

24th International Congress of Theorical and Applied Mechanics

HARDENING SOFTENING BEHAVIOR OF ANTIRESONANCE FOR NON LINEAR TORSIONAL VIBRATION ABSORBERS

^{1,2}Alexandre Renault, ¹Olivier Thomas

¹Arts et Métiers ParisTech, LSIS UMR CNRS 7296, 8 bd. Louis XIV 59000 Lille, France.

11th October 2016

Context

Motivation

- Objective
- Operation principle
- State of the art

2 Analysis

- Model
- Governing equations
- Frequency approach
- Asymptotic Numerical Method

Results

- Forced steady state
- Force continuation

Conclusion

∃ ► < ∃ ►</p>

э

Motivation Objective Operation principle State of the art

• Common thermal engines produce a highly acyclic torque

э

< ロ > < 同 > < 三 > < 三 >

• Common thermal engines produce a highly acyclic torque

• Source of noise, wear, passenger discomfort ...

< ロ > < 同 > < 三 > < 三 >

э

• Common thermal engines produce a highly acyclic torque

- Source of noise, wear, passenger discomfort ...
- $\bullet\,$ The torque irregularities frequency ω_e is at an order n_e of the mean engine speed of rotation \varOmega

$$T(t) = T_0 \cos \omega_e t$$
, $\omega_e = n_e \Omega$

The firing order, n_e, is the number of explosion per crankshaft revolution
 4 strokes, 3 cylinders → n_e = ³/₂
 4 strokes, 4 cylinders → n_e = 2

э

• Objective : Absorb acyclisms ahead of the drive line

 $\omega_e = n_e \Omega$ $\Omega \rightarrow$ mean engine speed of rotation

イロト イボト イヨト イヨト

Context
Analysis
Results
Conclusion

- Objective : Absorb acyclisms ahead of the drive line
 - Using a passive Torsional Vibration Absorber (TVA)

 $\omega_e = n_e \Omega$ $\Omega \rightarrow$ mean engine speed of rotation

< ロ > < 同 > < 三 > < 三 >

Context	
Analysis	
Results	
Conclusion	

- Objective : Absorb acyclisms ahead of the drive line
 - Using a passive Torsional Vibration Absorber (TVA)

 $\omega_e = n_e \Omega$

- $\varOmega \rightarrow$ mean engine speed of rotation
 - $\bullet\,$ The excitation frequency ω_e linearly depends on $\varOmega\,$
 - Classical tuned mass dampers operate at a given frequency
 - ${\scriptstyle \bullet \,}$ Pendular absorbers operate for all \varOmega

< ロ > < 同 > < 三 > < 三 >

Context
Analysis
Results
Conclusion

Pendulum in the gravitational acceleration field

$$\ddot{S} + \omega_{0g}^2 \sin S = 0, \quad \omega_{0g}^2 = \frac{g}{l}$$

イロン イヨン イヨン イヨン

∃ 990

• The gravitational acceleration constant g is replaced by the centrifugal acceleration $r\Omega^2$

イロト イポト イヨト イヨト

- The gravitational acceleration constant g is replaced by the centrifugal acceleration $r\Omega^2$
- ullet The natural frequency is proportional to the mean engine speed of rotation \varOmega

$$\omega_{0p} = \Omega \sqrt{\frac{r}{l}} = \Omega n_p, \quad n_p = \sqrt{\frac{r}{l}}$$

イロト 不得 トイヨト イヨト

Motivation Objective Operation principle State of the art

Linear response of pendular absorbers

• The backplate is now free to rotate in the rotating frame $(\vec{x}_{\Omega}, \vec{y}_{\Omega})$ and subjected to an external oscillating torque $T(t) = T_0 \cos n\Omega t$

Motivation Objective Operation principle State of the art

Linear response of pendular absorbers

• The backplate is now free to rotate in the rotating frame $(\vec{x}_{\Omega}, \vec{y}_{\Omega})$ and subjected to an external oscillating torque $T(t) = T_0 \cos n\Omega t$

