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Abstract: This work is devoted to the study of non-linear large amplitude vibrations of thin spherical shells. A
specific mode coupling due to a 1:1:2 internal resonance between an axisymmetric mode and two companion
asymmetric modes is especially addressed. The aim of the study is to compare two reduced-order models and
a set of experiments. The first model (model A) is obtained by projecting the non-linear partial differential
equations onto the eigenmodes basis and then by retaining only (i) the three oscillators associated to the modes
involved in the internal resonance (ii) the quadratic terms. Secondly, a more refined model (model B) using
three non-linear modes computed asymptotically with a real normal form enables to include the effects of
the cubic terms and the modes not primary involved in the internal resonance. Resonance curves, showing
the amplitude of the modes as functions of the driving frequency and stemming from both models and the
experiments, are discussed. It is shown that model B brings features that are observed experimentally and not
predicted by model A.

1 INTRODUCTION

Structures with a thin geometry, like beams, arches, plates and shells, can exhibit large amplitude flexural
vibrations, whose magnitude is comparable to the order of their thickness. In those cases, typical non-linear
behaviors can be observed, such as jump phenomena and energy exchanges between modal configurations and
a linear prediction model is not sufficient [1]. This article addresses non-linear large amplitude vibrations of
thin spherical shells and is specifically devoted to a particular mode coupling due to a 1:1:2 internal resonance
between an axisymmetric mode and two companion asymmetric modes.

The 1:1:2 internal resonance involves in our study a modal interaction between two companion asymmetric
modes, which have nearly equal natural frequencies f; ~ f» (thus being in one-to-one (1:1) internal resonance)
and one axisymmetric mode, whose natural frequency fs is close to twice the ones of the asymmetric compan-
ion modes (all three being in 1:1:2 internal resonance, f; ~ f2 ~ f3/2). The spherical shell is driven by a
simple-harmonic force at its center, in the vicinity of the resonance of the axisymmetric mode, and the bound-
ary conditions are free at the edge. A transfer of energy toward the asymmetric companion modes is observed,
those modes oscillating at half the driving frequency, thus creating a subharmonic in the shell response.

In a previous work of the authors [2], a theoretical model of a spherical shell subjected to large amplitude
asymmetric non-linear vibrations has been derived, using the analog for thin shallow shells of von Ké&rman
equations for plates. These PDE have been discretized by projection onto the eigenmodes basis of the associ-
ated linear problem. Then, a simple reduced order model of the 1:1:2 internal resonance (model A) has been
obtained by retaining only the three oscillators associated to the modes involved in the internal resonance and
the quadratic terms. The results of this model have been compared to experimental data in [3]. An excellent
qualitative agreement was found. However, some quantitative discrepancies were noticed. Two major expla-
nations have been formulated. Firstly, the imperfections of the geometry of the shell, slight in appearance,
seem to have a major effect on the vibratory response of the shell. As an example, the theoretical value of the
axisymmetric mode natural frequency is 386 Hz whereas its measured value is 225 Hz. Secondly, it was found
that the influence of the cubic terms arising from the geometrical non-linearities seem to be important.

In this article, an improved reduced-order model (model B) is proposed and compared to the above men-
tioned model A. It is based on non-linear normal modes (NNM), defined as invariant manifold of the phase
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space and computed by an asymptotic development of the real normal form of the problem. This method has
been described for the conservative case in [4] and successfully applied to predict the correct trend of non-
linearity of the modes of a spherical shell in [5]. Modal damping has recently been taken into account in [6].
Model B then consists of describing the dynamics by the three NNMs corresponding to the three modes in-
volved in the 1:1:2 internal resonance. It is shown that in spite of its small size (3 NNMs), model B offers
results closer to the experiments than the ones obtained in [2] and it recovers specific solutions that could not
be predicted by model A, such as amplitude-modulated solutions.

2 THEORETICAL MODELS

Figure 1: Geometry of the shell: three-dimensional sketch and cross section.

2.1 Continuous model and discretization

A spherical shell of thickness h, radius of curvature R and outer diameter 2a, made of a homogeneous
isotropic material of density p, Poisson ratio » and Young’s modulus E, is considered. The geometry is speci-
fied on Fig.1. The equations of motion, in terms of the transverse displacement w and the Airy stress function
F, for all time ¢, are:

DAAw + %AF—F phio = L(w, F) — e + p, AAF — %Aw = —%hL(w,w), Q
where D is the flexural rigidity, c is a damping coefficient, p represents the external normal pressure, « is the
second partial derivative of w with respect to time, A is the Laplacian and L is the usual von Karman bilinear
quadratic operator [2].

