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@ Source of noise, wear, passenger discomfort ...

@ The torque irregularities frequency we is at an order n. of the mean engine speed of rotation
n

T(t) = Tocoswet , we = nNef2

o The firing order, ne, is the number of explosion per crankshaft revolution

o 4 strokes, 3 cylinders — n. = 3

o 4 strokes, 4 cylinders — n, =2
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Context Motivatiol
' ARTS Objective
O

Objective

o Objective : Absorb acyclisms ahead of the drive line
o Using a passive Torsional Vibration Absorber (TVA)

i
— —_—
Engine Dual mass Gear box Drive shaft  Vehicle
excitation flywheel + differential
+ clutch

We = Nef?2
{2 — mean engine speed of rotation

o The excitation frequency we linearly depends on {2

o Classical tuned mass dampers operate at a given frequency

o Pendular absorbers operate for all 2
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Pendulum in the gravitational acceleration Pendulum in the centrifugal acceleration
field field (gravity neglected)
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Pendular oscillators

Pendulum in the gravitational acceleration Pendulum in the centrifugal acceleration
field field (gravity neglected)

Backplate

Drive
at 2

r(22
!

o The gravitational acceleration constant g is replaced by the centrifugal acceleration r(22

§+w§gsin5:0, wgg:% §+wgpsinS:0, w%p:

@ The natural frequency is proportional to the mean engine speed of rotation {2

r r
wop:Q\/;:an, np = \/;
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Linear response of pendular absorbers

@ The backplate is now free to rotate in the rotating frame (X(2,¥2) and subjected to an
external oscillating torque T(t) = Tg cos n2t

Backplate
(Inertia I)

6/18 A. Renault 11th October 2016



' ARTS Context : n

principle
f the art

Linear response of pendular absorbers

@ The backplate is now free to rotate in the rotating frame (X(2,¥2) and subjected to an
external oscillating torque T(t) = Tg cos n2t
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@ An antiresonance occurs on the frequency response of the backplate at n = np
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Linear response of pendular absorbers

@ The backplate is now free to rotate in the rotating frame (X(2,¥2) and subjected to an
external oscillating torque T(t) = Tg cos n2t

Backplate The input order n is swept at a given
(Inertia 1) 2 mean engine speed of rotation (2

g3

8 3

o 2

8=

K g' antiresonafice

M @ \

T n{2
ne 2

ti
2=np

@ An antiresonance occurs on the frequency response of the backplate at n = np

@ The geometric parameters r and / allow to tune the absorber on the desired engine order ne :

7
Np =ne, nNp= 7
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Particular paths

Circular pendular oscillators are non linear

S+w§sin5: f coswt

@ The resonance frequency decreases as the amplitude of
oscillation increases (softening behavior)

Response
amplitude

@ The response exhibits hysteretic jumps
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' ARTS Context

Particular paths

Circular pendular oscillators are non linear

S+w§sin5: f coswt

Response
amplitude

@ The resonance frequency decreases as the amplitude of
oscillation increases (softening behavior)

o

@ The response exhibits hysteretic jumps

Tautochronic paths exist for which pendular oscillators behave like linear oscillators.

@ In the gravitational acceleration field

Cycloidal h (H dul H Circular
o Cycloidal path (Huygens pendulum) [Huygens 1656] Epicycloidal
@ In a constant centrifugal acceleration field Cycloidal

o Epiycloidal path [Denman 1992]
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State of the art

@ Main inventors

o 1937, Sarazin, [US Patent 2,079,226]
o 1938, Chilton, [US Patent 2,112,984]

e Main applications
o Aicraft engines, since WWII
o Experimental automotive engines, in the 80s (US), [Shaw, Borowski, Denman, Hanisko]
o Real interest from automotive manufacturers, since 2000

o Design and past work based on : perturbation methods, time integration and experiments

o Tautochronic vibration absorbers, [Denman 1991], [Shaw 2006 2010]

o Dynamic response of multiple vibration absorbers, [Chao 1997 2000], [Lee 1997], [Olson 2010]
o Stability of the dynamic response, [Chao 1997], [Shi 2012]

o Transient dynamic response, [Monroe 2013]

o
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Analysis

@ Pendular absorbers exhibit strong non-linearities

o We need efficient and "exact" analyse method to capture the physical behavior at large
amplitude of motion

o Low engine speed of rotation — large amplitude of oscillation
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Analysis

