$24^{\text {th }}$ International Congress of Theorical and Applied Mechanics

HARDENING SOFTENING BEHAVIOR OF ANTIRESONANCE FOR NON LINEAR TORSIONAL VIBRATION ABSORBERS

${ }^{1,2}$ Alexandre Renault, ${ }^{1}$ Olivier Thomas
${ }^{1}$ Arts et Métiers ParisTech, LSIS UMR CNRS 7296, 8 bd. Louis XIV 59000 Lille, France.

$11^{\text {th }}$ October 2016

Laboratoire des
Sciences de
I' Information et des
Systèmes

Context
(1) Context

- Motivation
- Objective
- Operation principle
- State of the art
(2) Analysis
- Model
- Governing equations
- Frequency approach
- Asymptotic Numerical Method
(3) Results
- Forced steady state
- Force continuation

4. Conclusion

Motivation

- Common thermal engines produce a highly acyclic torque

Crankshaft angle (deg)

Engine Transmission Drive wheel

Motivation

- Common thermal engines produce a highly acyclic torque

Crankshaft angle (deg)

Engine Transmission Drive wheel

Differential

- Source of noise, wear, passenger discomfort ...
- Common thermal engines produce a highly acyclic torque

Crankshaft angle (deg)

Engine Transmission Drive wheel

- Source of noise, wear, passenger discomfort ...
- The torque irregularities frequency ω_{e} is at an order n_{e} of the mean engine speed of rotation Ω

$$
T(t)=T_{0} \cos \omega_{e} t, \quad \omega_{e}=n_{e} \Omega
$$

- The firing order, n_{e}, is the number of explosion per crankshaft revolution
- 4 strokes, 3 cylinders $\rightarrow n_{e}=\frac{3}{2}$
- 4 strokes, 4 cylinders $\rightarrow n_{e}=2$

Objective

- Objective : Absorb acyclisms ahead of the drive line

$$
\begin{aligned}
& \omega_{e}=n_{e} \Omega \\
& \Omega \rightarrow \text { mean engine speed of rotation }
\end{aligned}
$$

Objective

- Objective : Absorb acyclisms ahead of the drive line
- Using a passive Torsional Vibration Absorber (TVA)

$\omega_{e}=n_{e} \Omega$
$\Omega \rightarrow$ mean engine speed of rotation

Objective

- Objective : Absorb acyclisms ahead of the drive line
- Using a passive Torsional Vibration Absorber (TVA)

$\omega_{e}=n_{e} \Omega$
$\Omega \rightarrow$ mean engine speed of rotation
- The excitation frequency ω_{e} linearly depends on Ω
- Classical tuned mass dampers operate at a given frequency
- Pendular absorbers operate for all Ω

Pendular oscillators

Pendulum in the gravitational acceleration field

$$
\ddot{S}+\omega_{0 g}^{2} \sin S=0, \quad \omega_{0 g}^{2}=\frac{g}{l}
$$

Pendular oscillators

Pendulum in the gravitational acceleration field

$$
\ddot{S}+\omega_{0 g}^{2} \sin S=0, \quad \omega_{0 g}^{2}=\frac{g}{l}
$$

Pendulum in the centrifugal acceleration field (gravity neglected)

$\ddot{S}+\omega_{0 p}^{2} \sin S=0, \quad \omega_{0 p}^{2}=\frac{r \Omega^{2}}{l}$

- The gravitational acceleration constant g is replaced by the centrifugal acceleration $r \Omega^{2}$

Pendular oscillators

Pendulum in the gravitational acceleration field

$$
\ddot{S}+\omega_{0 g}^{2} \sin S=0, \quad \omega_{0 g}^{2}=\frac{g}{l}
$$

Pendulum in the centrifugal acceleration field (gravity neglected)

$\ddot{S}+\omega_{0 p}^{2} \sin S=0, \quad \omega_{0 p}^{2}=\frac{r \Omega^{2}}{l}$