In the following, dimensionless equations corresponding to Egs. (1) are used. The scaling of w is chosen
so that w = w/h. Itis the one used in [5] to whom the interested reader can refer for the definition of the other
dimensionless variables. One can note that the scaling of time ¢, £ = h/a®\/E/12p(1 — v2) t do not depends
on the scaling of w. In the following, as any variable is dimensionless, the overbars are dropped.

The transverse deflection is expanded on the eigenmodes of the associated linear problem. The solution is
sought as:

+o0
U)(T, 67 t) = Z (}P(TJ 0) Xp(t)' (2)

The {X,}pen+ are unknown functions of time - the modal coordinates - and @, is the p-th mode shape of the
shell with free edge, whose analytical expression can be found in [2]. Using the orthogonality property of the
{®,}, one obtains that the {X,,} are the solutions of the following set of non-linear coupled oscillators:

+o00 +00 +00 +00 +00
Xy + 260, X, + w2 X, + 33 gl XX + 30 303 W XXX = Qy(8), ©)
i=1 j=1 i=1 j=1 k=1

where (wp,&p) are respectively the dimensionless natural frequency and damping factor of mode p. {gfj}
and {hf].k} are coefficients that depends on the mode shapes and the geometry of the shell. They have been
calculated in [2]. One can note that the “small” parameters €, and e introduced in [2] are here included in the

coefficients, so that g7; = ,47; and hi;;, = e.I7;;.
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Figure 2: The three involved mode. From left to right: both mode (6,0) (mode 1 and 2) and mode (0,1) (mode 3).

2.2 The internal resonance

A particular 1:1:2 internal resonance between two companion purely asymmetric modes (denoted in the
following by mode 1 and mode 2) of dimensionless natural frequencies w; and w» and an axisymmetric mode
(mode 3) of dimensionless natural frequency ws is now studied (see Fig. 2). This internal resonance occurs if:

w3 ™~ 2(4}1 ~ 2(,02. (4)

The two next sections describe two reduced-order models designed to predict the exchanges of energy between
the three involved modes and the special vibratory response of the shell that ensue.

2.3 Model A: three linear modes without cubic non-linearities

Amplitudes [adim]

Excitation frequency

Figure 3: Theoretical frequency response curves.

Model A stems from the simplest truncation of set (3): it consists of retaining only the three oscillators
associated to modes 1, 2 and 3 and to neglect the cubic terms. The dimensionless displacement of the shell in
steady-state is then:

w(r,0,t) = ®1(r,0) X1 (t) + ®2(r,0) X2(t) + ®3(r) Xs(t), ()

and the {X,},—1,2,3 are solutions of:

X1 + 26w X1 + wiXy =1 X1 X3, (6a)
Xy + 26w Xo + wi X =ap X2 X3, (6b)
X5+ 2§3w3X3 + w§X3 =a3 X? 4+ s X2 + Q cos Q. (6¢c)

In the above set, it has been assumed that the structure is driven at its center by a harmonic forcing of angular
frequency 2 and amplitude Q. Since the shapes of modes 1 and 2 have a node at center, the forcing terms in
Egs. (6b,c) vanish.
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When the structure is driven in the vicinity of the resonance of mode 3 (2 ~ w3), a first order solution to
the above set (6a-c) obtained by a perturbation method is:

X1(t) = a1 cos (%t - #) ,  Xa(t) = azcos (%t - w> ,  X3(t) = azcos(t —v3). (7)

The values of the amplitudes {a;}i=1,2,3 and phases {~; }i=1,2,3, as functions of 2 and @, have been obtained
in [2]. It is shown that only three stable vibratory solutions can be obtained in the steady state:

e the SDOF solution (single-degree-of-freedom), with a; = a2 = 0 and ag # 0, which is the usual
uncoupled solution;

e the ¢y solution, with a; # 0, a2 = 0, ag # 0: an energy transfer occurs between mode 3 and 1;
e the C solution, with a; = 0, a2 # 0, ag # 0: an energy transfer occurs between mode 3 and 2.

Moreover, in the (a3, ) plane, the SDOF solution is stable outside an instability region, inside whom the
coupled solutions c; and ¢, take birth. This region is shown with a gray shaded area on Figure 3.

2.4 Comparison to experiments
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Figure 4: Comparison of experiments to the results of model A. Left: resonance curve for a forcing amplitude
of 0.554 N. Right: resonance curves for a forcing amplitude of 1.108 N (from [3]).
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Figure 5: Comparison of experiments to the results of model A. Left: resonance curves for a forcing amplitude
of 0.185 N. Right: quasiperiodic response (from [3]).

A special setup has been designed to measure the amplitudes of the three involved modes as well as the
boundaries of the instability regions. The interested reader can refer to [3, 7] for details. Figure 4 and 5 show
some comparisons between the predictions of model A and the experiments. Even if experiments and theory
are in excellent qualitative agreement, the following discrepancies can be noticed.

e For large forcing levels (Fy. = 1.108 N, Fig. 4, left), the fine geometry of the experimental points is not
respected by the theory, as well as the limits of the stability frequency bands of the coupled solutions.
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e Some solutions with amplitude modulations have been noticed for some localized frequency bands (see
Fig. 5).

