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Motivation

Common thermal engines produce a highly acyclic torque
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Source of noise, wear, passenger discomfort ...

The torque irregularities frequency ωe is at an order ne of the mean engine speed of rotation
Ω

T (t) = T0 cosωet , ωe = neΩ

The firing order, ne , is the number of explosion per crankshaft revolution
4 strokes, 3 cylinders → ne = 3

2
4 strokes, 4 cylinders → ne = 2
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Objective : Absorb acyclisms ahead of the drive line
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Objective : Absorb acyclisms ahead of the drive line
Using a passive Torsional Vibration Absorber (TVA)

Dual mass
flywheel
+ clutch

Gear box
+ differential

Drive shaft Vehicle

I1 I2 I3 I4 I5 I6 I7 I8T0 cosωet

Engine
excitation

TVA

ωe = neΩ

Ω → mean engine speed of rotation

The excitation frequency ωe linearly depends on Ω
Classical tuned mass dampers operate at a given frequency

Pendular absorbers operate for all Ω
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0g sinS = 0, ω2

0g =
g
l

S̈ + ω2
0p sin S = 0, ω2

0p =
rΩ2

l
The gravitational acceleration constant g is replaced by the centrifugal acceleration rΩ2

The natural frequency is proportional to the mean engine speed of rotation Ω

ω0p = Ω

√ r
l

= Ωnp , np =
√ r

l
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Linear response of pendular absorbers
The backplate is now free to rotate in the rotating frame (~xΩ ,~yΩ) and subjected to an
external oscillating torque T (t) = T0 cos nΩt
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The input order n is swept at a given
mean engine speed of rotation Ω
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An antiresonance occurs on the frequency response of the backplate at n = np
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The input order n is swept at a given
mean engine speed of rotation Ω
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nΩ

antiresonance

An antiresonance occurs on the frequency response of the backplate at n = np

The geometric parameters r and l allow to tune the absorber on the desired engine order ne :

np = ne , np =
√ r

l
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Particular paths

Circular pendular oscillators are non linear

S̈ + ω2
0 sinS = f cosωt

The resonance frequency decreases as the amplitude of
oscillation increases (softening behavior)

The response exhibits hysteretic jumps
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In the gravitational acceleration field
Cycloidal path (Huygens pendulum) [Huygens 1656]

In a constant centrifugal acceleration field
Epiycloidal path [Denman 1992]
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Main inventors
1937, Sarazin, [US Patent 2,079,226]
1938, Chilton, [US Patent 2,112,984]

Main applications
Aicraft engines, since WWII
Experimental automotive engines, in the 80s (US), [Shaw, Borowski, Denman, Hanisko]
Real interest from automotive manufacturers, since 2000

Design and past work based on : perturbation methods, time integration and experiments
Tautochronic vibration absorbers, [Denman 1991], [Shaw 2006 2010]
Dynamic response of multiple vibration absorbers, [Chao 1997 2000], [Lee 1997], [Olson 2010]
Stability of the dynamic response, [Chao 1997], [Shi 2012]
Transient dynamic response, [Monroe 2013]
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Pendular absorbers exhibit strong non-linearities
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amplitude of motion

Low engine speed of rotation → large amplitude of oscillation
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Pendular absorbers exhibit strong non-linearities
We need efficient and "exact" analyse method to capture the physical behavior at large
amplitude of motion

Low engine speed of rotation → large amplitude of oscillation

Pertubation methods
Analytical approaches
Powerfull for parametric studies
Inappropriate for very large amplitudes

Numerical time integration methods
Easy to implement and present in many commercial softwares
Require extensive computational time in case of long transient
No informations about unstable responses

Continuation methods
No transient, direct computation of the steady state
Give informations about unstable responses

Today
Continuation of periodic solutions
The Harmonic Balance Method (HBM) [Nayfeh & Mook 1979]
The Asymptotic Numerical Method (ANM) [Potier-Ferry, Cochelin et al., 1990-]
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The investigated system is composed of 2 components
A backplate free in the rotating frame (~xΩ ,~yΩ)
A point mass pendulum moving freely on a particular path on the backplate
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The investigated system is composed of 2 components
A backplate free in the rotating frame (~xΩ ,~yΩ)
A point mass pendulum moving freely on a particular path on the backplate

θ is the rotation angle of the backplate relative to the rotating frame
S is the displacement of the pendulum along the path
The path shape is specified by the function X(S) = R2

g (S)
Rg is the distance from the pendulum to the point O

Rg (S)
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m, Ip

T0 cos nΩt

Ωt
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~yΩ

~y1 ~x1

~xΩ

Rg0

θ

pendulum

Backplate
(inertia Ic )

General path

Epicycloidal path :

X(S) = R2
g0 − n2pS2

10 / 18 A. Renault 11th October 2016



Context
Analysis
Results

Conclusion

Model
Governing equations
Frequency approach
Asymptotic Numerical Method

Governing equations
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Path geometry
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Rescaled time
t̄ = neΩt
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M(x)ẍ + fin(x, ẋ) + Cẋ + fint(x) = T cos (ωt)

One selects a control parameter, λ → ω, T , ...

Unknows are expanded in a truncated Fourier
series

x(t) = x0 +
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i=1
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The coefficient of each of the lowest H + 1
harmonics are equated to zero

→ Harmonics higher than H are
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Frequency approach

Governing equations can be written in the following form

M(x)ẍ + fin(x, ẋ) + Cẋ + fint(x) = T cos (ωt)

One selects a control parameter, λ → ω, T , ...

Unknows are expanded in a truncated Fourier
series

x(t) = x0 +
H∑

i=1

xci cos(iωt) + xsi sin(iωt)
→ Approximate

Solutions

Harmonic Balance Method
The coefficient of each of the lowest H + 1
harmonics are equated to zero

→ Harmonics higher than H are
neglected

Non linear algebraic system resulting from HBM
to solve

R(U, λ) = 0
→ U = [x0 xci xsi ... xcH xsH ]
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Asymptotic Numerical Method (ANM)
Final system to solve can be written :

R(U, λ) = 0

ANM is based on a high order perturbation method from an initial solution (U0,λ0)

U(a) = U0 + aU1 + a2U2 + ...+ aNUN

λ(a) = λ0 + aλ1 + a2λ2 + ...+ aNλN
The solution is represented by a succession of local polynomial approximations as a function
of a, the pseudo arc-length along the branch of solution

piecewise continuous representation

(U i
0, λ

i
0) (U i+1, λi+1)

a

U i

λ

i th piece of branch

The ANM becomes very efficient if R(U, λ) is recasted in quadratic form

R(Ũ) = C + L(Ũ) + Q(Ũ, Ũ) = 0, Ũ = [U, λ]
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MANLAB

in practice, the software MANLAB 2.0 has been used to conpute the prediodic solutions.
[Arquier 2007],[Cochelin & Vergez 2009]

http ://manlab.lma.cnrs-mrs.fr/
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Epicycloid and cycloid path absorbers don’t exhibit hysteretic jumps
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Use of continuation methods
No limitation in the number of harmonic
Epicycloid path is not tautochronic

Hardening / softening behavior of the antiresonance highly depends on the path center of
mass of the pendulum
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