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ABSTRACT

The present work studies the double polarisation phenomenon
observed in vibrating piano strings. From the experimental view-
point, it is known that when a string is given an initial displace-
ment in one transverse direction (e.g. hammer excitation in the
vertical plane), the second transverse displacement (e.g. in the
horizontal plane) is also excited after a few milliseconds and
the amplitude can be of similar order to the first transverse dis-
placement. This phenomenon contributes to a characteristic pi-
ano sound feature called the ”double decay”. The purpose of
this study is to investigate the role of nonlinearities in inducing
double polarisations. The nonlinear vibrations of the strings are
studied with a two-degrees-of-freedom (dofs) system extracted
from the Kirchhoff-Carrier string equations. The method of
multiple scales is used to study the free vibrations of two po-
larisations having nearly equal eigenfrequencies and thus pre-
senting a 1:1 internal resonance. For an imperfect string with
slightly different eigenfrequencies between the two polarisa-
tions, it is found out that depending on the energy of the excita-
tion, an uncoupled transverse mode can develop into a coupled
mode where there is energy exchange between the two trans-
verse polarisations. The coupled mode is stable and the string
oscillates in an elliptic path. Numerical experiments are also
carried out, confirming the findings of the analytical approach.

1. INTRODUCTION

This study on the double polarisation of piano strings is con-
tained in a larger project which aims at developing a physically-
based time-domain piano sound synthesis model. The work was
pioneered by Chabassier [1] who proposed a refined complete
model of a grand piano [2, 3]. However a few points still need
additional developments. For example, one tonal feature that
was not observed in the simulated sound is the double decay,
i.e. where the temporal signal exhibits two envelopes with dif-
ferent decay rates. It is understood that one of the contribut-
ing factors of double decay is the double polarisation of piano
strings, as first reported by Weinreich [4]. The double polari-
sation phenomenon is not modeled in Chabassier’s work which
may explain the absence of double decay in her modeled pi-
ano sound. The double polarisation can be caused by various
factors, such as nonlinearities of piano strings, asymmetry and
complex boundary conditions, coupling to unison strings etc.
[5, 6, 7, 8, 9].

In this contribution, we focus on the nonlinearity experi-
enced by piano string vibrating at large amplitudes as a possi-
ble cause for explaining the birth of double polarisation. More
particularly the two fundamental eigenfrequencies of a string

with double polarisation are known to have close values, thus
showing a 1:1 internal resonance. It is also known from other
studies on nonlinear vibrations [10, 11] that thanks to a 1:1 in-
ternal resonance, energy can be exchanged between vibration
modes so that even if the motion is initiated along one polari-
sation only, the nonlinearity can make this motion unstable, so
that eventually a coupled vibration arises with the two polari-
sations involved. The objective of the present contribution is
thus to clearly establish if the nonlinearity can be the cause of
this coupling, as well as to highlight the main parameters gov-
erning the transfer of energy. The 1:1 internal resonance has
already been studied in the case of forced vibrations, see e.g.
[12, 10, 11]. Here our interest is in the case of free vibration for
which only Manevitch and Manevitch present a detailed investi-
gation [13]. The complete problem will hence be fully revisited
and applied to the specific case of strings.

The article is organised as follows. First, a system of non-
linear Kirchhoff-Carrier string equations is presented in sec-
tion 2 and solved via the multiple scales method in section 3.
The results are presented and discussed in section 4. The pa-
per continues with a numerical experiment to demonstrate the
double polarisations in section 5 before wrapping up with con-
clusion in section 6.

2. KIRCHHOFF-CARRIER EQUATION

The Kirchhoff-Carrier equations for a freely vibrating fixed-
fixed string with two polarised displacements u1 and u2 read
[14, 15, 11]:

ρAü1 − (T0 +N)u′′1 = 0, (1a)

ρAü2 − (T0 +N)u′′2 = 0, (1b)

whereN is the axial tension created by the large amplitude mo-
tions and the coupling with the transverse motion. It reads:

N =
EA

2L

∫ L

0

(
u′1

2
+ u′2

2
)

dx. (2)

In this set of equations, L is the length, A the crosse section
area, E Young’s modulus, T0 the tension and ρ the density.
Among others, underlying assumptions are that the inertia of
the longitudinal component is negligible, see e.g. [16, 14] for
more details. Following [11], the equations can be made nondi-
mensional for a more general treatment.

