(\mathbf{y}) = 0$ pour tout \mathbf{y} .

En particulier:

Soit $\mathbf{y}(t)$ une orbite du système, alors:

 $\forall t, l(\mathbf{y}(t)) = l(\mathbf{y}_0)$

DÉFINITIONS

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1 oscillateur

Intégration temporelle – schémas

conservatifs C Touzé

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

Intégrale première du mouvement (invariants, constantes du mouvement, quantité conservée...) Pour un système dynamique autonome : y f(y), intégrale première /(y) fonction non-constante vérifiant :

 $l'(\mathbf{y})\mathbf{f}(\mathbf{y}) = 0$ pour tout \mathbf{y} .

En particulier: Soit y(t) une orbite du système, alors:

 $\forall t, l(\mathbf{y}(t)) = l(\mathbf{y}_0)$

~> le Hamiltonien (énergie totale) est une intégrale première

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

TRANSFORMATIONS SYMPLECTIQUES

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Symplecticité : conservation de la somme des aires orientées

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

TRANSFORMATIONS SYMPLECTIQUES

Symplecticité : conservation de la somme des aires orientées

- Soient $\boldsymbol{\xi} = [\boldsymbol{\xi}^{p} \ \boldsymbol{\xi}^{q}]^{t}$ et $\boldsymbol{\eta} = [\boldsymbol{\eta}^{p} \ \boldsymbol{\eta}^{q}]^{t}$ deux vecteurs de \mathbb{R}^{2d} ,
 - et *P* le parallélogramme bidim de \mathbb{R}^{2d} engendré par ξ et η :

$$P = \{t\xi + s\eta, t \in [0, 1], s \in [0, 1]\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

TRANSFORMATIONS SYMPLECTIQUES

- Symplecticité : *conservation de la somme des aires orientées*
- Soient $\xi = [\xi^p \xi^q]^t$ et $\eta = [\eta^p \eta^q]^t$ deux vecteurs de \mathbb{R}^{2d} , et *P* le parallélogramme bidim de \mathbb{R}^{2d} engendré par ξ et η :

$$P = \{t\xi + s\eta, t \in [0, 1], s \in [0, 1]\}.$$

 Soit ω(ξ, η) la somme des aires orientées des projections de P sur les plans de coordonnées (p_i, q_i),

$$\omega(\boldsymbol{\xi}, \boldsymbol{\eta}) = \sum_{i=1}^{d} \det \left(egin{array}{cc} \xi_{i}^{p} & \eta_{i}^{p} \ \xi_{i}^{q} & \eta_{i}^{q} \end{array}
ight) = \sum_{i=1}^{d} \xi_{i}^{p} \eta_{i}^{q} - \xi_{i}^{q} \eta_{i}^{p},$$

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

TRANSFORMATIONS SYMPLECTIQUES

- Symplecticité : conservation de la somme des aires orientées
- Solient $\boldsymbol{\xi} = [\boldsymbol{\xi}^p \ \boldsymbol{\xi}^q]^t$ et $\boldsymbol{\eta} = [\boldsymbol{\eta}^p \ \boldsymbol{\eta}^q]^t$ deux vecteurs de \mathbb{R}^{2d} ,

et *P* le parallélogramme bidim de \mathbb{R}^{2d} engendré par ξ et η :

$$P = \{t\xi + s\eta, t \in [0, 1], s \in [0, 1]\}.$$

 Soit ω(ξ, η) la somme des aires orientées des projections de P sur les plans de coordonnées (p_i, q_i),

$$\omega(\boldsymbol{\xi},\boldsymbol{\eta}) = \sum_{i=1}^{d} \det \left(\begin{array}{cc} \xi_{i}^{p} & \eta_{i}^{p} \\ \xi_{i}^{q} & \eta_{i}^{q} \end{array} \right) = \sum_{i=1}^{d} \xi_{i}^{p} \eta_{i}^{q} - \xi_{i}^{q} \eta_{i}^{p},$$

Définition:

Une application différentiable $g : U \subset \mathbb{R}^{2d} \longrightarrow \mathbb{R}^{2d}$ est symplectique si la matrice jacobienne $g'(\mathbf{p}, \mathbf{q})$ est partout symplectique, soit:

$$g'(\mathbf{p},\mathbf{q})^t \mathbf{J}g'(\mathbf{p},\mathbf{q}) = \mathbf{J}, \quad \text{ou} \quad \omega(g'(\mathbf{p},\mathbf{q})\boldsymbol{\xi},g'(\mathbf{p},\mathbf{q})\boldsymbol{\eta}) = \omega(\boldsymbol{\xi},\boldsymbol{\eta}).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

