Nonlinear Vibration Absorbers: Pros and Cons

Gaëtan Kerschen

Space Structures and Systems Lab. Aerospace and Mechanical Eng. Dept. University of Liège, Belgium

NES: L.A. Bergman, A.F. Vakakis NLTVA: T. Detroux, C. Grappasonni, G. Habib Robust LTVA: L. Dell'Elce, E. Gourc, G. Aridon, G. Michon, A. Hot

1. The linear tuned vibration absorber (LTVA)

2. The nonlinear energy sink (NES)

3. The nonlinear tuned vibration absorber (NLTVA)

The "Classical" Linear Tuned Vibration Absorber

Frequency

Existence of Invariance Points for the LTVA

Frequency

(Approximate) Tuning Rule Proposed by Den Hartog

Optimum frequency ratio:

The invariant points must have the same amplitude.

$$\omega_{abs} = \frac{\omega_{host}}{1+\epsilon}$$
 (Den Hartog, 1928)

Optimum damping ratio:

The receptance maxima must occur at the invariant points.

$$\xi_{abs} = \sqrt{\frac{3}{8} \frac{\epsilon}{1+\epsilon}} \qquad (Brock, 1946)$$

Summary for the LTVA

Easy practical realization.

Insensitive to the forcing amplitude.

Narrow-band device: broadband and nonlinear instabilities ?

Nonlinear Host Structures ?

1. The linear tuned vibration absorber (LTVA)

2. The nonlinear energy sink (NES)

3. The nonlinear tuned vibration absorber (NLTVA)

Basic Idea of the Nonlinear Energy Sink

An essential nonlinearity gives rise to an absorber which has no preferential resonance frequency (broadband device).

Linear TVA vs. NES: Completely Different Picture

NES Has Two Salient Features

Multimodal Energy Transfer Using an NES

Multimodal Energy Transfer: Experimental Evidence

Multimodal Energy Transfer: Experimental Evidence

The French Community is Very Active

One resonance: Vaurigaud et al. (ENTPE)

Adverse dynamics: Gourc et al. (ISAE)

The NES can absorb broadband disturbances.

The NES can also "cut" a resonance peak.

Sensitive to the forcing amplitude (threshold).

Adverse dynamics (bifurcations, detached resonances)

The essential nonlinearity complicates the practical realization (no stiffness at rest)

1. The linear tuned vibration absorber (LTVA)

2. The nonlinear energy sink (NES)

3. The nonlinear tuned vibration absorber (NLTVA)

Basic Idea of the Nonlinear Tuned Vibration Absorber

Can we design a nonlinear absorber that is effective for a larger range of forcing amplitudes ?

Nonlinear Designs Are More Flexible

Exploit this additional flexibility !

Do not assume a priori a mathematical function for the nonlinearity of the absorber.

We Synthesize the Nonlinear Restoring Force

$$m_1 \ddot{x}_1 + c_1 \dot{x}_1 + k_1 x_1 + k_{nl1} x_1^3 + c_2 (\dot{x}_1 - \dot{x}_2) + g(x_1 - x_2) = F \cos \omega t$$
$$m_2 \ddot{x}_2 + c_2 (\dot{x}_2 - \dot{x}_1) - g(x_1 - x_2) = 0$$

$$\tau = \sqrt{\frac{k_1}{m_1}} t, \epsilon = \frac{m_2}{m_1}, \lambda = \frac{\omega_{n2}}{\omega_{n1}}, \tilde{\alpha}_3 = \frac{3k_{nl1}}{4k_1}, f = \frac{F}{k_1}, \gamma = \frac{\omega}{\omega_{n1}}$$
$$q_1(t) = \frac{x_1(t)}{f}, q_2(t) = \frac{x_1(t) - x_2(t)}{f}$$

Transformed Equations of Motion (Exact)

$$q_1'' + 2\mu_1 q_1' + q_1 + \frac{4}{3}\tilde{\alpha}_3 f^2 q_1^{\ 3} + 2\mu_2 \epsilon \lambda q_2' + \lambda^2 \epsilon q_2 + \cdots$$

$$\frac{\epsilon}{m_2 \omega_{n1}^2} \sum_{k=2}^{\infty} \frac{f^{k-1}}{k!} \frac{d^k g}{dr^k} \Big|_{r=0} q_2^{\ k} = \cos \gamma t$$
Taylor series expansion of the

absorber's restoring force

$$q_{2}'' + 2\mu_{1}q_{1}' + q_{1} + \frac{4}{3}\tilde{\alpha}_{3}f^{2}q_{1}^{3} + 2\mu_{2}(\epsilon+1)\lambda q_{2}' + \lambda^{2}(\epsilon+1)q_{2} + \cdots$$
$$\frac{\epsilon+1}{m_{2}\omega_{n1}^{2}}\sum_{k=2}^{\infty}\frac{f^{k-1}}{k!}\frac{d^{k}g}{dr^{k}}\Big|_{r=0}q_{2}^{k} = \cos\gamma t$$