Pendular absorbers exhibit strong non-linearities

We need efficient and "exact" analyse method to capture the physical behavior at large
amplitude of motion

o Low engine speed of rotation — large amplitude of oscillation

@ Pertubation methods

o Analytical approaches
o Powerfull for parametric studies
o Inappropriate for very large amplitudes

Numerical time integration methods

o Easy to implement and present in many commercial softwares
o Require extensive computational time in case of long transient
o No informations about unstable responses

o Continuation methods

o No transient, direct computation of the steady state
o Give informations about unstable responses

o Today

o Continuation of periodic solutions
o The Harmonic Balance Method (HBM) [Nayfeh & Mook 1979]
o The Asymptotic Numerical Method (ANM) [Potier-Ferry, Cochelin et al., 1990-]
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@ The investigated system is composed of 2 components

o A backplate free in the rotating frame (X,y2)
o A point mass pendulum moving freely on a particular path on the backplate

V0 70
A
Tq cos nﬂt/ X0
Backplate =
(inertia Ic) 0 % >0
R pendulum
m, Ip
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@ The investigated system is composed of 2 components
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@ 6 is the rotation angle of the backplate relative to the rotating frame

@ S is the displacement of the pendulum along the path
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Analysis

al Method

@ The investigated system is composed of 2 components

o A backplate free in the rotating frame (X,y2)
o A point mass pendulum moving freely on a particular path on the backplate

@ 6 is the rotation angle of the backplate relative to the rotating frame
@ S is the displacement of the pendulum along the path
o The path shape is specified by the function X(S) = R2(S)

o Rg is the distance from the pendulum to the point O

o Epicycloidal path :
0 _ 2 2c2
X(S) = Rg0 - n;S

pendulum
m, Ip

Backplate
(inertia Ic)

General path
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Freq approach
Asymptotic Numer

Governing equations

) i dX(S), (1 .\ dG(S) ., . "
(1 + uX(S))G + uG(S)5 + u S(—+0)+ §) + 266 = Tycos —7

ds dS

e

. 1 dX(S) (1 .)2 .
G + § — - —= +6) + 26,5=0

ne

o Path geometry

2
o X =RXS), G2=X(S)— : (dX(S))
4 ds

~ @ Inertia ratio
2
mR’

° uzigo‘ J=lc+1Ip

1 J
o Damping ratios
T cos n2t X0 Cec Cp
0 £ = . Ep =
2Jne 2 2mne 2
Backplate =
X0

(inertia Ic) O o External torque
To

Y2

pendulum o Ty =

22
m, Ip Jng £2

@ Rescaled time
0 T=ne2t

General path
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' ARTS Analysis Governing equations

Frequency approach
Asymptotic Numeri

Governing equations

. . dX(S) . 1 . dG(S) .» X n_
(1+,u )9+,u S+ pul——S| —+0 )+ ———S5 + 2€.0 = Tycos —1t

ds ne

Ne
- 1 1\, ,
6+5— = —+0)?% + 26,5=0
2 ne
° o Path geometry
2
. . 1 dx(s
@ Inertial coupling o X =R(S), G2=X(S)— - )
£ 4 ds
~ @ Inertia ratio
= Yo ngo
° u:f‘ J=lc+1p
o Damping ratios
T cos n2t X0 Cec Cp
o &c . Ep =
2Jne 2 2mne 2
X0 o External torque
o T To
pendulum a= 5.5
m, Ip Jng £2

@ Rescaled time
@ T =nef2t

General path
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Frequency approach

o Governing equations can be written in the following form

M(x)% + Fip(x, X) + Cx + Fipe(x) = T cos (wt)
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Frequency approach

o Governing equations can be written in the following form

M(x)% + Fip(x, X) + Cx + Fipe(x) = T cos (wt)

@ One selects a control parameter, A — w, T, ..

@ Unknows are expanded in a truncated Fourier

series Approximate

H — .
Solutions

o x(t) =xo + Z Xci cos(iwt) + xsi sin(iwt)
i=1
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Frequency approach

o Governing equations can be written in the following form

M(x)% + Fip(x, X) + Cx + Fipe(x) = T cos (wt)

One selects a control parameter, A — w, T, ..