TRANSFORMATIONS SYMPLECTIQUES

- Symplecticité : conservation de la somme des aires orientées
- Soient $\boldsymbol{\xi} = [\boldsymbol{\xi}^p \ \boldsymbol{\xi}^q]^t$ et $\boldsymbol{\eta} = [\boldsymbol{\eta}^p \ \boldsymbol{\eta}^q]^t$ deux vecteurs de \mathbb{R}^{2d} ,
 - et *P* le parallélogramme bidim de \mathbb{R}^{2d} engendré par ξ et η :

$$P = \{t\xi + s\eta, t \in [0, 1], s \in [0, 1]\}.$$

 Soit ω(ξ, η) la somme des aires orientées des projections de P sur les plans de coordonnées (p_i, q_i),

$$\omega(\boldsymbol{\xi},\boldsymbol{\eta}) = \sum_{i=1}^{d} \det \left(\begin{array}{cc} \xi_{i}^{p} & \eta_{i}^{p} \\ \xi_{i}^{q} & \eta_{i}^{q} \end{array} \right) = \sum_{i=1}^{d} \xi_{i}^{p} \eta_{i}^{q} - \xi_{i}^{q} \eta_{i}^{p},$$

Définition:

Une application différentiable $g : U \subset \mathbb{R}^{2^d} \longrightarrow \mathbb{R}^{2^d}$ est symplectique si la matrice jacobienne $g'(\mathbf{p}, \mathbf{q})$ est partout symplectique, soit:

 $g'(\mathbf{p},\mathbf{q})^t\mathbf{J}g'(\mathbf{p},\mathbf{q})=\mathbf{J},\qquad\text{ou}\quad \omega(g'(\mathbf{p},\mathbf{q})\boldsymbol{\xi},g'(\mathbf{p},\mathbf{q})\boldsymbol{\eta})=\omega(\boldsymbol{\xi},\boldsymbol{\eta}).$

 Théorème (Poincaré, 1899) : Soit H(p, q) un Hamiltonien continûment différentiable deux fois sur

un sous-ensemble $U \subset \mathbb{R}^{2d}$. Alors, pour tout temps t, le flot ϕ_t associé est une transformation symplectique.

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

1 OSCILLATEU

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

SCHÉMA DE STÖRMER-VERLET

Pour les systèmes du second ordre :

 $\ddot{\mathbf{q}} = \mathbf{f}(\mathbf{q}),$

schéma de Störmer-Verlet (ou leap-frog ou saute-mouton) :

$$\mathbf{q}_{n+1}-2\mathbf{q}_n+\mathbf{q}_{n-1}=h^2\mathbf{f}(\mathbf{q}_n).$$

- Propriétés :
 - ordre 2
 - symétrique
 - symplectique
 - condition de stabilité : $h\omega \leq 2$

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

1 OSCILLATEU

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

Systèmes Hamiltoniens, transformations symplectiques
 Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

MÉTHODES DE RUNGE-KUTTA

• <u>Définition</u>: Soient $\{b_i, a_{ij}\}_{i,j=1...s} \in \mathbb{R}$, et $c_i = \sum_{j=1}^{s} a_{ij}$. Méthode de Runge-Kutta à *s* étapes :

$$k_i = \mathbf{f}(\mathbf{y}_n + h \sum_{j=1}^{s} a_{ij}k_j, t_n + c_i h), \text{ pour } i = 1, ..., s$$
$$\mathbf{y}_{n+1} = \mathbf{y}_n + h \sum_{j=1}^{s} b_j k_j$$

Représentation sous forme de tableau :

Remarque : lorsque a_{ij} = 0, pour i ≤ j, la méthode de Runge-Kutta est *explicite*. Sinon elle est *implicite*.

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

MÉTHODES DE RUNGE-KUTTA : EXEMPLES

Runge-Kutta d'ordre 2 (méthodes explicites) :

0	0	0	0	0	0	
1	1	0	1/2	1/2	0	
	1/2	1/2		0	1	

Méthodes explicites d'ordre 4 :

0	0	0	0	0	0	0	0	0	0
1/2	1/2	0	0	0	1/3	1/3	0	0	0
1/2	0	1/2	0	0	2/3	-1/3	1	0	0
1	0	0	1	0	1	1	-1	1	0
	1/6	2/6	2/6	1/6		1/8	3/8	3/8	1/8

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

MÉTHODES DE RUNGE-KUTTA : EXEMPLES

Runge-Kutta d'ordre 2 (méthodes explicites) :

0	0	0	0	0	0	
1	1	0	1/2	1/2	0	
	1/2	1/2		0	1	

Méthodes explicites d'ordre 4 :

	0	0	0	0	0	0	0	0	0	0
	1/2	1/2	0	0	0	1/3	1/3	0	0	0
	1/2	0	1/2	0	0	2/3	-1/3	1	0	0
	1	0	0	1	0	1	1	-1	1	0
. 7		1/6	2/6	2/6	1/6		1/8	3/8	3/8	1/8

Ordre d'un schéma de Runge-Kutta (conditions cumulatives) :

ordre 1 :
$$\sum_{i} b_i = 1$$

ordre 2 : $\sum_{i} b_i c_i = 1/2$
ordre 3 : $\sum_{i} b_i c_i^2 = 1/3$ et $\sum_{i,j} b_i a_{ij} c_j = 1/6$.