Taylor series expansion of the absorber's restoring force

Focus on the Linear Terms: No Dependence on *f*

$$q_{1}'' + 2\mu_{1}q_{1}' + q_{1} + \frac{4}{3}\tilde{\alpha}_{3}f^{2}q_{1}^{3} + 2\mu_{2}\epsilon\lambda q_{2}' + \lambda^{2}\epsilon q_{2} + \cdots$$
$$\frac{\epsilon}{m_{2}\omega_{n1}^{2}}\sum_{k=2}^{\infty}\frac{f^{k-1}}{k!}\frac{d^{k}g}{dr^{k}}\Big|_{r=0}q_{2}^{k} = \cos\gamma t$$

$$q_{2}'' + 2\mu_{1}q_{1}' + q_{1} + \frac{4}{3}\tilde{\alpha}_{3}f^{2}q_{1}^{3} + 2\mu_{2}(\epsilon + 1)\lambda q_{2}' + \lambda^{2}(\epsilon + 1)q_{2} + \cdots$$
$$\frac{\epsilon + 1}{m_{2}\omega_{n1}^{2}}\sum_{k=2}^{\infty} \frac{f^{k-1}}{k!} \frac{d^{k}g}{dr^{k}} \Big|_{r=0} q_{2}^{k} = \cos\gamma t$$

Rule #1: the NLTVA should possess a linear spring to perform effectively at low forcing amplitudes (LTVA-like behavior).

Focus on the Nonlinear Terms: Dependence on *f*

$$q_{1}'' + 2\mu_{1}q_{1}' + q_{1} + \frac{4}{3}\tilde{\alpha}_{3}f^{2}q_{1}^{3} + 2\mu_{2}\epsilon\lambda q_{2}' + \lambda^{2}\epsilon q_{2} + \cdots$$
$$\frac{\epsilon}{m_{2}\omega_{n1}^{2}}\sum_{k=2}^{\infty}\frac{f^{k-1}}{k!}\frac{d^{k}g}{dr^{k}}\Big|_{r=0}q_{2}^{k} = \cos\gamma t$$

$$q_{2}'' + 2\mu_{1}q_{1}' + q_{1} + \frac{4}{3}\tilde{\alpha}_{3}f^{2}q_{1}^{3} + 2\mu_{2}(\epsilon + 1)\lambda q_{2}' + \lambda^{2}(\epsilon + 1)q_{2} + \cdots$$
$$\frac{\epsilon + 1}{m_{2}\omega_{n1}^{2}}\sum_{k=2}^{\infty} \frac{f^{k-1}}{k!} \frac{d^{k}g}{dr^{k}}\Big|_{r=0} q_{2}^{k} = \cos\gamma t$$

Coefficients of terms of order k depends on f^{k-1}

Proposed Tuning Rule: "Mirror" Rule

$$\begin{aligned} q_{1}'' + 2\mu_{1}q_{1}' + q_{1} + \frac{4}{3}\tilde{\alpha}_{3}f^{2}q_{1}^{3} + 2\mu_{2}\epsilon\lambda q_{2}' + \lambda^{2}\epsilon q_{2} + \cdots \\ & \frac{\epsilon}{m_{2}\omega_{n1}^{2}}\sum_{k=2}^{\infty}\frac{f^{k-1}}{k!}\frac{d^{k}g}{dr^{k}}\Big|_{r=0}q_{2}^{k} = \cos\gamma t \\ q_{2}'' + 2\mu_{1}q_{1}' + q_{1} + \frac{4}{3}\tilde{\alpha}_{3}f^{2}q_{1}^{3} + 2\mu_{2}(\epsilon + 1)\lambda q_{2}' + \lambda^{2}(\epsilon + 1)q_{2} + \cdots \\ & \frac{\epsilon + 1}{m_{2}\omega_{n1}^{2}}\sum_{k=2}^{\infty}\frac{f^{k-1}}{k!}\frac{d^{k}g}{dr^{k}}\Big|_{r=0}q_{2}^{k} = \cos\gamma t \end{aligned}$$

Rule #2: the NLTVA has a variation with forcing amplitude similar to that of the host system if its restoring force has the same mathematical form as that of the primary system (k=3).