¢ In the experiments, the a3 branches for the c; and ¢, solutions do not coincide with the boundary of the
instability region, which is the case for the theory (see Fig. 4, right).

e Some experimental SDOF solution are curved toward the low frequencies, as if they were governed by
a softening non-linear behavior. This feature cannot be predicted by model A, which includes only
quadratic terms (see Fig. 5).

It was also found that some slight geometrical imperfections of the experimental shell, as compared to a per-
fect spherical cap, have a major effect on the vibratory response. A consequence is that some experimental
frequencies as well as non-linear coefficients {a;} in Egs (6) are overestimated by theory. As an example, the
natural frequency of mode 3 is estimated at 386 Hz and measured at 225 Hz and an overestimation factor of 30
has been found for coefficients {c;} [3].

2.5 Model B: three non-linear normal modes

In order to correct the discrepancies observed between model A and experiments, a more refined model has
been built. The leading idea is that the cubing non-linear terms are the main responsible of the discrepancies
observed, so an upgraded model should keep these cubic terms so as to recover, e.g. the curvature of the SDOF
solution, the difference between the position of the coupled a3 solutions and the instability region and the
quasiperiodic regimes found on coupled branches.

However, keeping the cubic terms in the dynamical equations leads to reconsider the modal truncation.
Keeping only the linear modes involved in the resonance may produce erroneous results, so that one must a
priori keep numerous linear modes to attain convergence. In this context, reducing the system to its Non-linear
Normal modes (NNMs) is an efficient procedure for keeping the same number of oscillators, without neglecting
others that are enslaved to the chosen master coordinates.

The reduced model used here is built with the following procedure. First, 21 linear modes are kept in the
truncation, they are: (2,0) to (9,0) (with preferential sin and cos configuration, resulting in 16 modes), axisym-
metric modes (0,1) to (0,3), and mixed mode (1,1) with its two configurations. The non-linear coefficients
are computed according to the full model derived in [2]. From the subset of 21 non-linear oscillators with
quadratic and cubic non-linear terms, the non-linear change of coordinates, allowing to pass from the modal
variables to the normal ones, describing the motions in an invariant-based span of the phase space (the NNMs),
is processed, following the procedure explained in [6, 8]. The normal form procedure of [6, 8] is an extension
of the reduction method proposed in [4], which was limited to conservative cases. The following change of
coordinates is applied:

N N N N N N N
X, =Ry + Y D (ah iRy +15,8:8) + > Y hRiS; + 3 33 (rh Rii i + 5,814 )
i=1 j>1i i=1 j=1 i=1 j>i k>j
N N N
+ZZZ ( ZJkSR Rk+ukaR SJSk) (8&)
i=1 j=1 k>j
N N N N N
Y, =S, + 3 Y (o RiR; + BLS:S;) +ZZWURS + 353 (W RiR Re + 1103518554
=1 j>i i=1 j=1 i=1 j>i k>j
N N N
+ 3D (v SiRi R + €y RiSs Sk ) - (8b)
i=1 j=1 k>j
with N = 21.

Then the 3 coordinates corresponding to the NNMs that continues the three linear modes: both (6,0) com-
panion modes and (0,1), are selected, the others are set to zero. The reduced dynamics on this 6-dimensional
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invariant manifold reads, according to the general case derived in [6, 8]:

Ry + wiRy + gi3R1 R + 26wi Ry + (Afyy + hiy) RS + Bl Rk} + C1y RU Ry

+ (A31o + Algs + higs) Ri RS + Biay RiR5 + By RiRi Ry + (Clys + C1n) Ri R Ry

+ Clo R5Ry + (A3y3 + Algy + hizs) RiR3 + Blag R B3 + Bi3 By Ry Ry

+ (Cly3 + Chy3)RiR3 Ry + C34  RER, = 0 (%a)
Ry + W3Ry + ¢33 Ro Ry + 260w Ry + (A3g; + h3y,) RS + B3yy Ro B3 + O3y, R3Ry

+ (Al + Adyy + hlp)RoR} + B3y RoRY + By Ro Ry Ry + (G54 + Cfyy ) Re R Ry

+ CP1o R Ry + (A3 + Ays + h333) RoRE + Bigs Ry R3 + Biay Ro Ro R

+ (C333 + C3y3)ReR3 Ry + C33, R3R> = 0 (9b)
Ry + wiRs + g3 RE + g3, B3 + 263w3 Rs + (Adss + his3) RS + Bigs RsR3 + Cass R3Rs

+(A}3 + A3y, + hi15)RsRY + By RsRY + BY s RsRiRy + (C3y, + Cfyy)Rs R Ry

+ C} 13RI Rs + (A353 + Aoy + hio3) RsR3 + Bisy Ry R + Bios Ry Ry Ry

+ (C3yy + C335)RsRa Ry + C3)3 R3Rs = Q cos (9c)

Then, by using the change of co-ordinates of Egs. (8), one can obtains the modal co-ordinates { X }p=1...21.