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

MÉTHODES DE RUNGE-KUTTA : PROPRIÉTÉS

Conservation des invariants quadratiques

- invariant quadratique : I(y) = y^tCy exemple : énergie
- Théorème : Une méthode de Runge-Kutta conserve les invariants quadratiques si ses coefficients vérifient les relations :

$$b_i a_{ij} + b_j a_{ji} = b_i b_j, \qquad \forall (i,j) \in [1,s]^2.$$

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

MÉTHODES DE RUNGE-KUTTA : PROPRIÉTÉS

Conservation des invariants quadratiques

- invariant quadratique : I(y) = y^tCy exemple : énergie
- Théorème : Une méthode de Runge-Kutta conserve les invariants quadratiques si ses coefficients vérifient les relations :

$$b_i a_{ij} + b_j a_{ji} = b_i b_j, \qquad \forall (i,j) \in [1,s]^2.$$

- En pratique très peu de cas... Méthodes de Gauss
 - Méthode de Gauss à une étape ≡ point milieu implicite (ordre 2)

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(\frac{\mathbf{y}_n + \mathbf{y}_{n+1}}{2}).$$

Méthode de Gauss d'ordre 4:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●
1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

MÉTHODES DE RUNGE-KUTTA : PROPRIÉTÉS

Conservation des invariants quadratiques

- invariant quadratique : I(y) = y^tCy exemple : énergie
- Théorème : Une méthode de Runge-Kutta conserve les invariants quadratiques si ses coefficients vérifient les relations :

$$b_i a_{ij} + b_j a_{ji} = b_i b_j, \qquad \forall (i,j) \in [1,s]^2.$$

- En pratique très peu de cas... Méthodes de Gauss
 - Méthode de Gauss à une étape ≡ point milieu implicite (ordre 2)

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(\frac{\mathbf{y}_n + \mathbf{y}_{n+1}}{2}).$$

Méthode de Gauss d'ordre 4:

- Toutes les méthodes de Runge-Kutta préservant les intégrales premières quadratiques sont symplectiques.
 - \rightsquigarrow les méthodes de Gauss sont symplectiques.

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

1 OSCILLATEU

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

N degrés de liberté

Systèmes Hamiltoniens, transformations symplectiques

Schéma de Störmer-Verlet

Méthodes de Runge-Kutta

Symplecticité et conservation de l'énergie

Applications

Symplecticité et conservation de l'énergie

 Dans la plupart des cas, les schémas numériques ne peuvent pas conserver simultanément l'énergie et être symplectique.

[Z. Ge and J.E. Marsden : Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Physics Letters A, 1988.]

~> 2 catégories de schémas:

- energy-momentum scheme
- symplectic-momentum scheme

quelques exceptions:

lorsque le système hamiltonien est complètement intégrable

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

algorithme à pas de temps variable

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong Corde avec contact unilatéral

1 OSCILLATEUR

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

Plan de la présentation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

1 OSCILLATEUR

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

ÉQUATIONS DE VON KÁRMÁN POUR LES PLAQUES MINCES

inconnues: $w(\mathbf{x}, t)$: déplacement transverse, $F(\mathbf{x}, t)$: fonction d'Airy.

$$\rho h \ddot{w} + D\Delta \Delta w = L(w, F) + p(\mathbf{x}, t) - R(\mathbf{x}, t),$$

$$\Delta \Delta F = -\frac{Eh}{2}L(w, w).$$

Paramètre matériau : masse volumique ρ, module d'Young E, coefficient de Poisson ν.