- The gravitational acceleration constant g is replaced by the centrifugal acceleration $r \Omega^{2}$
- The natural frequency is proportional to the mean engine speed of rotation Ω

$$
\omega_{0 p}=\Omega \sqrt{\frac{r}{l}}=\Omega n_{p}, \quad n_{p}=\sqrt{\frac{r}{l}}
$$

Linear response of pendular absorbers

- The backplate is now free to rotate in the rotating frame ($\vec{x}_{\Omega}, \vec{y}_{\Omega}$) and subjected to an external oscillating torque $T(t)=T_{0} \cos n \Omega t$

Linear response of pendular absorbers

- The backplate is now free to rotate in the rotating frame $\left(\vec{x}_{\Omega}, \vec{y}_{\Omega}\right)$ and subjected to an external oscillating torque $T(t)=T_{0} \cos n \Omega t$

- An antiresonance occurs on the frequency response of the backplate at $n=n_{p}$

Motivation

Linear response of pendular absorbers

- The backplate is now free to rotate in the rotating frame $\left(\vec{x}_{\Omega}, \vec{y}_{\Omega}\right)$ and subjected to an external oscillating torque $T(t)=T_{0} \cos n \Omega t$

- An antiresonance occurs on the frequency response of the backplate at $n=n_{p}$
- The geometric parameters r and I allow to tune the absorber on the desired engine order n_{e} :

$$
n_{p}=n_{e}, \quad n_{p}=\sqrt{\frac{r}{l}}
$$

Particular paths

Circular pendular oscillators are non linear

$$
\ddot{S}+\omega_{0}^{2} \sin S=f \cos \omega t
$$

- The resonance frequency decreases as the amplitude of oscillation increases (softening behavior)
- The response exhibits hysteretic jumps

Circular pendular oscillators are non linear

$$
\ddot{S}+\omega_{0}^{2} \sin S=f \cos \omega t
$$

- The resonance frequency decreases as the amplitude of oscillation increases (softening behavior)
- The response exhibits hysteretic jumps

Tautochronic paths exist for which pendular oscillators behave like linear oscillators.

- In the gravitational acceleration field
- Cycloidal path (Huygens pendulum) [Huygens 1656]
- In a constant centrifugal acceleration field
- Epiycloidal path [Denman 1992]

ARTS
ETMETIERS Paristech

State of the art

- Main inventors
- 1937, Sarazin, [US Patent 2,079,226]
- 1938, Chilton, [US Patent 2,112,984]

ARTS
ET METIERS Paristech

State of the art

- Main inventors
- 1937, Sarazin, [US Patent 2,079,226]
- 1938, Chilton, [US Patent 2,112,984]
- Main applications
- Aicraft engines, since WWII
- Experimental automotive engines, in the 80s (US), [Shaw, Borowski, Denman, Hanisko]
- Real interest from automotive manufacturers, since 2000

State of the art

- Main inventors
- 1937, Sarazin, [US Patent 2,079,226]
- 1938, Chilton, [US Patent 2,112,984]
- Main applications
- Aicraft engines, since WWII
- Experimental automotive engines, in the 80s (US), [Shaw, Borowski, Denman, Hanisko]
- Real interest from automotive manufacturers, since 2000
- Design and past work based on : perturbation methods, time integration and experiments
- Tautochronic vibration absorbers, [Denman 1991], [Shaw 2006 2010]
- Dynamic response of multiple vibration absorbers, [Chao 1997 2000], [Lee 1997], [Olson 2010]
- Stability of the dynamic response, [Chao 1997], [Shi 2012]
- Transient dynamic response, [Monroe 2013]
- ...