3 COMPARISON BETWEEN MODELS AND EXPERIMENTS

x [adim] a [m] h [m] R[m] p [kg/mq] E [GPa] v [adim]
9560 03m 1-1073 3.01 8230 111.44 0.33
fi[Hz] fo[HZ] fs3[Hz] & [adim] & [adim] &s [adim] Far [N]
Case 1 (Fig.6) 97.8 98.8 1954 5-100* 5-107* 5-10~* 0.039
Case 2 (Fig.7) 97.8 988 1954 5-107* 5-107* 5-107* 0.081
Case 3(Fig.8) 921 1019 1954 8-10=° 8-10=% 4-.107% 1.07

Table 1: Numerical values of parameters

In this section, numerical solutions of dynamical system (9a-c) are presented, in order to compare model B
to model A and experiments. The simulations are obtained with software AUTO, which is capable of solution
continuation with the pseudo arc-length method [9].

The value of all parameters used in the simulation of model B are the ones obtained theoretically in [2]. The
value of the aspect ratio x = 12(1 — v?)a*/R?h? of the shell has been chosen so that theoretical natural fre-
quencies precisely fulfills the 1:1:2 internal resonance relationship. The natural frequencies of the companion
(6,0) modes are slightly modified compared to the perfect case, in order to obtain coupled solutions qualita-
tively as closer as possible than those obtained experimentally (see Figs. 4,5). The values of all parameters are
gathered in Tab. 1, for the three following simulations.

The forcing level for the first simulation (Case 1, Fig. 6) has been chosen so that the obtained resonance
curve is similar to the one of Fig. 4, left. In this case of medium forcing level, one can see that model B gives
an additional branch of unstable c, solution that connects c; and ¢, solutions. The second simulation (Case 2,
Fig. 7 to be compared to Fig. 5, right), obtained with the same set of parameters but with a larger forcing
level, predicts that a quasi-periodic additional solution replaces an unstable c, solution in a small frequency
range around 196 Hz. One can note that these amplitude-modulated solutions would be difficult to be observed
experimentally since (i) they are not the continuation of stable branches and (ii) a c, stable branch exists in
the same frequency range. An interesting characteristic of model B is that in both case 1 and case 2, it gives
branches of solution with shapes closer to the one obtains experimentally: c; and c, branches are located
respectively below and above the ones obtains with model A, with the same trends than in the experiments
(compare Figs. 4, 6(b) and 7(a)).

Finally, for the third simulation (Case 3, Fig. 8), the natural frequencies of modes (6,0) have been changed
to fit the experiments of Fig. 5. It is shown that model B predicts quasi-periodic responses that replace ¢, and
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C, stable solutions obtained by model A in the frequency range around natural frequency f3 of mode 3. A
simulation of the time-evolution of the normal co-ordinates (Fig. 8(b) shows that the period of the amplitude
modulation (=~ 5 s) is of the same order than the one obtained experimentally (Fig. 5, right).
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Figure 6: Case 1: comparison between model A (Multiple Scale solution, MS) and model B (NNM) with
Fy. = 0.039 N. "—: stable solutions, ’---’: unstable sDOF solution, ’---”: other unstable solutions.
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4 CONCLUSION

Inthis article, a special 1:1:2 internal resonance in a shallow spherical shell was addressed. A reduced-order
model (denoted as model B), based on three non-linear modes, was built in order to correct some discrepancies
previously observed between a simpler model (model A) and experiments. It was shown that model B is
qualitatively closer to the experiments than model A. In particular, model B recovers the overall shape of the
solutions branches obtained experimentally. Moreover, quasi-periodic solutions are predicted by model B in
similar frequency ranges than those observed experimentally.

However, as all parameters (the natural frequencies and the coefficients of non-linear terms) of model B are
related to a shell with a perfectly spherical geometry, the drawbacks related to the geometrical imperfections
of the experimental shell are not taken into account. In particular, the branches amplitudes obtained with
model B are lower (of a factor of 10) than the ones obtained experimentally. This probably explains why other
experimental characteristics of the experimental resonance curves are not recovered by model B, namely, the
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Figure 8: Case 3. (a) comparison between model A (Multiple Scale solution, MS) and model B (NNM); "—’:
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curvature of the spor solution toward the low frequencies and the non-coincidence of the instability region
boundaries and mode 3 coupled branches.
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