- Géometrie : épaisseur *h*, rigidité en flexion $D = Eh^3/12(1 \nu^2)$.
- R(x, t) représente les pertes

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

ÉQUATIONS DE VON KÁRMÁN POUR LES PLAQUES MINCES

inconnues:
 w(x, t) : déplacement transverse,
 F(x, t) : fonction d'Airy.

$$\rho h \ddot{w} + D\Delta \Delta w = L(w, F) + p(\mathbf{x}, t) - R(\mathbf{x}, t),$$

$$\Delta \Delta F = -\frac{Eh}{2}L(w, w).$$

- Paramètre matériau : masse volumique ρ, module d'Young E, coefficient de Poisson ν.
- Géometrie : épaisseur *h*, rigidité en flexion $D = Eh^3/12(1 \nu^2)$.
- R(x, t) représente les pertes

L opérateur bilinéaire :

$$L(F, w) = F_{,xx} w_{,yy} + F_{,yy} w_{,xx} - 2F_{,xy} w_{,xy}$$

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

ÉQUATIONS DE VON KÁRMÁN POUR LES PLAQUES MINCES

inconnues:
 w(x, t) : déplacement transverse,
 F(x, t) : fonction d'Airy.

$$\rho h \ddot{w} + D\Delta \Delta w = L(w, F) + p(\mathbf{x}, t) - R(\mathbf{x}, t),$$

$$\Delta \Delta F = -\frac{Eh}{2}L(w, w).$$

- Paramètre matériau : masse volumique ρ, module d'Young E, coefficient de Poisson ν.
- Géometrie : épaisseur *h*, rigidité en flexion $D = Eh^3/12(1 \nu^2)$.
- R(x, t) représente les pertes
- L opérateur bilinéaire :

$$L(F, w) = F_{,xx} w_{,yy} + F_{,yy} w_{,xx} - 2F_{,xy} w_{,xy}$$

- Géométrie et conditions aux limites, code existant pour:
 - plaque circulaire, bord libre et encastré
 - plaque rectangulaire, bords libres, simplement supportés, distribution linéique de ressorts.

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

APPROCHE MODALE

Discrétisation des deux inconnues :

$$w(\mathbf{x}, t) = \sum_{k=1}^{N_{\Phi}} q_k(t) \Phi_k(\mathbf{x}),$$
$$F(\mathbf{x}, t) = \sum_{k=1}^{N_{\Psi}} \eta_k(t) \Psi_k(\mathbf{x}),$$

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

APPROCHE MODALE

Discrétisation des deux inconnues :

$$w(\mathbf{x},t) = \sum_{k=1}^{N_{\Phi}} q_k(t) \Phi_k(\mathbf{x}),$$
$$F(\mathbf{x},t) = \sum_{k=1}^{N_{\Psi}} \eta_k(t) \Psi_k(\mathbf{x}),$$

EDP projetées, système d'EDO en temps :

$$\ddot{q}_s + \omega_s^2 q_s + 2\xi_s \omega_s \dot{q}_s = rac{1}{
ho h} \sum_{k=1}^{N_\Phi} \sum_{l=1}^{N_\Psi} E_{k,l}^s q_k \eta_l + p_s(t),$$

 $\eta_l = -rac{Eh}{2\zeta_l^4} \sum_{m,n}^{N_\Phi} H_{m,n}^l q_m q_n.$

avec

$$\begin{split} H_{i,j}^k &= \int_S \Psi_k L(\Phi_i, \Phi_j) \mathrm{d}S \\ E_{i,j}^s &= \int_S \Phi_s L(\Phi_i, \Psi_j) \mathrm{d}S. \end{split}$$

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

Énergies cinétiques et potentielles :

E. cinétique:

E. potentielle (transverse):

E. potentielle (longi.):

$$\begin{split} T &= \int_{S} \frac{\rho h}{2} \dot{w}^2 \, \mathrm{d}S \,, \\ V &= \int_{S} \frac{D}{2} \, (\Delta w)^2 \, \mathrm{d}S \,, \\ U &= \int_{S} \frac{1}{2Eh} \, (\Delta F)^2 \, \mathrm{d}S \,. \end{split}$$

ÉNERGIES

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

Énergies cinétiques et potentielles :

E. cinétique:

E. potentielle (transverse):

E. potentielle (longi.):

$$T = \int_{S} \frac{\rho h}{2} \dot{w}^{2} dS,$$
$$V = \int_{S} \frac{D}{2} (\Delta w)^{2} dS,$$
$$U = \int_{S} \frac{1}{2Eh} (\Delta F)^{2} dS.$$

Équivalents discrétisées (projection modale) :

$$egin{aligned} T&=rac{
ho h}{2}\sum_{k=1}^{N_{\Phi}}\dot{q}_k^2(t),\ V&=rac{
ho h}{2}\sum_{k=1}^{N_{\Phi}}\omega_k^2q_k^2(t),\ U&=rac{1}{2Eh}\sum_{k=1}^{N_{\Psi}}\zeta_k^4\eta_k^2(t) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

ÉNERGIES

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

Énergies cinétiques et potentielles :