ARTS
ET METIERS ParisTech

Context

Analysis

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
- Low engine speed of rotation \rightarrow large amplitude of oscillation

Analysis

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
- Low engine speed of rotation \rightarrow large amplitude of oscillation
- Pertubation methods
- Analytical approaches
- Powerfull for parametric studies
- Inappropriate for very large amplitudes

Analysis

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
- Low engine speed of rotation \rightarrow large amplitude of oscillation
- Pertubation methods
- Analytical approaches
- Powerfull for parametric studies
- Inappropriate for very large amplitudes
- Numerical time integration methods
- Easy to implement and present in many commercial softwares
- Require extensive computational time in case of long transient
- No informations about unstable responses

Analysis

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
- Low engine speed of rotation \rightarrow large amplitude of oscillation
- Pertubation methods
- Analytical approaches
- Powerfull for parametric studies
- Inappropriate for very large amplitudes
- Numerical time integration methods
- Easy to implement and present in many commercial softwares
- Require extensive computational time in case of long transient
- No informations about unstable responses
- Continuation methods
- No transient, direct computation of the steady state
- Give informations about unstable responses

Analysis

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
- Low engine speed of rotation \rightarrow large amplitude of oscillation
- Pertubation methods
- Analytical approaches
- Powerfull for parametric studies
- Inappropriate for very large amplitudes
- Numerical time integration methods
- Easy to implement and present in many commercial softwares
- Require extensive computational time in case of long transient
- No informations about unstable responses
- Continuation methods
- No transient, direct computation of the steady state
- Give informations about unstable responses
- Today
- Continuation of periodic solutions
- The Harmonic Balance Method (HBM) [Nayfeh \& Mook 1979]
- The Asymptotic Numerical Method (ANM) [Potier-Ferry, Cochelin et al., 1990-]

Model

- The investigated system is composed of 2 components
- A backplate free in the rotating frame $\left(\vec{x}_{\Omega}, \vec{y}_{\Omega}\right)$
- A point mass pendulum moving freely on a particular path on the backplate

General path

Analysis
Results
Conclusion

Model

- The investigated system is composed of 2 components
- A backplate free in the rotating frame $\left(\vec{x}_{\Omega}, \vec{y}_{\Omega}\right)$
- A point mass pendulum moving freely on a particular path on the backplate
- θ is the rotation angle of the backplate relative to the rotating frame
- S is the displacement of the pendulum along the path

General path

Model

- The investigated system is composed of 2 components
- A backplate free in the rotating frame ($\vec{x}_{\Omega}, \vec{y}_{\Omega}$)
- A point mass pendulum moving freely on a particular path on the backplate
- θ is the rotation angle of the backplate relative to the rotating frame
- S is the displacement of the pendulum along the path
- The path shape is specified by the function $X(S)=R_{g}^{2}(S)$
- R_{g} is the distance from the pendulum to the point O

- Epicycloidal path :

$$
X(S)=R_{g 0}^{2}-n_{p}^{2} S^{2}
$$

General path

Governing equations

$$
\left\{\begin{array}{l}
(1+\mu X(S)) \ddot{\theta}+\mu G(S) \ddot{S}+\mu\left(\frac{d X(S)}{d S} \dot{S}\left(\frac{1}{n e}+\dot{\theta}\right)+\frac{d G(S)}{d S} \dot{S}^{2}\right)+2 \xi_{c} \dot{\theta}=T_{a} \cos \frac{n}{n_{e}} \bar{t} \\
G(S) \ddot{\theta}+\ddot{S}-\frac{1}{2} \frac{d X(S)}{d S}\left(\frac{1}{n e}+\dot{\theta}\right)^{2}+2 \xi_{p} \dot{S}=0
\end{array}\right.
$$

General path

- Path geometry
- $X=R_{g}^{2}(S), \quad G^{2}=X(S)-\frac{1}{4}\left(\frac{d X(S)}{d S}\right)^{2}$
- Inertia ratio
- $\mu=\frac{m R_{g 0}^{2}}{J}, \quad J=I_{c}+I_{p}$
- Damping ratios
- $\xi_{c}=\frac{C c}{2 J n_{e} \Omega}, \quad \xi_{p}=\frac{C p}{2 m n_{e} \Omega}$
- External torque
- $T_{a}=\frac{T_{0}}{J n_{e}^{2} \Omega^{2}}$
- Rescaled time
- $\bar{t}=n_{e} \Omega t$