The solutions of the nondimensional equations can be ex-
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pressed in modal form:

u1(x, t) =

K∑
k=1

Φk(x)pk(t), u2(x, t) =

K∑
k=1

Φk(x)qk(t),

(3)
where Φk(x) are the mode shapes, and {pk(t), qk(t)}k≥1 the
modal coordinates. Restraining only the fundamental mode in
the truncation for each polarisation (i.e. K = 1) and using the
usual projection (Galerkin) technique, on obtains the following
two dofs nonlinear system for the two modal coordinates p, q
related to each polarisation:

p̈+ ω2
1p+ ε

[
Γ1p

3 + C1pq
2] = 0, (4a)

q̈ + ω2
2q + ε

[
Γ2q

3 + C2qp
2] = 0, (4b)

where ε is a small parameter arising from the nondimensionali-
sation [11], ε = EAd2/T0L

2, with d the diameter of the string.
For a perfect string, the two eigenfrequencies are equal so that
ω2 = ω1 = π [11]. The same holds for the nonlinear coeffi-
cients, in a perfect case we have Γ1 = Γ2 = C1 = C2 = π4/2.
However, acknowledging that such perfect string does not exist
in reality, a detuning parameter σ1 is introduced so that the two
eigenfrequencies of the two modes are possibly slightly differ-
ent,

ω2 = ω1 + εσ1. (5)

Following the same lines, the system will be studied with gen-
eral and different nonlinear coefficients so as to draw the com-
plete picture for the nonlinear string. In a given experimental
case, a procedure would be needed for identifying these coeffi-
cients.

3. MULTIPLE SCALES METHOD

The system in equation (4) is solved by the multiple scales
method which describes the original system to be function of
multiple independent time scales. Introducing the ”fast” and
”slow” time scales:

T0 = t, (6a)

T1 = εt, (6b)

p and q can take the following form,

p(t) = p0(T0, T1) + εp1(T0, T1) +O(ε2), (7a)

q(t) = q0(T0, T1) + εq1(T0, T1) +O(ε2), (7b)

where p0 and q0 can be written as:

p0 = A(T1) exp(iω1T0) + c.c, (8a)

q0 = B(T1) exp(iω2T0) + c.c, (8b)

where c.c stands for complex conjugates. A andB are unknown
complex functions of T1. Substituting equation (7) into (4) and
grouping all the resonant terms for 1:1 resonance up to order ε,
one obtains the solvability conditions. By writing A and B in
polar form:

A(T1) = a(T1) exp(iα(T1)), (9a)

B(T1) = b(T1) exp(iβ(T1)), (9b)

the solvability conditions can be broken down into a set of four
dynamical equations (two for amplitude a and b, two for the

phases α and β):

a′ = − C1

2ω1
ab2 sin(γ2 − γ1), (10a)

γ′1 =
3Γ1

ω1
a2 +

C1

ω1
b2 [2 + cos(γ2 − γ1)] , (10b)

b′ =
C2

2ω2
ba2 sin(γ2 − γ1), (10c)

γ′2 =
3Γ2

ω2
b2 +

C2

ω2
a2 [2 + cos(γ2 − γ1)] + 2σ1, (10d)

where

γ1 = 2α, γ2 = 2β + 2σ1T1. (11)

The introduction of equation (11) is necessary so that the sys-
tem is made autonomous (not directly dependent on any time
scales).

3.1. Uncoupled solutions

Let us first consider the uncoupled solutions. They correspond
to the motions of the strings that are either in the horizontal
direction, or in the vertical one. The first set of uncoupled solu-
tions is found by setting b = 0, in Eqs. (10). The 4-dofs system
then degenerates into a two dofs and reads:

a′ = 0, (12a)

γ′1 =
3Γ1

ω1
a2, (12b)

The equations can be easily integrated to give:

a = Ca, (13a)

α =
3Γ1

2ω1
a2T1 + αa, (13b)

where Ca and αa are both integration constants independent of
T1. Using this result, the solution p0 can be expressed as:

p0 = 2a cos [ωNLt+ αa] , (14)

where

ωNL = ω1

(
1 + ε

3Γ1

2ω2
1

a2

)
. (15)

The first order solution is thus a periodic orbit where only p is
involved in the vibration since setting b = 0 implies q = 0. The
nonlinear frequency of oscillation ωNL depends on the ampli-
tude a, a usual feature in nonlinear oscillations. For a positive
value of Γ1, which is the case for strings, the nonlinearity is of
the hardening type, i.e. the oscillation frequency increases with
the amplitude.