E. cinétique:

E. potentielle (transverse):

E. potentielle (longi.):

$$T = \int_{S} \frac{\rho n}{2} \dot{w}^{2} dS,$$
$$V = \int_{S} \frac{D}{2} (\Delta w)^{2} dS,$$
$$U = \int_{S} \frac{1}{2Eh} (\Delta F)^{2} dS.$$

ÉNERGIES

< = ► = 900

Équivalents discrétisées (projection modale) :

$$T = \frac{\rho h}{2} \sum_{k=1}^{N_{\Phi}} \dot{q}_{k}^{2}(t),$$
$$V = \frac{\rho h}{2} \sum_{k=1}^{N_{\Phi}} \omega_{k}^{2} q_{k}^{2}(t),$$
$$U = \frac{1}{2Eh} \sum_{k=1}^{N_{\Psi}} \zeta_{k}^{4} \eta_{k}^{2}(t)$$

• L'énergie totale E = T + V + U est conservée:

$$\frac{\mathrm{d}}{\mathrm{d}t}(T+V+U) = \mathbf{0}$$

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

SCHÉMA CONSERVATIF

schéma conservant l'énergie pour le pb discrétisé :

δ

$$egin{aligned} &\mu_t q_s(n) + \omega_s^2 q_s(n) = rac{1}{
ho h} \sum_{k=1}^{N_\Phi} \sum_{l=1}^{N_\Psi} E_{k,l}^s q_k(n) [\mu_t \cdot \eta_l(n)]; \ &\mu_{t-} \eta_l(n) = -rac{Eh}{2\zeta_l^4} \sum_{i,j=1}^{N_\Phi} H_{i,j}^l q_l(n) [e_{t-} q_j(n)]. \end{aligned}$$

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

SCHÉMA CONSERVATIF

schéma conservant l'énergie pour le pb discrétisé :

$$\delta_{tt}q_{s}(n) + \omega_{s}^{2}q_{s}(n) = rac{1}{
ho h}\sum_{k=1}^{N_{\Phi}}\sum_{l=1}^{N_{\Psi}}E_{k,l}^{s}q_{k}(n)[\mu_{t}.\eta_{l}(n)];$$
 $\mu_{t-}\eta_{l}(n) = -rac{Eh}{2\zeta_{l}^{4}}\sum_{i,j=1}^{N_{\Phi}}H_{i,j}^{l}q_{l}(n)[e_{t-}q_{j}(n)].$

Équivalent discret de l'énergie :

$$\begin{split} \mathfrak{t} &= \sum_{s=1}^{N_{\Phi}} \tau_{s}(n) = \frac{\rho h}{2} \sum_{s=1}^{N_{\Phi}} \left(\delta_{t-} q_{s}(n) \right)^{2}, \\ \mathfrak{v} &= \sum_{s=1}^{N_{\Phi}} \nu_{s}(n) = \frac{\rho h}{2} \sum_{s=1}^{N_{\Phi}} \omega_{s}^{2} q_{s}(n) \left(e_{t-} q_{s}(n) \right), \\ \mathfrak{u} &= \sum_{l=1}^{N_{\Psi}} \upsilon_{l}(n) = \frac{1}{2Eh} \sum_{l=1}^{N_{\Psi}} \zeta_{l}^{4} \left(\mu_{t-} \left(\eta_{l}(n) \eta_{l}(n) \right) \right), \\ \hline \delta_{t+}(\mathfrak{t} + \mathfrak{v} + \mathfrak{u}) = \mathbf{0} \end{split}$$

・ロト・日本・日本・日本・日本・日本

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

SCHÉMA CONSERVATIF

schéma conservant l'énergie pour le pb discrétisé :

$$\delta_{tt}q_{s}(n) + \omega_{s}^{2}q_{s}(n) = \frac{1}{\rho h} \sum_{k=1}^{N_{\Phi}} \sum_{l=1}^{N_{\Psi}} E_{k,l}^{s}q_{k}(n)[\mu_{t}\cdot\eta_{l}(n)];$$
$$\mu_{t-}\eta_{l}(n) = -\frac{Eh}{2\zeta_{l}^{4}} \sum_{i,j=1}^{N_{\Phi}} H_{i,j}^{l}q_{l}(n)[e_{t-}q_{j}(n)].$$