• An antiresonance occurs on the frequency response of the backplate at $n = n_p$

< ロ > < 同 > < 三 > < 三 >

э

Motivation Objective Operation principle State of the art

Linear response of pendular absorbers

• The backplate is now free to rotate in the rotating frame $(\vec{x}_{\Omega}, \vec{y}_{\Omega})$ and subjected to an external oscillating torque $T(t) = T_0 \cos n\Omega t$

- An antiresonance occurs on the frequency response of the backplate at $n = n_p$
- The geometric parameters r and l allow to tune the absorber on the desired engine order n_e :

$$n_p = n_e, \quad n_p = \sqrt{\frac{r}{l}}$$

< ロ > < 同 > < 三 > < 三 >

э

Motivation Objective Operation principle State of the art

Circular pendular oscillators are non linear

$$\ddot{S} + \omega_0^2 \sin S = f \cos \omega t$$

- The resonance frequency decreases as the amplitude of oscillation increases (softening behavior)
- The response exhibits hysteretic jumps

< 口 > < 同 >

B 5

Motivation Objective Operation principle State of the art

Circular pendular oscillators are non linear

$$\ddot{S} + \omega_0^2 \sin S = f \cos \omega t$$

- The resonance frequency decreases as the amplitude of oscillation increases (softening behavior)
- The response exhibits hysteretic jumps

Tautochronic paths exist for which pendular oscillators behave like linear oscillators.

- In the gravitational acceleration field
 - Cycloidal path (Huygens pendulum) [Huygens 1656]
- In a constant centrifugal acceleration field
 - Epiycloidal path [Denman 1992]

Context
Analysis
Results
Conclusion

Main inventors

- 1937, Sarazin, [US Patent 2,079,226]
- 1938, Chilton, [US Patent 2,112,984]

イロト イボト イヨト イヨト

Ξ.

Context
Analysis
Results
Conclusion

Main inventors

- 1937, Sarazin, [US Patent 2,079,226]
- 1938, Chilton, [US Patent 2,112,984]

Main applications

- Aicraft engines, since WWII
- Experimental automotive engines, in the 80s (US), [Shaw, Borowski, Denman, Hanisko]
- Real interest from automotive manufacturers, since 2000

< ロ > < 同 > < 三 > < 三 >

Context
Analysis
Results
Conclusion

Main inventors

- 1937, Sarazin, [US Patent 2,079,226]
- 1938, Chilton, [US Patent 2,112,984]

Main applications

- Aicraft engines, since WWII
- Experimental automotive engines, in the 80s (US), [Shaw, Borowski, Denman, Hanisko]
- Real interest from automotive manufacturers, since 2000

• Design and past work based on : perturbation methods, time integration and experiments

- Tautochronic vibration absorbers, [Denman 1991], [Shaw 2006 2010]
- Dynamic response of multiple vibration absorbers, [Chao 1997 2000], [Lee 1997], [Olson 2010]
- Stability of the dynamic response, [Chao 1997], [Shi 2012]
- Transient dynamic response, [Monroe 2013]

• ...

< ロ > < 同 > < 三 > < 三 >

Model Governing equations Frequency approach Asymptotic Numerical Method

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
 - $\circ~$ Low engine speed of rotation $\rightarrow~$ large amplitude of oscillation

< ロ > < 同 > < 三 > < 三 >

э

Context Analysis Results Conclusion Model Governing equations Frequency approach Asymptotic Numerical Method

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
 - $\circ~$ Low engine speed of rotation \rightarrow large amplitude of oscillation

Pertubation methods

- Analytical approaches
- Powerfull for parametric studies
- Inappropriate for very large amplitudes

< 口 > < 同 >

A 32 b

Context Analysis Results Conclusion Model Governing equations Frequency approach Asymptotic Numerical Method

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
 - $\circ~$ Low engine speed of rotation \rightarrow large amplitude of oscillation

Pertubation methods

- Analytical approaches
- Powerfull for parametric studies
- Inappropriate for very large amplitudes