ET MÉTIERS ParisTech

Governing equations

$$
\left\{\begin{array}{l}
(1+\mu X(S)) \ddot{\theta}+\mu G(S) \ddot{S}+\mu\left(\frac{d X(S)}{d S} \dot{S}\left(\frac{1}{n e}+\dot{\theta}\right)+\frac{d G(S)}{d S} \dot{S}^{2}\right)+2 \xi_{c} \dot{\theta}=T_{a} \cos \frac{n}{n_{e}} \bar{t} \\
G(S) \ddot{\theta}+\ddot{S}-\frac{1}{2} \frac{d X(S)}{d S}\left(\frac{1}{n e}+\dot{\theta}\right)^{2}+2 \xi_{p} \dot{S}=0
\end{array}\right.
$$

- Geometric coupling (large rotation)
- Inertial coupling

General path

- Path geometry
- $X=R_{g}^{2}(S), \quad G^{2}=X(S)-\frac{1}{4}\left(\frac{d X(S)}{d S}\right)^{2}$
- Inertia ratio
- $\mu=\frac{m R_{g 0}^{2}}{J}, \quad J=I_{c}+I_{p}$
- Damping ratios
- $\xi_{c}=\frac{C c}{2 J n_{e} \Omega}, \quad \xi_{p}=\frac{C p}{2 m n_{e} \Omega}$
- External torque
- $T_{a}=\frac{T_{0}}{J n_{e}^{2} \Omega^{2}}$
- Rescaled time
- $\bar{t}=n_{e} \Omega t$

Frequency approach

- Governing equations can be written in the following form

$$
M(x) \ddot{\boldsymbol{x}}+\boldsymbol{f}_{i n}(x, \dot{\boldsymbol{x}})+\boldsymbol{C} \dot{\boldsymbol{x}}+\boldsymbol{f}_{i n t}(\boldsymbol{x})=\boldsymbol{T} \cos (\omega t)
$$

ARTS
ET MÉTIERS Paristech

Frequency approach

- Governing equations can be written in the following form

$$
M(x) \ddot{\boldsymbol{x}}+\boldsymbol{f}_{i n}(x, \dot{\boldsymbol{x}})+\boldsymbol{C} \dot{\boldsymbol{x}}+\boldsymbol{f}_{i n t}(\boldsymbol{x})=\boldsymbol{T} \cos (\omega t)
$$

- One selects a control parameter, λ
ω, T, \ldots

Frequency approach

- Governing equations can be written in the following form

$$
M(x) \ddot{\boldsymbol{x}}+\boldsymbol{f}_{i n}(x, \dot{\boldsymbol{x}})+\boldsymbol{C} \dot{\boldsymbol{x}}+\boldsymbol{f}_{i n t}(\boldsymbol{x})=\boldsymbol{T} \cos (\omega t)
$$

- One selects a control parameter, λ \rightarrow ω, T, \ldots
- Unknows are expanded in a truncated Fourier series
- $x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos (i \omega t)+x_{s i} \sin (i \omega t)$
\rightarrow
Approximate Solutions

Frequency approach

- Governing equations can be written in the following form

$$
\boldsymbol{M}(x) \ddot{\boldsymbol{x}}+\boldsymbol{f}_{\text {in }}(\boldsymbol{x}, \dot{\boldsymbol{x}})+\boldsymbol{C} \dot{\boldsymbol{x}}+\boldsymbol{f}_{\text {int }}(\boldsymbol{x})=\boldsymbol{T} \cos (\omega t)
$$

- One selects a control parameter, λ $\rightarrow \quad \omega, T, \ldots$
- Unknows are expanded in a truncated Fourier series
- $x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos (i \omega t)+x_{s i} \sin (i \omega t)$

$$
\rightarrow \quad \begin{array}{cc}
\text { Approximate } \\
\text { Solutions }
\end{array}
$$

- Harmonic Balance Method
- The coefficient of each of the lowest $H+1$ harmonics are equated to zero
$\rightarrow \quad$ Harmonics higher than H are neglected

Frequency approach

- Governing equations can be written in the following form

$$
M(x) \ddot{\boldsymbol{x}}+\boldsymbol{f}_{i n}(x, \dot{x})+C \dot{x}+\boldsymbol{f}_{i n t}(x)=\boldsymbol{T} \cos (\omega t)
$$