Équivalent discret de l'énergie :

$$\begin{split} \mathfrak{t} &= \sum_{s=1}^{N_{\Phi}} \tau_s(n) = \frac{\rho h}{2} \sum_{s=1}^{N_{\Phi}} \left(\delta_{t-} q_s(n) \right)^2, \\ \mathfrak{v} &= \sum_{s=1}^{N_{\Phi}} \nu_s(n) = \frac{\rho h}{2} \sum_{s=1}^{N_{\Phi}} \omega_s^2 q_s(n) \left(e_{t-} q_s(n) \right), \\ \mathfrak{u} &= \sum_{l=1}^{N_{\Psi}} \upsilon_l(n) = \frac{1}{2Eh} \sum_{l=1}^{N_{\Psi}} \zeta_l^4 \left(\mu_{t-} \left(\eta_l(n) \eta_l(n) \right) \right), \\ \overline{\delta_{t+} \left(\mathfrak{t} + \mathfrak{v} + \mathfrak{u} \right) = \mathbf{0}} \end{split}$$

 $\blacksquare \text{ schéma conditionnellement stable : } h\omega_{N_{\phi}} < 2 \Leftrightarrow f_e > \pi f_{N_{\phi}}$

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

CONSERVATION DE L'ÉNERGIE

- Cas d'une plaque rectangulaire, $L_x=0.4$ m, $L_y=0.6$ m, h=1 mm
- paramètres matériau : E=200 GPa, ν =0.3, ρ =7860 kg.m⁻³
- excitation : impulsion Dirac localisée en temps et en espace, pas d'amortissement.
- $N_{\Phi} = 100, N_{\Psi} = 200.$
- $f_{N_{\Phi}} = 1400 \text{ Hz}, f_{\theta} = 10 \text{ kHz}.$

noir : énergie discrète totale $\mathfrak{h} = \mathfrak{t} + \mathfrak{v} + \mathfrak{u}$ bleu : énergie cinétique \mathfrak{t} magenta : énergie potentielle transverse \mathfrak{v}

rouge : énergie potentielle longitudinale u

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

PLAQUE CIRCULAIRE, CAS D'UN GONG

(日)

- Matériau: $E=2.10^{11}$ Pa, $\nu=0.3$ and $\rho=7860$ kg.m⁻³
- Géométrie : rayon *a*=0.4 m, épaisseur *h*=1 mm.

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

PLAQUE CIRCULAIRE, CAS D'UN GONG

- Matériau: $E=2.10^{11}$ Pa, $\nu=0.3$ and $\rho=7860$ kg.m⁻³
- Géométrie : rayon a=0.4 m, épaisseur h=1 mm.
- Simulation : 1000 modes transverses Condition de stabilité : $f_s > \pi f_{1000} \Rightarrow f_s > 18055$ Hz.
- *f_s*=40 kHz.
- Excitation : force localisée en temps et en espace, proche du bord (r = 0.92a).

Sortie : déplacement en r = 0.896a, angle arbitraire 0.519 radians.

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

PLAQUE CIRCULAIRE, CAS D'UN GONG

- Matériau: $E=2.10^{11}$ Pa, $\nu=0.3$ and $\rho=7860$ kg.m⁻³
- Géométrie : rayon a=0.4 m, épaisseur h=1 mm.
- Simulation : 1000 modes transverses Condition de stabilité : $f_s > \pi f_{1000} \Rightarrow f_s > 18055$ Hz.
- *f_s*=40 kHz.
- Excitation : force localisée en temps et en espace, proche du bord (r = 0.92a).
 Sortie : déplacement en r = 0.896a, angle arbitraire 0.519 radians.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Amortissement : $c_p \dot{q}_p$, $c_p = 0.005 \omega_p^{0.6}$.
- 2 amplitudes de force : *p*_m=40 N and 80 N.

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

PLAQUE RECTANGULAIRE

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

- taille de la plaque : $L_x=0.6m$, $L_y=0.8m$, épaisseur h=1mm.
- bords simplement supportés.
- Amortissement: $c_p = 0.005 \omega_p^{0.6}$
- N_{Φ} =800 modes ($f_{N_{\phi}}$ = 5295 Hz)
- *f_S*=40 kHz

PLAQUE RECTANGULAIRE

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

- taille de la plaque : $L_x=0.6m$, $L_y=0.8m$, épaisseur h=1mm.
- bords simplement supportés.
- Amortissement: $c_p = 0.005 \omega_p^{0.6}$
- N_{Φ} =800 modes ($f_{N_{\phi}}$ = 5295 Hz)
- *f_S*=40 kHz
- influence de la forme ?