Numerical time integration methods

- · Easy to implement and present in many commercial softwares
- Require extensive computational time in case of long transient
- No informations about unstable responses

Context Analysis Results Conclusion Model Governing equations Frequency approach Asymptotic Numerical Method

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
 - $\circ~$ Low engine speed of rotation \rightarrow large amplitude of oscillation

Pertubation methods

- Analytical approaches
- Powerfull for parametric studies
- Inappropriate for very large amplitudes

Numerical time integration methods

- · Easy to implement and present in many commercial softwares
- Require extensive computational time in case of long transient
- No informations about unstable responses

Continuation methods

- No transient, direct computation of the steady state
- Give informations about unstable responses

Context Analysis Results Conclusion Model Governing equations Frequency approach Asymptotic Numerical Method

- Pendular absorbers exhibit strong non-linearities
- We need efficient and "exact" analyse method to capture the physical behavior at large amplitude of motion
 - $\circ~$ Low engine speed of rotation \rightarrow large amplitude of oscillation

Pertubation methods

- Analytical approaches
- Powerfull for parametric studies
- Inappropriate for very large amplitudes

• Numerical time integration methods

- · Easy to implement and present in many commercial softwares
- Require extensive computational time in case of long transient
- No informations about unstable responses

Continuation methods

- No transient, direct computation of the steady state
- Give informations about unstable responses

• Today

- Continuation of periodic solutions
- The Harmonic Balance Method (HBM) [Nayfeh & Mook 1979]
- The Asymptotic Numerical Method (ANM) [Potier-Ferry, Cochelin et al., 1990-]

A 34 b

Model Governing equations Frequency approach Asymptotic Numerical Method

- The investigated system is composed of 2 components
 - A backplate free in the rotating frame $(\vec{x}_{\Omega}, \vec{y}_{\Omega})$
 - · A point mass pendulum moving freely on a particular path on the backplate

< ロ > < 同 > < 三 > < 三 >

э

Model Governing equations Frequency approach Asymptotic Numerical Method

- The investigated system is composed of 2 components
 - A backplate free in the rotating frame $(\vec{x}_{\Omega}, \vec{y}_{\Omega})$
 - A point mass pendulum moving freely on a particular path on the backplate
- $\bullet~\theta$ is the rotation angle of the backplate relative to the rotating frame
- $\bullet~S$ is the displacement of the pendulum along the path

< ロ > < 同 > < 三 > < 三 >

Model Governing equations Frequency approach Asymptotic Numerical Method

- The investigated system is composed of 2 components
 - A backplate free in the rotating frame $(\vec{x}_{\Omega}, \vec{y}_{\Omega})$
 - ${\scriptstyle \circ \ }$ A point mass pendulum moving freely on a particular path on the backplate
- $\bullet~\theta$ is the rotation angle of the backplate relative to the rotating frame
- S is the displacement of the pendulum along the path
- The path shape is specified by the function $X(S) = R_g^2(S)$
 - $\circ~R_g$ is the distance from the pendulum to the point O

• Epicycloidal path :

$$X(S) = R_{g0}^2 - n_p^2 S^2$$

< ロ > < 同 > < 三 > < 三 >

Analysis Results

Governing equations

$$\begin{cases} \left(1 + \mu X(S)\right)\ddot{\theta} + \mu G(S)\ddot{S} + \mu \left(\frac{dX(S)}{dS}\dot{S}\left(\frac{1}{ne} + \dot{\theta}\right) + \frac{dG(S)}{dS}\dot{S}^{2}\right) + 2\xi_{c}\dot{\theta} = T_{a}\cos\frac{n}{n_{e}}\bar{t}\\ G(S)\ddot{\theta} + \ddot{S} - \frac{1}{2}\frac{dX(S)}{dS}\left(\frac{1}{ne} + \dot{\theta}\right)^{2} + 2\xi_{p}\dot{S} = 0 \end{cases}$$

Path geometry

$$@ \ \ X = R_g^2(S), \ \ \, G^2 = X(S) - \frac{1}{4} \left(\frac{dX(S)}{dS} \right)^2$$