- One selects a control parameter, λ $\rightarrow \quad \omega, T, \ldots$
- Unknows are expanded in a truncated Fourier series
- $x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos (i \omega t)+x_{s i} \sin (i \omega t)$
$\rightarrow \quad$ Approximate
Solutions
- Harmonic Balance Method
- The coefficient of each of the lowest $H+1$ harmonics are equated to zero

$$
\rightarrow \quad \text { Harmonics higher than } H \text { are }
$$

- Non linear algebraic system resulting from HBM to solve

$$
\rightarrow \quad U=\left[\begin{array}{llllll}
x_{0} & x_{c i} & x_{s i} & \ldots & x_{c H} & x_{s H}
\end{array}\right]
$$

- $\boldsymbol{R}(\boldsymbol{U}, \lambda)=0$

ARTS
ET METERS
ParisTech

Asymptotic Numerical Method (ANM)

Final system to solve can be written :

$$
\boldsymbol{R}(\boldsymbol{U}, \lambda)=0
$$

Asymptotic Numerical Method (ANM)

Final system to solve can be written :

$$
\boldsymbol{R}(\boldsymbol{U}, \lambda)=0
$$

- ANM is based on a high order perturbation method from an initial solution ($\boldsymbol{U}_{\mathbf{0}}, \boldsymbol{\lambda}_{\mathbf{0}}$)

$$
\begin{aligned}
\boldsymbol{U}(a) & =\boldsymbol{U}_{0}+a \boldsymbol{U}_{1}+a^{2} \boldsymbol{U}_{2}+\ldots+a^{N} \boldsymbol{U}_{N} \\
\lambda(a) & =\lambda_{0}+a \lambda_{1}+a^{2} \lambda_{2}+\ldots+a^{N} \lambda N
\end{aligned}
$$

Asymptotic Numerical Method (ANM)

Final system to solve can be written :

$$
\boldsymbol{R}(\boldsymbol{U}, \lambda)=0
$$

- ANM is based on a high order perturbation method from an initial solution ($\boldsymbol{U}_{\mathbf{0}}, \boldsymbol{\lambda}_{\mathbf{0}}$)

$$
\begin{gathered}
\boldsymbol{U}(a)=\boldsymbol{U}_{0}+a \boldsymbol{U}_{1}+a^{2} \boldsymbol{U}_{2}+\ldots+a^{N} \boldsymbol{U}_{N} \\
\lambda(a)=\lambda_{0}+a \lambda_{1}+a^{2} \lambda_{2}+\ldots+a^{N} \lambda N
\end{gathered}
$$

- The solution is represented by a succession of local polynomial approximations as a function of a, the pseudo arc-length along the branch of solution

Asymptotic Numerical Method (ANM)

Final system to solve can be written :

$$
\boldsymbol{R}(\boldsymbol{U}, \lambda)=0
$$

- ANM is based on a high order perturbation method from an initial solution ($\boldsymbol{U}_{\mathbf{0}}, \boldsymbol{\lambda}_{\mathbf{0}}$)

$$
\begin{aligned}
\boldsymbol{U}(a) & =\boldsymbol{U}_{0}+a \boldsymbol{U}_{1}+a^{2} \boldsymbol{U}_{2}+\ldots+a^{N} \boldsymbol{U}_{N} \\
\lambda(a) & =\lambda_{0}+a \lambda_{1}+a^{2} \lambda_{2}+\ldots+a^{N} \lambda N
\end{aligned}
$$

- The solution is represented by a succession of local polynomial approximations as a function of a, the pseudo arc-length along the branch of solution
- piecewise continuous representation

- The ANM becomes very efficient if $\boldsymbol{R}(\boldsymbol{U}, \lambda)$ is recanted in quadratic form

$$
\boldsymbol{R}(\tilde{\boldsymbol{U}})=\boldsymbol{C}+\boldsymbol{L}(\tilde{\boldsymbol{U}})+\boldsymbol{Q}(\tilde{\boldsymbol{U}}, \tilde{\boldsymbol{U}})=0, \quad \tilde{\boldsymbol{U}}=[\boldsymbol{U}, \lambda]
$$