PLAN DE LA PRÉSENTATION

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

1 OSCILLATEUR

- 1 oscillateur linéaire
- Équation de Duffing
- Oscillateur à impact

2 N DEGRÉS DE LIBERTÉ

- Systèmes Hamiltoniens, transformations symplectiques
- Schéma de Störmer-Verlet
- Méthodes de Runge-Kutta
- Symplecticité et conservation de l'énergie

3 APPLICATIONS

- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

CORDE VIBRANTE - CONTACT UNILATÉRAL

• corde raide, déplacement transverse u(x, t), obstacle g(x)

Équations du mouvement:

$$\mu \frac{\partial^2 u}{\partial t^2} - T \frac{\partial^2 u}{\partial x^2} + E I \frac{\partial^4 u}{\partial x^4} = f,$$

conditions aux limites : $u(0, t) = u(L, t) = u_{xx}(0, t) = u_{xx}(L, t) = 0$ Force de contact régularisée

$$f(x,t) = K \left[\eta(x,t)\right]_+^{\alpha}$$
, avec $\eta(x,t) = g(x) - u(x,t)$

Énergie

$$\mathscr{H} = \int_0^L \left[\frac{\mu}{2} (u_t)^2 + \frac{T}{2} (u_x)^2 + \frac{EI}{2} (u_{xx})^2 + \psi \right] \mathrm{d}x, \text{ où } f = \frac{\mathrm{d}\psi}{\mathrm{d}\eta}$$

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

APPROCHE MODALE

projection sur la base modale:

$$u(x,t) = \sum_{j=1}^{N_m} q_j(t)\phi_j(x), \quad ext{avec} \quad \phi_j(x) = \sqrt{rac{2}{L}}\sin\left(rac{j\pi x}{L}
ight)$$

Système dynamique:

$$\mu(\ddot{\mathbf{q}} + \mathbf{\Omega}^2 \mathbf{q} + 2\Upsilon \dot{\mathbf{q}}) = \mathbf{F},$$

•
$$\Omega_{ij} = \omega_j \delta_{ij}$$
, avec $\omega_j = 2\pi j \frac{c_0}{2L} \sqrt{1 + Bj^2}$, et $c_0 = \sqrt{\frac{T}{\mu}}$, $B = \frac{\pi^2 EI}{TL^2}$.

- $\mathbf{\Upsilon}$: matrice diagonale des amortissements modaux, $\mathbf{\Upsilon}_{jj} = \sigma_j$
- **F** vecteur de force modale, $F_j = \int_0^L f(x, t)\phi_j(x) dx$.
- Traitement de la force de contact dans le domaine spatial: grille spatiale $x_i = i\Delta x$, avec $\Delta x = \frac{l}{N}$ pas d'espace et $i \in \{0, ..., N\}$. En choisissant : $N_m = N - 1$

$$u(x_i, t) = u_i(t) = \sum_{j=1}^{N-1} q_j(t)\phi_j(x_i) = \sum_{j=1}^{N-1} q_j(t)\sqrt{\frac{2}{L}}\sin\left(\frac{j\pi i}{N}\right).$$

Soit $\mathbf{u} = \mathbf{Sq}$.

・ロト・日本・日本・日本・日本・日本

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

DISCRÉTISATION TEMPORELLE

(日)

 Pour la partie vibratoire linéaire (sans contact): Utilisation du schéma exact

$$\frac{\mu}{h^2}\left(\mathbf{q}^{n+1}-\mathbf{C}\mathbf{q}^n+\tilde{\mathbf{C}}\mathbf{q}^{n-1}\right)=\mathbf{0},$$

avec:

$$C_{i,i} = e^{-h\sigma_i} \left(e^{\sqrt{\sigma_i^2 - \omega_i^2}h} + e^{-\sqrt{\sigma_i^2 - \omega_i^2}h} \right),$$

$$\tilde{C}_{i,i} = e^{-2h\sigma_i}.$$

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

DISCRÉTISATION TEMPORELLE

 Pour la partie vibratoire linéaire (sans contact): Utilisation du schéma exact

$$\frac{\mu}{h^2}\left(\mathbf{q}^{n+1}-\mathbf{C}\mathbf{q}^n+\tilde{\mathbf{C}}\mathbf{q}^{n-1}\right)=\mathbf{0},$$

avec:

$$\begin{split} C_{i,i} &= e^{-h\sigma_i} \left(e^{\sqrt{\sigma_i^2 - \omega_i^2}h} + e^{-\sqrt{\sigma_i^2 - \omega_i^2}h} \right), \\ \tilde{C}_{i,i} &= e^{-2h\sigma_i}. \end{split}$$

Pour le contact : résolution en u

$$\frac{\mu}{h^2}\left(\mathbf{u}^{n+1}-\mathbf{D}\mathbf{u}^n+\tilde{\mathbf{D}}\mathbf{u}^{n-1}\right)=\mathbf{f}^n,$$

avec $\mathbf{D} = \mathbf{S}\mathbf{C}\mathbf{S}^{-1}$ et $\tilde{\mathbf{D}} = \mathbf{S}\tilde{\mathbf{C}}\mathbf{S}^{-1}$. Force de contact:

$$\mathbf{f}^n = \frac{\delta_{t-} \boldsymbol{\psi}^{n+\frac{1}{2}}}{\delta_{t,} \boldsymbol{\eta}^n}, \quad \text{avec} \quad \boldsymbol{\psi}^{n+\frac{1}{2}} = \frac{1}{2} (\boldsymbol{\psi}^{n+1} + \boldsymbol{\psi}^n)$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