A similar exercise can be done for the other uncoupled case,
i.e. a = 0 and one would obtain a similar result for q0,

q0 = 2b cos [ωNLt+ βb] (16)

where

ωNL = ω2

(
1 + ε

3Γ2

2ω2
2

b2
)

(17)

One can notice the similarity between the two solutions, coming
from the fact that the uncoupled solutions are ruled out by clas-
sical Duffing equations. The nonlinearity is completely gov-
erned by coefficients Γ1 and Γ2. Figure 1 shows the back-
bone curve (amplitude-frequency relationship, Eqs. (15)-(17))
for ε = 0.163, a typical value for a string that has been com-
puted using standard values from [1]. The value Γ = 0 is used
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Figure 1: Relationship between a and ωNL for various Γ1 at
ω1 = π, ε = 0.163.

as an eyeguide to recall that for linear vibrations, the oscilla-
tion frequency is independent from the amplitude. The values
Γ = π4/2, ω = π are the standard values for perfect strings.
Finally Γ = π4/4 is plotted as an intermediate case between the
linear string and the perfect nonlinear string. The figure allows
one to estimate the deviation (in radian frequency) of the oscil-
lations with respect to the linear eigenfrequency, as a function
of the vibration amplitude.

3.2. Coupled solutions

Let us now investigate the coupled solutions of the conservative
system given by Eqs. (10). Stationary oscillations occurs at a
given energy level so that coupled solutions can be searched for
fixed amplitudes, by imposing a′ = b′ = 0. This is also in the
line of the uncoupled cases where periodic solutions were found
for fixed amplitudes and only phase variations, from which the
nonlinear amplitude-frequency relationship were derived. From
equation (10a) and (10c), it is obvious that for coupled solu-
tions to exist (i.e. a 6= 0, b 6= 0), one must have mandatory
sin(γ2−γ1) = 0. This implies in particular that cos(γ2−γ1) =
±1. Interestingly, for each case of the possible value of the co-
sine, the two polarisations p and q are related in a different man-
ner. For cos(γ2 − γ1) = +1, a simple algebra on the system
shows that the solutions p and q are related by the following
relationship:

q

p
= ± b

a
, (18)

while for cos(γ2 − γ1) = −1, p and q are related by:

q2

4b2
+

p2

4a2
= 1. (19)

These particular forms expressed by the coupled solutions has
already been commented by Manevicth and Manevitch [13],
who refers to them respectively as ”normal mode” (NM) (for-
mer case, Eq. (18)), and ”elliptic mode” (EM) (latter case, and
Eq. (19)). This peculiar relationship expressed for each time
between the solution amplitudes leads to a particular motion
which is sketched in Figure 2 in the (p, q) (displacements) plane.
The elliptic mode appears particularly interesting for us as it
corresponds to the whirling motion observed in piano strings
[9].

The nonlinear amplitude-frequency relationships defining
the backbone curves for coupled solutions can be found out

q

p
p

q

(a) normal mode (b) elliptic mode

Figure 2: Illustrations of the two modes of coupled solutions.
Image not to scale.

by setting cos(γ2 − γ1) = ±1 in Eqs. (10b)-(10d), where the
right-hand sides become constants, so that one can retrieve α, β
and subsequently the nonlinear frequency ωNL for the coupled
modes as:

ωNL = ω1

[
1 + ε

(
3Γ1

2ω2
1

a2 +
rC1

2ω2
1

b2
)]

. (20)