A Cubic NLTVA Should Be Coupled to a Cubic Host

Analytic Design Formulas for Nonlinear Equal Peaks

$$\begin{array}{c}
c_2 \\
\hline
k_2 \\
\hline
m_2 \\
\hline
k_{nl2}
\end{array}$$

$$m_{2} = \epsilon m_{1}, \quad c_{2} = 2 \sqrt{\frac{3}{8} \frac{\epsilon^{3} k_{1} m_{1}}{(1 + \epsilon)^{3}}}$$
$$k_{2} = \frac{\epsilon k_{1}}{(1 + \epsilon)^{2}}, \quad k_{nl2} = \frac{2\epsilon^{2} k_{nl1}}{1 + 4\epsilon}$$

Nonlinear generalization of Den Hartog's equal-peak method

The NLTVA Performs According to Plan

LTVA Completely Detuned for the Same Regimes

The NLTVA Always Outperforms the LTVA

NLTVA Detuning for Larger Amplitudes

Detuning Due to an Isolated Branch of Solutions

Summary for the NLTVA

The NLTVA is much more robust with respect to forcing amplitudes.

The freedom offered by nonlinearity is fully exploited.

The NLTVA exhibits a linear-like behavior (up to a certain point).

Adverse dynamics (bifurcations, detached resonances)

How to realize the tailored nonlinearity in practice (topology optimization and piezo shunting) ?

Outline for the Second Part

1. Mitigation of an uncertain resonance

2. Mitigation of limit cycle oscillations

Satellite Panel with Uncertain Characteristics

Objective: passive control of the first bending mode

Aluminium sandwich panel: $50 \text{ Hz} \pm 5 \text{ Hz}$

The LTVA Is Detuned For an Uncertain Resonance

Let's First Approach the Problem Numerically

Worst-case formulation of the problem:

$$[c_2^*, k_2^*] = \arg\left[\min_{c_2, k_2 \in \mathbb{R}^+} \left(\max_{[c_1, k_1] \in \Delta} |h_1(\omega|m_1, c_1, k_1, m_2, c_2, k_2)|_{\infty}\right)\right]$$

Worst Case Sample (Nominal and Optimal Cases)

We also have equal peaks in the uncertain case !

30% Improvement Brought by the Uncertain EPM

Let's Move to the Nonlinear Absorber

Completely different mechanism for resonance mitigation:

The Tuning Graph (Multiple Scales and HB)

LTVA Has Better Performance than NES (and NLTVA)

Outline for the Second Part

1. Mitigation of an uncertain resonance

2. Mitigation of limit cycle oscillations

Suppression of Limit Cycle Oscillations

Automotive disc brakes, machine tools, drill-string systems.

F-16 aircraft

A Particularly Dangerous Situation

How Can We Design a Nonlinear Passive Absorber ?

Amplitude

Van der Pol-Duffing Oscillator

A paradigmatic model for self-excited oscillations:

Fluid-structure interaction $m_1q_1'' + c_1 (q_1^2 - 1) q_1' + k_1q_1 + k_{nl1}q_1^3 = 0$

We attach a NLTVA where the nonlinearity is not specified a priori:

Coupling terms

 $m_1 q_1'' + c_1 \left(q_1^2 - 1 \right) q_1' + k_1 q_1 + k_{nl1} q_1^3 + c_2 \left(q_1' - q_2' \right) + k_2 \left(q_1 - q_2 \right) + g \left(q_1 - q_2 \right) = 0$ $m_2 q_2'' + c_2 \left(q_2' - q_1' \right) + k_2 \left(q_2 - q_1 \right) - g \left(q_1 - q_2 \right) = 0$

Additional equation

Proposed Tuning Rule for the NLTVA

The NLTVA Outperforms the LTVA (and the NES)

There is no optimal absorber, application-dependent.

Hard to beat the LTVA for a narrow-band excitation applied to a linear system.

Nonlinear absorbers should be considered for multimodal damping or for a nonlinear primary system. But:

- Adverse dynamics (quasiperiodic regimes and detached resonances) should be managed properly.
- The practical realization of the desired nonlinearity can be a challenge.

Some References

Robust LTVA:

Performance comparison between a nonlinear energy sink and a linear tuned vibration absorber for broadband control, E. Gourc, L. Dell'Elce, G. Kerschen, G. Michon, G. Aridon, A. Hot, 34th International Modal Analysis Conference, Orlando, USA (2016).

NES:

Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, A.F. Vakakis, O. Gendelman, L.A. Bergman, D.M. McFarland, G. Kerschen, Y.S. Lee, Springer, 2009.

NLTVA:

Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber, G. Habib, G. Kerschen, Proceedings of the Royal Society of London A 471, 20140976 (2015).

Nonlinear generalization of Den Hartog's equal peak method, G. Habib, T. Detroux, R. Viguié, G. Kerschen, Mechanical Systems and Signal Processing 52-53 (2015), 17-28.

Thank you for your attention.

Gaëtan Kerschen

Space Structures and Systems Lab. Aerospace and Mechanical Eng. Dept. University of Liège, Belgium

NES: A.F. Vakakis, L.A. Bergman, NLTVA: G. Habib, T. Detroux, C. Grappasonni Robust LTVA: L. Dell'Elce, E. Gourc, G. Michon, G. Aridon, A. Hot