Effet d'un amortisseur non linéaire accordé sur un profil d'aile en flottement

GDR DyNoLin 2016

A. Malher¹, C. Touzé¹, O. Doaré¹, G. Habib² et G. Kerschen²
11 Octobre 2016

¹IMSIA, ENSTA ParisTech, Université Paris-Saclay ²LTAS-S3L, Department of Aerospace and Mechanical Engineering, Université de Liège

Introduction

Amortisseurs à masse accordée

Hermann Frahm 1909

 Les TMDs sont efficaces pour des systèmes primaires linéaires sur une faible gamme fréquentielle.

- Ces limitations peuvent être dépassées à l'aide d'amortisseurs purement non linéaires appelés NES, mais les NESs ne sont efficaces qu'à partir d'un seuil d'énergie.
- Un amortisseur combinant un NES et un TMD, appelé NLTVA, a été étudié¹ et a montré son efficacité sur différents systèmes primaires non linéaires.

¹ R. Viguié et G. Kerschen (2009). Journal of Sound and Vibration

Instabilité de flottement

Exemples de flottement d'aile

- 1. Introduction
- 2. Modèle aéroélastique
- 3. Analyse de stabilité linéaire
- 4. Régime post-critique
- 5. Conclusion

Modèle aéroélastique

Couplage entre le profil et le NLTVA

Uf

Uf

On considère que les cycles limites proviennent de non linéarités structurelles

► 11

Assurer la supercriticalité

Équations du système couplé Profil-NLTVA

Équations du mouvement

$$\begin{bmatrix} M & S_{\alpha} & 0\\ S_{\alpha} & I_{\alpha} & 0\\ 0 & 0 & m \end{bmatrix} \begin{bmatrix} \ddot{h}\\ \ddot{\alpha}\\ \ddot{x} \end{bmatrix} + \begin{bmatrix} c_{h}+c & -cI & c\\ -cI & c_{\alpha}+cP & cI\\ -c & cI & c \end{bmatrix} \begin{bmatrix} \dot{h}\\ \dot{\alpha}\\ \dot{x} \end{bmatrix} + \begin{bmatrix} k_{h}+k & -kI & -k\\ -kI & k_{\alpha}+kP & kI\\ -k & kI & k \end{bmatrix} \begin{bmatrix} h\\ \alpha\\ x \end{bmatrix} = \begin{bmatrix} -L\\ M_{a}\\ 0 \end{bmatrix} - \begin{bmatrix} k_{h3}h^{3}+k_{3}(h-x-l\alpha)^{3}\\ k_{\alpha3}\alpha^{3}+k_{3}I(x-y+l\alpha)^{3}\\ k_{3}(x-h+l\alpha)^{3} \end{bmatrix}$$

Avec $L = \rho S U^2 \pi (\alpha + \dot{h}/U)$ et $M_a = e L$

Paramètres du NLTVA

Paramètres linéaires

- Rapport de masse $\epsilon = m/M$ -> choisi égal à 5 %
- Position du NLTVA / -> au bord d'attaque
- Fréquence réduite du NLTVA $\gamma = \omega^2/\omega_{lpha}^2$ -> paramètre de contrôle
- Taux d'amortissement du NLTVA $\zeta = c/m\omega_{\alpha}$ -> paramètre de contrôle

Paramètre non linéaire

Raideur cubique réduite du NLTVA ξ = k₃/(mω_α²) -> paramètre de contrôle

Objectifs

- Décaler la vitesse de flottement U_f
- Assurer la supercriticalité de la bifurcation
- Réduire l'amplitude des cycles limites

$$\frac{S_{\alpha}/Mb}{0.2} - \frac{\sqrt{I_{\alpha}/Mb^2}}{0.2} - \frac{\rho S \pi/M}{0.2} - \frac{\rho$$

Analyse de stabilité linéaire

Analyse de stabilité linéaire

- α, h et x de la forme exp(zt) -> le déterminant des équations du mouvement vaut $\det(\mathbf{B}(z)) = a_6 z^6 + a_5 z^5 + a_4 z^4 + a_3 z^3 + a_2 z^2 + a_1 z + a_0$
- Le système est stable *ssi* les racines de det(B) ont une partie réelle Ξ. négative
- Le critère de Routh-Hurwitz est utilisé pour déterminer leur signe

avec

$$b_4 = (a_5a_2 - a_6a_1)/a_5,$$

$$b_3 = a_0,$$

$$c_4 = (b_5a_3 - b_3a_5)/b_5,$$

$$d_4 = b_3.$$

Analyse de stabilité linéaire

• L'analyse de stabilité est réalisée pour différents γ et ζ .

► Sans NLTVA, U
_f = 0.93 -> U
_f est augmentée au maximum de 34.5 % avec le NLTVA

Régime post-critique

But

Déterminer analytiquement la criticalité de la bifurcation et l'évolution des cycles limites autour de \tilde{U}_f

Réduire le système à sa dynamique locale lorsque Ũ est dans le voisinage Ũ_f.

Forme normale d'une bifurcation de Hopf

$$\mathrm{d}r/\mathrm{dt} = \lambda_{\alpha} (\tilde{U} - \tilde{U}_{f})r + \rho(\xi_{\alpha}, \xi_{h}, \xi)r^{3}$$

Validation de la solution analytique

Profil d'aile sans amortisseur, non-linéarité raidaissante

• $\tilde{U}_f = 0.933$, la bifurcation est supercritique

Influence de la nonlinéarité du NLTVA

Profil avec NLTVA

Régime post-critique

Influence du NLTVA pour un profil raidissant

 Vitesse de flottement U_f décalée, amplitude des cycles limites diminuée et supercriticalité assurée

Conclusion

Conclusion et perspectives

Travail réalisé

- Analyse de stabilité
 - Optimisation des paramètres de contrôle linéaires
- Étude non linéaire
 - Règle d'accordage pour le paramètre non linéaire du NLTVA
 - Influence du NLTVA sur le régime post-critical

Perspectives

- Inclure un modèle aérodynamique plus réaliste
- Valider expérimentalement¹ les résultats trouvés

¹ S. Benacchio et al. (2015). Nonlinear Dynamics

Merci de votre attention.