In this equation (and in the remainder of the article), the pa-
rameter r is such that r = 3 for normal mode, and r = 1 for
elliptic modes respectively. As can be seen in equation (20),
the nonlinear frequency is influenced by the amplitude of both
polarisations a and b. The equation forms a surface on the
3D space defined by (a, b, ωNL). However curved line solu-
tions are awaited instead of a whole surface family. Noting that
γ2 − γ1 = nπ from the necessary conditions of existence for
coupled solutions, one has thus γ′2 − γ′1 = 0. Using such rela-
tion, one can obtain:[

rC1

ω1
− 3Γ2

ω2

]
b2 +

[
3Γ1

ω1
− rC2

ω2

]
a2 = 2σ1. (21)

This relationship expresses the link between the amplitudes a
and b for both normal (r = 3) and elliptic (r = 1) coupled
modes. The conjuction of Eqs (20) and (21) define the backbone
curves for the coupled modes.

Let us now investigate how the coupled solutions can be
related to the uncoupled ones. By setting a = 0 or b = 0 in
Eq. (21), it can be seen that either of the uncoupled modes can
branch into the coupled modes provided the following condi-
tions are met:
For uncoupled mode a 6= 0

a2 ≥ 2σ1

3Γ1
ω1
− rC2

ω2

, (22)

For uncoupled mode b 6= 0

b2 ≥ 2σ1

rC1
ω1
− 3Γ2

ω2

, (23)

These equations provide a limit value, in terms of amplitudes
of the uncoupled modes, for which the coupled solutions can
develop. Below these limit value, only uncoupled solutions
exist. It must be noted that in certain cases, the RHS of both
the equations can have two positive values of which the lower
one indicates the bifurcation point where the uncoupled solu-
tion branches into the coupled solution while the higher one in-
dicates the point where the coupled solution collapse and enter
the uncoupled solution [13].
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3.3. Stability analysis

To obtain the stability of the coupled modes, Eqs (10) can be
reduced to a 3-DOF system by taking the difference between
the two phases or even further to a 2-DOF system as demon-
strated by Manevitch and Manevitch [13]. The advantage of
using such an approach is that the coupled solutions are then
real fixed points of the 3- or 2-dofs systems, so that the usual
tools from dynamical system theory can be used for investigat-
ing stability. One can thus construct the Jacobian matrix of the
corresponding system and solve for the eigenvalues. Using ei-
ther system will result in the same following stability criteria
for the coupled modes:

ω2Γ1

C2ω1
+

Γ2ω1

C1ω2
< 2 for normal modes, (24a)

ω2Γ1

C2ω1
+

Γ2ω1

C1ω2
>

2

3
for elliptics modes. (24b)

It is interesting to see that the stability of the coupled solutions
does not depend on the energy but rather on the physical param-
eters of the system (i.e. eigenfrequencies and nonlinear con-
stants). It also means that regardless of level of excitation, ex-
hibition of stable normal or elliptic modes are pre-determined.

To conclude the analytical study, let us investigate the sta-
bility of uncoupled solutions and demonstrate how uncoupled
solutions can become unstable in favour of a coupled one. As
noted by Manevitch and Manevitch [13], the stability of the un-
coupled solutions is determined by the energy of the system.
Using the same approach as for the coupled case does unfor-
tunately not give a useful criteria for the stability of uncoupled
solutions, which are found to be always unstable. Furthermore,
Manevitch and Manevitch do not give an explicit proof of the
stability of uncoupled solutions in [13]. The underlying prob-
lem is that when setting either b = 0 or a = 0 in the system,
the degeneracy is ill-conditioned so that the phase space shrinks
down to a two dofs system where the perturbation brought by
the other oscillators are not defined and thus cannot be studied.
The solution is found from the forced and damped vibration
cases by canceling the damping terms and identifying the exter-
nal excitation frequency to the nonlinear oscillation frequency
ωNL. Using the existence conditions derived in [10] from a ge-
ometric analysis in phase space, one can obtain the following
instability regions for the uncoupled solutions:
For uncoupled mode a 6= 0

ωNL = ω2 + εr
C2

2ω2
a2 (25)

For uncoupled mode b 6= 0

ωNL = ω1 + εr
C1

2ω1
b2 (26)

where r = 1 and r = 3 define the lower and upper bound of the
instability region, that are simply related to the connection with
either elliptic mode or normal mode. The instability affecting
the uncoupled mode a 6= 0 originates from the eigenfrequency
of the other uncoupled mode, ω2 and vice versa. This is because
the existence of another uncoupled solution upsets the stability
of the original uncoupled solution. It is also interesting to note
that the point where the uncoupled solution changes its stability
(either in losing or restoring it) is also the point where the un-
coupled solution branches into a coupled solution (or a coupled
solution leaves and enters the uncoupled solution). Finally, the
stability of the uncoupled solutions are seen to depend on the
coupling nonlinear coefficients C1 and C2 only, as can be ex-
pected.