@ Unknows are expanded in a truncated Fourier
series .
" N Approx.lmate
o x(t) = xp + Z Xci cos(iwt) + X sin(iwt) Solutions

i=1

@ Harmonic Balance Method

o The coefficient of each of the lowest H + 1 -
harmonics are equated to zero

Harmonics higher than H are
neglected
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' ARTS Analysis

Frequency approach

o Governing equations can be written in the following form

M(x)% + Fip(x, X) + Cx + Fipe(x) = T cos (wt)

@ One selects a control parameter, A — w, T, ..

@ Unknows are expanded in a truncated Fourier

series .
" N Approximate

o x(t) = xp + Z Xci cos(iwt) + X sin(iwt) Solutions
i=1

@ Harmonic Balance Method

) Harmonics higher than H are
o The coefficient of each of the lowest H + 1 -

neglected
harmonics are equated to zero €
@ Non linear algebraic system resulting from HBM
to solve - U = [X0 Xci Xsi -+ XcH XsH]

o R(U,A\)=0
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Asymptotic Numerical Method (ANM)

Final system to solve can be written :

R(U,)\) =0
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Final system to solve can be written :

R(U,)\) =0

o ANM is based on a high order perturbation method from an initial solution (Up, Ag)

U(a) = Up + aly + 3PUs + ... + aV Uy
Aa) = Xo+a\i+ a2+ ...+ aVaN
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Asymptotic Numeri

Asymptotic Numerical Method (ANM)

Final system to solve can be written :
R(U,\) =0

o ANM is based on a high order perturbation method from an initial solution (Up, Ag)

U(a) = Up + aly + 3PUs + ... + aV Uy
Aa) = Xo+a\i+ a2+ ...+ aVaN

@ The solution is represented by a succession of local polynomial approximations as a function
of a, the pseudo arc-length along the branch of solution

u' ith piece of branch ,
(U5, AL / (U1, A1)

@ piecewise continuous representation \//%/
a e

@ The ANM becomes very efficient if R(U, \) is recasted in quadratic form

RDY=C+LD)+QD,U)=0, U=][U,)
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MANLAB

@ in practice, the software MANLAB 2.0 has been used to conpute the prediodic solutions.

Analysis

[Arquier 2007],[Cochelin & Vergez 2009]

B Figure 2
file Edit View Insert Tools Desktop Window Help

[E=5 Fo8

del
rning equations
Frequency approach

B manlab

| Properties Quit

Asymptotic Numerical Method

DEEL KA UDRL-(B[0E (=D
Man
Diagramme
S o[ 2
/ Point =3 ’+>
. J
/ l import ML_Uj ‘ Threshold | 1e:07
1
f ~ l Place Uj ‘ lcance\ branch
s e
\ | - Diagram Correction
\ } | sae | Threshoid | 1608
; i
" [P l Load | Enable correction
4 l Variables || | Visualize [pum( lpomon |branch || diag H
5 Lock zoom
Export ‘ point ‘pomon“branch‘ diag, “
display point :
o Jobal disp
07 08 09 1 11 12 13 14 15 16 oty e | Erase lpomon branch | ciag, ‘

http ://manlab.Ima.cnrs-mrs.fr/
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Results Force continuation

Forced steady state response

@ The input order n is swept at constant torque amplitude
H
o x(t) =xo + Zx,:,- cos(it) + xsisin(iLt) x=[6, 5]
i=1
e H=9
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' ARTS Forced steady state

Results Force continuation

Forced steady state response

@ The input order n is swept at constant torque amplitude
H
o x(t) =xo + ZX“' cos(it) + xsisin(iLt) x=[6, 5]
i=1

e H=9
Epicycloid Cycloid
L o01 0.1 0.1
H | | |
| | |
s £ | .
— @
=
o0 I £y, \ LA n
— 1 122 Ne 1 122 ne 1 122 e
(5} 102 1072 1072
21 1 1
g | | |
_E | | |
=2 U | U J\L U ‘
s \ J\K
%o L, )N o LA n
N 1 122 nNe 1122 Ne 1 1.22 nNe

@ Primary resonance exhibits softening behavior
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Results Force continuation

Forced steady state response

@ The input order n is swept at constant torque amplitude
H
o x(t) =xo + ZX“' cos(it) + xsisin(iLt) x=[6, 5]
i=1

e H=9
Epicycloid Cycloid
L o01— 01— 01—
H | | |
= E | | |
= ki I \
b n n n
= 0 _- 1R ne 0 _ - 1Ixm ne 0 _ - 1T IR ne
03 S 305 S 03 Sel