MANLAB

- in practice, the software MANLAB 2.0 has been used to conpute the prediodic solutions. [Arquier 2007],[Cochelin \& Vergez 2009]

http ://manlab.Ima.cnrs-mrs.fr/

ARTS

ETMETIERS
Paristech

Context

Forced steady state response

- The input order n is swept at constant torque amplitude
- $x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S]$
- $H=9$

Forced steady state response

- The input order n is swept at constant torque amplitude - $x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S]$ - $H=9$

Epicycloid

Cycloid

- Primary resonance exhibits softening behavior

Forced steady state response

Circle

- The input order n is swept at constant torque amplitude

$$
\text { - } x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S]
$$

- $H=9$

Cycloid

- Primary resonance exhibits softening behavior
- Loss of the tuning of the absorber at large amplitudes

Forced steady state response

- The input order n is swept at constant torque amplitude

$$
\begin{gathered}
-x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S] \\
\text { - } H=9, H=1
\end{gathered}
$$

> Circle

- Primary resonance exhibits softening behavior
- Loss of the tuning of the absorber at large amplitudes
- convergence as a function af the number of harmonic

Context

Forced steady state response

- No non linear inertial coupling

$$
\left\{\begin{array}{l}
\ddot{x}_{1}\left(m_{1}+m_{2}\right)+\ddot{x}_{2} m_{2}=f \cos \omega t \\
\ddot{x}_{1} m_{2}+\ddot{x}_{2} m_{2}+k x_{2}+\gamma x_{2}^{3}=0
\end{array}\right.
$$

Context
Analysis

Forced steady state response

- No non linear inertial coupling

$$
\left\{\begin{array}{l}
\ddot{x}_{1}\left(m_{1}+m_{2}\right)+\ddot{x}_{2} m_{2}=f \cos \omega t \\
\ddot{x}_{1} m_{2}+\ddot{x}_{2} m_{2}+k x_{2}+\gamma x_{2}^{3}=0
\end{array}\right.
$$

- The sign of γ governs the resonance behavior

Forced steady state response

- No non linear inertial coupling

$$
\left\{\begin{array}{l}
\ddot{x}_{1}\left(m_{1}+m_{2}\right)+\ddot{x}_{2} m_{2}=f \cos \omega t \\
\ddot{x}_{1} m_{2}+\ddot{x}_{2} m_{2}+k x_{2}+\gamma x_{2}^{3}=0
\end{array}\right.
$$

- The sign of γ governs the resonance behavior
- Antiresonance exhibits the same behavior as the resonance

Force continuation

- The input torque amplitude T_{0} is swept at constant excitation order ($n=n_{e}$)
- $x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S]$

Circular path

Force continuation

- The input torque amplitude T_{0} is swept at constant excitation order ($n=n_{e}$)

$$
x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S]
$$

Circular path

Force continuation

- The input torque amplitude T_{0} is swept at constant excitation order $\left(n=n_{e}\right)$

$$
x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S]
$$

Circular path

- Circular path absorbers exhibit strong jump phenomenon

Force continuation

- The input torque amplitude T_{0} is swept at constant excitation order ($n=n_{e}$)

$$
x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S]
$$

Epicycloidal and cycloidal paths

- Circular path absorbers exhibit strong jump phenomenon

Force continuation

- The input torque amplitude T_{0} is swept at constant excitation order ($n=n_{e}$)
- $x(t)=x_{0}+\sum_{i=1}^{H} x_{c i} \cos \left(i \frac{n}{n_{e}} t\right)+x_{s i} \sin \left(i \frac{n}{n_{e}} t\right) \quad x=[\theta, S]$

Epicycloidal and cycloidal paths

- Circular path absorbers exhibit strong jump phenomenon
- Epicycloid and cycloid path absorbers don't exhibit hysteretic jumps

Conclusion

- Use of continuation methods
- No limitation in the number of harmonic
- Epicycloid path is not tautochronic
- Hardening / softening behavior of the antiresonance highly depends on the path center of mass of the pendulum