4. RESULTS AND DISCUSSIONS
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Figure 3: Amplitude-frequency relationships for the strings,
perfect case with ω1 = ω2 = π (no detuning: σ1 = 0), and
equal nonlinear coefficients C1 = C2 = Γ1 = Γ2 = π4/2.
The black and blue lines (overlapped with each other) in-
dicate the two uncoupled modes while the red line indicates
the elliptic mode. ε = 0.163.

In this section, several case studies are made to demonstrate
the properties of the system. Firstly, a perfect string case is con-
sidered (i.e. σ1 = 0, C1 = C2 = Γ1 = Γ2). For this case,
the two amplitude-frequency relationships for uncoupled solu-
tions given by Eqs. (15) and (17) are exactly the same so that the
backbones in Fig. 3 collapse on the same curve (black and blue
curves, only the blue being visible). For the coupled solutions,
Eqs. (21) for the normal mode (r = 3) degenerates, indicating
that no normal modes are possible in the perfect case. On the
other hand, elliptic modes does however exist, and Eqs. (21)
shows that they have same amplitude : a = b. Reporting in
Eq. (20), one obtains the backbone curve for the coupled, el-
lipitc modes in the perfect case as: ωNL = ω1(1 + 2εΓ1

ω1
a2).

This shows that coupled solutions have a stronger hardening be-
haviour than uncoupled ondes, as reported in Fig. 3 with a red
line. It must be noted that a 2D representation has been chosen
for simplicity, by using the same axis for both amplitudes a and
b, whereas the whole solutions should be plotted in a 3D space.
In such 3D space (a, b, ωNL), uncoupled solutions are restricted
respectively to the planes (a, ωNL) and (b, ωNL), whereas the
coupled elliptic solutions is in the plane a = b.

Finally, examining the different stability conditions found
in the previous section for both coupled and uncoupled modes
leads to the conclusion that all the solutions reported in Fig. 3
are stable. This leads to the important conclusion that if the
motion is excited on a given polarization, then it will stay on it
for every time so that no whirling motion of the string would
be observed. The coupled elliptic solutions could be observed
only if very specific initial conditions are given to the string so
that the motion is initiated along this mode.

Let us now turn to the more realistic case of an imperfect
string. The most simple imperfection with a slight detuning
between the two eigenfrequencies of the polarisation is investi-
gated, by setting σ1 = 1, and keeping all the nonlinear coupling
coefficients equal: C1 = C2 = Γ1 = Γ2. The backbone curves
are represented in Fig. 4, where now the two uncoupled solu-
tions (black and blue lines) are different and originates respec-
tively from ω1 and ω2 = ω1 + εσ1. Eqs (21) shows once again
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Figure 4: Amplitude-frequency relationships for periodic solu-
tions of the nonlinear string, imperfect case with σ1 = 1, all
other coefficients being the same as in Fig. 3: C1 = C2 =
Γ1 = Γ2 = π4/2, ω1 = π, ε = 0.163. Black : uncou-
pled solution a 6= 0, blue uncoupled solution b 6= 0, red
coupled elliptic mode. Dashed lines indicates instability. In
brown is given the instability limit predicted by Eq. (25).

that in this case normal modes are not likely to exist. Only ellip-
tic modes are possible. The instability condition for uncoupled
solutions, provided by Eq. (25)-(26), shows that:

• The uncoupled solutions with b 6= 0 are always stable.

• On the other hand, uncoupled solutions with a 6= 0 can
be unstable and branch on an elliptic mode, recovering
also the criteria given by Eq. (22).