イロト イロト イヨト イヨト

æ

Inertia ratio

•
$$\mu = \frac{mR_{g0}^2}{J}, J = I_c + I_p$$

Damping ratios

•
$$\xi_c = \frac{Cc}{2Jn_e\Omega}$$
, $\xi_p = \frac{Cp}{2mn_e\Omega}$

External torque

•
$$T_a = \frac{T_0}{Jn_e^2 \Omega^2}$$

 Rescaled time $\ \overline{t} = n_e \Omega t$

General path

Analysis Results Governing equations

Governing equations

$$\begin{cases} \left(1 + \mu X(S)\right)\ddot{\theta} + \mu G(S)\ddot{S} + \mu \left(\frac{dX(S)}{dS}\dot{S}\left(\frac{1}{ne} + \dot{\theta}\right) + \frac{dG(S)}{dS}\dot{S}^{2}\right) + 2\xi_{c}\dot{\theta} = T_{a}\cos\frac{n}{n_{e}}\bar{t}\\ G(S)\ddot{\theta} + \ddot{S} - \frac{1}{2}\frac{dX(S)}{dS}\left(\frac{1}{ne} + \dot{\theta}\right)^{2} + 2\xi_{p}\dot{S} = 0 \end{cases}$$

- Geometric coupling (large rotation)
- Inertial coupling

Path geometry

•
$$X = R_g^2(S), \quad G^2 = X(S) - \frac{1}{4} \left(\frac{dX(S)}{dS}\right)^2$$

イロト イボト イヨト イヨト

э

Inertia ratio

$$\Phi \ \mu = \frac{mR_{g0}^2}{J}, \ J = I_c + I_p$$

Damping ratios

•
$$\xi_c = \frac{Cc}{2Jn_e\Omega}$$
, $\xi_p = \frac{Cp}{2mn_e\Omega}$

External torque

$$\bullet \quad T_a = \frac{T_0}{Jn_e^2 \Omega^2}$$

Rescaled time $\ \overline{t} = n_e \Omega t$

11th October 2016

ARTS ET MÉTIERS ParisTech	Context Analysis Results Conclusion	Model Governing equations Frequency approach Asymptotic Numerical Method
Frequency approach		

• Governing equations can be written in the following form

$$\boldsymbol{M}(\boldsymbol{x})\ddot{\boldsymbol{x}} + \boldsymbol{f}_{in}(\boldsymbol{x}, \dot{\boldsymbol{x}}) + \boldsymbol{C}\dot{\boldsymbol{x}} + \boldsymbol{f}_{int}(\boldsymbol{x}) = \boldsymbol{T}\cos\left(\omega t\right)$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

• Governing equations can be written in the following form

$$M(x)\ddot{x} + f_{in}(x, \dot{x}) + C\dot{x} + f_{int}(x) = T\cos(\omega t)$$

• One selects a control parameter, λ \rightarrow ω , T, ...

イロト イポト イヨト イヨト

э.

۸

イロト イポト イヨト イヨト

• Governing equations can be written in the following form

$$M(x)\ddot{x} + f_{in}(x, \dot{x}) + C\dot{x} + f_{int}(x) = T\cos(\omega t)$$

• One selects a control parameter, λ \rightarrow ω , T, ...

Analysis Results

• Unknows are expanded in a truncated Fourier series

•
$$\mathbf{x}(t) = \mathbf{x}_0 + \sum_{i=1}^{H} \mathbf{x}_{ci} \cos(i\omega t) + \mathbf{x}_{si} \sin(i\omega t)$$
 \rightarrow Approximate Solutions

э.