6]
15t harmonic
1
-

@ Primary resonance exhibits softening behavior

@ Loss of the tuning of the absorber at large amplitudes
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6]
15t harmonic

ARTS
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Forced steady state response

Results

Forced steady state
Force continuation

@ The input order n is swept at constant torque amplitude

H

o x(t) =xo + Zxc,- cos(istt) + xsisin(iszt) x=[0,9]

i=1

o H=9 H=1

Epicycloid

Cycloid

01—

Primary resonance exhibits softening behavior

Loss of the tuning of the absorber at large amplitudes

convergence as a function af the number of harmonic

A. Renault
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' ARTS Forced steady state

Results Force continuation

Forced steady state response

F(t . . . .
( @ No non linear inertial coupling
m mo ‘ {5’(1 (m1 + mp) + Xomy = f cos wt
Xymo + Xomy + kxo + ’)'x23 =0
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Results Force continuation

' ARTS Forced steady state

Forced steady state response

F(t S .
@ No non linear inertial coupling

Xymo + Xomy + kxo + ’)'x23 =0

{5’(1 (m1 + mp) + Xomy = f cos wt

v<0 v>0
2 125 2 125
c c |
g ! E !
X 5 ‘ X 5
Bl B
@ @
- 0 1 122 w - 0 1T 122 w

@ The sign of v governs the resonance behavior
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' ARTS Forced steady state

Results Force continuation

Forced steady state response

F(t S .
@ No non linear inertial coupling

m my ‘

X1 ( t)_J X2 ( T.‘)

{5’(1 (m1 + mp) + Xomy = f cos wt

Xymo + Xomy + kxo + ’)'x23 =0

v<0 v>0

L2 125 — 2125 —

c | c |

g E
X 5 ‘ X 5 !

Bl B

@ @

I —= oy w o0 —= oy w
- = I T~

x|
15t harmonic

[x]
15t harmonic

|
., I
8 1 1.02 8.98 1 1.0

8

@ The sign of v governs the resonance behavior

@ Antiresonance exhibits the same behavior as the resonance
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Results Force continuation

Force continuation

@ The input torque amplitude Ty is swept at constant
%0 excitation order (n = ne)

H

0 . o

pendylum o x(t) =x + E xci cos(it) + xsisin(iLt) x=[0,5]
I i=1

Circular path

10|
1°* harmonic
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Results Force continuation

Force continuation

@ The input torque amplitude Ty is swept at constant

To cos Lt %o excitation order (n = ne)
- H
X0 . o
MO =0 S renli 0 sl ) x= (0.5
m, Ip i=1

Circular path

10|
1°* harmonic
]
1°" harmonic

A. Renault 11" October 2016




' ARTS Forced stea
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Force continuation

@ The input torque amplitude Ty is swept at constant

To cos Lt %o excitation order (n = ne)
- H
X0 . o
MO =0 S renli 0 sl ) x= (0.5
m, Ip i=1

Circular path

10|
1°* harmonic
]
1°" harmonic

o Circular path absorbers exhibit strong jump phenomenon
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' ARTS Force y state
Results Force continuation

Force continuation

@ The input torque amplitude Ty is swept at constant
%0 excitation order (n = ne)

0 H . P
pendijur o x(t) =xg + Zxc,- cos(istt) + xsisin(iszt) x=[6,9]
I i=1

Epicycloidal and cycloidal paths

o
o
5
L

\
\
§

o]
1°' harmonic
°

o
9
0]
15t harmonic

o Circular path absorbers exhibit strong jump phenomenon
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' ARTS Forced steady state
Results Force continuation

Force continuation

@ The input torque amplitude Ty is swept at constant
excitation order (n = ne)

0 H . P
pendijur o x(t) =xg + Zxc,- cos(istt) + xsisin(iszt) x=[6,9]
I i=1

Epicycloidal and cycloidal paths

/

§

o]
1°' harmonic

0]
15t harmonic

o Circular path absorbers exhibit strong jump phenomenon
@ Epicycloid and cycloid path absorbers don’t exhibit hysteretic jumps
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Conclusion

Conclusion

@ Use of continuation methods

o No limitation in the number of harmonic
o Epicycloid path is not tautochronic

e Hardening / softening behavior of the antiresonance highly depends on the path center of
mass of the pendulum
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