SCHÉMA NUMÉRIQUE - PROPRIÉTÉS

ordre deux

Sans dissipation ($\forall i, \sigma_i = 0$), le schéma est **conservatif**.

$$\delta_{t-}H^{n+\frac{1}{2}}=0$$

avec

$$H^{n+\frac{1}{2}} = \frac{\mu}{2} \left(\left\langle \delta_{t+} \mathbf{u}^{n}, \check{\mathbf{D}}_{1} \delta_{t+} \mathbf{u}^{n} \right\rangle + \left\langle \mathbf{u}^{n+1}, \check{\mathbf{D}}_{2} \mathbf{u}^{n} \right\rangle \right) + \left\langle \psi^{n+\frac{1}{2}}, \mathbf{1} \right\rangle.$$

- inconditionnellement stable
- en pratique : itération Newton-Raphson

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

CORDE AVEC CONTACT - EXEMPLES

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- corde tendue (guitare), paramètres physiques: $L=1 \text{ m}, d=0.43 \text{ mm}, T=180.5 \text{ N}, \mu=1.17.10^{-3} \text{ kg.m}^{-1}.$ Fréquence fondamentale 196 Hz. facteur d'inharmonicité : $B=2.10^{-5}$
- condition initiale : déplacement (triangle : corde pincée).
- paramètres de pénalisation pour la force de contact: $K=10^{13}$, $\alpha=1.5$.
- modèle d'amortissement combinant pertes viscoélastiques, thermoélastiques et friction avec l'air ambiant.
- fréquence d'échantillonnage : 2 MHz.

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

CORDE AVEC CONTACT - EXEMPLES

- corde tendue (guitare), paramètres physiques: $L=1 \text{ m}, d=0.43 \text{ mm}, T=180.5 \text{ N}, \mu=1.17.10^{-3} \text{ kg.m}^{-1}.$ Fréquence fondamentale 196 Hz. facteur d'inharmonicité : $B=2.10^{-5}$
- condition initiale : déplacement (triangle : corde pincée).
- paramètres de pénalisation pour la force de contact: $K=10^{13}$, $\alpha=1.5$.
- modèle d'amortissement combinant pertes viscoélastiques, thermoélastiques et friction avec l'air ambiant.
- fréquence d'échantillonnage : 2 MHz.
- 2 cas différents:
 - cas du sitar : chevalet courbe de la forme $g(x) = ax^2$.
 - cas de la tampoura : chevalet à deux points modélisé par un contact ponctuel à 6mm du bord.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 oscillateur

N degrés de liberté

Applications

Plaque mince : synthèse sonore de gong

Corde avec contact unilatéral

CORDE AVEC CONTACT - EXEMPLES

Chevalet courbe, cas du sitar

Chevalet ponctuel, cas de la tampura

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

1 oscillateur

N degrés de liberté

Applications Plaque mince :

synthèse sonore de gong

Corde avec contact unilatéral

IMPORTANCE DE LA RAIDEUR

- Ia raideur (dispersion) est fondamentale pour comprendre le son de ces instruments !
- Simulation sans raideur : $B = \frac{\pi^2 E I}{TL^2} = 0$, cas de la tampoura

1 oscillateur

- N degrés de liberté
- Applications
- Plaque mince : synthèse sonore de gong
- Corde avec contact unilatéral

Références utilisées pour ce cours

Livres

- S. Bilbao : Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics, Wiley, 2009.
- E. Hairer, C. Lubich, G. Wanner : Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer, 2006.

Articles

- M. Ducceschi, C. Touzé: Modal approach for nonlinear vibrations of damped impacted plates: Application to sound synthesis of gongs and cymbals, Journal of Sound and Vibration, vol. 344, 313-331, 2015.
- S. Bilbao, O. Thomas, C. Touzé, M. Ducceschi: Conservative numerical methods for the full von Kármán plate equations, Numerical Methods for Partial Differential Equations, vol. 31(6), 1948-1970, 2015.
- C. Issanchou, S. Bilbao, J.-L. Le Carrou, C. Touzé et O. Doaré: A modal-based approach for the nonlinear vibration of strings against a unilateral obstacle: simulations and experiments in the pointwise case, soumis au JSV, 2016.