• Governing equations can be written in the following form

$$M(x)\ddot{x} + f_{in}(x, \dot{x}) + C\dot{x} + f_{int}(x) = T\cos(\omega t)$$

• One selects a control parameter, $\lambda \rightarrow \omega, T, ...$

Analysis

Results

Unknows are expanded in a truncated Fourier series

• Harmonic Balance Method

 The coefficient of each of the lowest H + 1 harmonics are equated to zero Harmonics higher than *H* are neglected

イロト イボト イヨト イヨト

3

 \rightarrow

イロト イポト イヨト イヨト

3

• Governing equations can be written in the following form

$$M(x)\ddot{x} + f_{in}(x, \dot{x}) + C\dot{x} + f_{int}(x) = T\cos(\omega t)$$

• One selects a control parameter, λ \rightarrow ω , T, ...

Analysis

Results

Unknows are expanded in a truncated Fourier series

- Harmonic Balance Method
 - The coefficient of each of the lowest H+1 \rightarrow Harmonics higher than H are neglected
- Non linear algebraic system resulting from HBM to solve $\rightarrow \qquad U = [x_0 \ x_{ci} \ x_{si} \ ... \ x_{cH} \ x_{sH}]$
 - $\boldsymbol{R}(\boldsymbol{U},\lambda)=0$

Asymptotic Numerical Method (ANM)

Final system to solve can be written :

 $\boldsymbol{R}(\boldsymbol{U},\lambda)=0$

Analysis Results

イロト イロト イヨト イヨト

æ

Asymptotic Numerical Method (ANM)

Final system to solve can be written :

 $\boldsymbol{R}(\boldsymbol{U},\lambda)=0$

• ANM is based on a high order perturbation method from an initial solution (U_0, λ_0)

Analysis Results

$$U(a) = U_0 + aU_1 + a^2U_2 + \dots + a^NU_N$$
$$\lambda(a) = \lambda_0 + a\lambda_1 + a^2\lambda_2 + \dots + a^N\lambda N$$

イロト イボト イヨト イヨト

э.

Asymptotic Numerical Method (ANM)

Final system to solve can be written :

 $\boldsymbol{R}(\boldsymbol{U},\lambda)=0$

• ANM is based on a high order perturbation method from an initial solution (U_0, λ_0)

Analysis Results

$$U(a) = U_0 + aU_1 + a^2U_2 + \dots + a^NU_N$$
$$\lambda(a) = \lambda_0 + a\lambda_1 + a^2\lambda_2 + \dots + a^N\lambda N$$

• The solution is represented by a succession of local polynomial approximations as a function of *a*, the pseudo arc-length along the branch of solution

イロト イボト イヨト イヨト

Asymptotic Numerical Method (ANM)

Final system to solve can be written :

 $\boldsymbol{R}(\boldsymbol{U},\lambda)=0$

• ANM is based on a high order perturbation method from an initial solution (U_0, λ_0)

U

Analysis Results

$$U(a) = U_0 + aU_1 + a^2U_2 + \dots + a^NU_N$$
$$\lambda(a) = \lambda_0 + a\lambda_1 + a^2\lambda_2 + \dots + a^N\lambda N$$

• The solution is represented by a succession of local polynomial approximations as a function of *a*, the pseudo arc-length along the branch of solution

• piecewise continuous representation

< ロ > < 同 > < 三 > < 三 >

• The ANM becomes very efficient if $R(U, \lambda)$ is recasted in quadratic form

$$R(\tilde{U}) = C + L(\tilde{U}) + Q(\tilde{U}, \tilde{U}) = 0, \quad \tilde{U} = [U, \lambda]$$

• in practice, the software MANLAB 2.0 has been used to conpute the prediodic solutions. [Arquier 2007],[Cochelin & Vergez 2009]

http://manlab.lma.cnrs-mrs.fr/

Forced steady state Force continuation

Forced steady state response

• The input order n is swept at constant torque amplitude

•
$$\mathbf{x}(t) = \mathbf{x}_0 + \sum_{i=1}^{H} \mathbf{x}_{ci} \cos(i\frac{n}{n_e}t) + \mathbf{x}_{si} \sin(i\frac{n}{n_e}t) \quad \mathbf{x} = [\theta, S]$$

• $H = 0$

イロト イヨト イヨト イヨト

æ

Results

Forced steady state

Cycloid

1 1.22

1 1.22

< ロ > < 同 > < 回 > < 回 >

 $\frac{n}{n_e}$

n n_e

æ

Forced steady state response

Primary resonance exhibits softening behavior ٠

Results

Forced steady state

Cycloid

< ロ > < 同 > < 回 > < 回 >

 $\frac{n}{n_e}$

1.04 ne

э

Forced steady state response

- Primary resonance exhibits softening behavior ٠
- Loss of the tuning of the absorber at large amplitudes

Analysis Results

Forced steady state

Cycloid

< ロ > < 同 > < 回 > < 回 >

 $\frac{n}{n_e}$

1.04 ne

э

Forced steady state response

- Primary resonance exhibits softening behavior ٠
- Loss of the tuning of the absorber at large amplitudes
- convergence as a function af the number of harmonic

Forced steady state Force continuation

Forced steady state response

No non linear inertial coupling

$$\begin{cases} \ddot{x}_1 (m_1 + m_2) + \ddot{x}_2 m_2 = f \cos \omega t \\ \ddot{x}_1 m_2 + \ddot{x}_2 m_2 + k x_2 + \gamma x_2^3 = 0 \end{cases}$$

Forced steady state Force continuation

Forced steady state response

• The sign of γ governs the resonance behavior

< ロ > < 同 > < 回 > < 回 >

æ

Forced steady state Force continuation

Forced steady state response

- $\bullet\,$ The sign of γ governs the resonance behavior
- Antiresonance exhibits the same behavior as the resonance

< ロ > < 同 > < 回 > < 回 >

э

Forced steady state Force continuation

Force continuation

• The input torque amplitude T_0 is swept at constant excitation order $(n = n_e)$

•
$$\mathbf{x}(t) = \mathbf{x}_0 + \sum_{i=1}^{H} \mathbf{x}_{ci} \cos(i \frac{n}{n_e} t) + \mathbf{x}_{si} \sin(i \frac{n}{n_e} t) \quad \mathbf{x} = [\theta, S]$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Circular path

Forced steady state Force continuation

Force continuation

• The input torque amplitude T_0 is swept at constant excitation order $(n = n_e)$

•
$$\mathbf{x}(t) = \mathbf{x}_0 + \sum_{i=1}^{H} \mathbf{x}_{ci} \cos(i \frac{n}{n_e} t) + \mathbf{x}_{si} \sin(i \frac{n}{n_e} t) \quad \mathbf{x} = [\theta, S]$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Forced steady state Force continuation

Force continuation

• The input torque amplitude T_0 is swept at constant excitation order $(n = n_e)$

•
$$\mathbf{x}(t) = \mathbf{x}_0 + \sum_{i=1}^{H} \mathbf{x}_{ci} \cos(i \frac{n}{n_e} t) + \mathbf{x}_{si} \sin(i \frac{n}{n_e} t) \quad \mathbf{x} = [\theta, S]$$

2

イロト イポト イヨト イヨト

• Circular path absorbers exhibit strong jump phenomenon

Forced steady state Force continuation

Force continuation

• The input torque amplitude T_0 is swept at constant excitation order $(n = n_e)$

•
$$\mathbf{x}(t) = \mathbf{x}_0 + \sum_{i=1}^{H} \mathbf{x}_{ci} \cos(i \frac{n}{n_e} t) + \mathbf{x}_{si} \sin(i \frac{n}{n_e} t) \quad \mathbf{x} = [\theta, S]$$

2

< ロ > < 同 > < 三 > < 三 >

Epicycloidal and cycloidal paths

• Circular path absorbers exhibit strong jump phenomenon

Analysis Results

Force continuation

Force continuation

- Circular path absorbers exhibit strong jump phenomenon ۲
- Epicycloid and cycloid path absorbers don't exhibit hysteretic jumps •

 $\frac{1}{0.2} T_0$

- Use of continuation methods
 - No limitation in the number of harmonic
 - Epicycloid path is not tautochronic
- Hardening / softening behavior of the antiresonance highly depends on the path center of mass of the pendulum

イロト イボト イヨト イヨト

э.