The instability region for uncoupled mode with a 6= 0 given
by Eq. (25) has two curves. The one for normal mode (r = 3)
is not relevant. Finally only the instability line with r = 1 is
meaningful, and is represented as a brown line in Fig. 4. The
crossing between the sdof uncoupled solution and the instabil-
ity limit occurs exactly when condition (22) is fulfilled. From
this point, uncoupled solutions are unstable, and the branch of
elliptic mode solutions (red line) emerges. Once again a 2D
representation has been chosen for simplicity, the reader must
however keep in mind that the red line is neither in the plane
(a, ωNL), nor in (b, ωNL), but really develop in the full 3D
space and is not contained within a plane. In particular the
crossing between the coupled solution (red line) and uncoupled
(b 6= 0, blue curve) is only a matter of the representation used
but does not exist in the full 3D space.

The important conclusion that can be drawn from this study
is that as soon as an imperfection is taken into account, an un-
stable region in the backbone curve for uncoupled modes exist.
Once the limit amplitude exceeded, uncoupled solutions are un-
stable so that even though an initial condition is given for that
polarisation, an energy transfer will occur so that eventually the
system would settle on the stable elliptic mode. Interestingly,
one can notice from Eq. (25) that the smallest the detuning σ1,
the smallest the amplitude limit for unstable solutions occurs.
Hence in order to observe easily this phenomenon, the detuning
need not be zero, but should be as small as possible.

5. NUMERICAL EXPERIMENTS

The main analytical findings of the previous section is now com-
pared to direct numerical simulations of the original system

given by Eqs. (4). More particularly, the mots interesting case
of the imperfect string is considered, with a slight detuning be-
tween the two eigenfrequencies of the two polarisations. The
equations of motion are directly integrated numerically in time
with a fourth-order Runge-Kutta method. The experiment is
carried out with varying level of initial excitation on the first
mode only, mimicking the case of a piano string being struck
with a hammer of increasing velocities, and hence exciting the
string in only one polarization. The values of the case previ-
ously studied in Fig. 4 are selected. The analytical study pre-
dicts that the uncoupled solution should be stable as long as a <
0.25. A first case is thus studied below this limit value, with an
initial condition in displacement only, with p(t = 0) = 0.4 and
q(t = 0) = 1e − 4. Note that, from Eqs. (9)-(14), a factor 2
between a (resp. b) and the amplitude solution in time for p(t)
(resp. q(t)), is present, so that the limit amplitude for stability
for p(t = 0) is 0.5. The direct time integration is represented
in Fig. 5. One can observe that below the amplitude where in-
stability occurs, the second coordinate q(t) stays at negligible
values around 1e− 4.
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Figure 5: Time responses from direct numerical integration of
Eqs. (4) and for varying levels of initial displacements p(t = 0).
At the top, p(t = 0) = 0.4, below the instability limit; at the
bottom, p(t = 0) = 0.8, above the instability limit. Black
line correspond to p(t) and blue line to q(t).

For an initial condition above the instability limit, p(t =
0) = 0.8, one can observe that an energy exchange between
the two modes occurs and q(t) reaches values up to 0.6. The
energy then gets back and forth between the two oscillators, a
typical feature of nonlinear conservative oscillations [12]. This
numerical experiment confirms the instability of the uncoupled
solution. It also shows that, for a given piano string, and for
amplitude of excitation that are above a certain threshold that
can be predicted, a motion initiated along a single polarisation
can be transformed into a coupled whirling motion, as observed
experimentally.

6. CONCLUSION

A detailed study has been conducted to examine the two polar-
isations of nonlinear vibrating strings, and to show if the geo-
metric nonlinearity due to large-amplitude vibration can be re-
sponsible of the coupling between the two polarizations, even
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though the motion is initiated along a single direction. An an-
alytical study has been conducted using a two-modes approxi-
mation for the Kirchhoff-Carrier equation, and then the method
of multiple scales. The frequency-amplitude relationships of
the two polarisations and the ways whirling motion can take
place are identified. The main finding of the anlytical study re-
veals that an imperfection is needed in order to make uncoupled
solutions unstable. When all the coefficients are equal, in the
mathematical case of a perfect string, then the periodic solu-
tions are all stable. When a detuning is considered between the
two eigenfrequencies, which is always the case in practice, then
uncoupled solutions can become unstable and whirling motions
of the string can take place even though the motion is initiated
along one polarisation only. These results also clearly demon-
strate that the geometric nonlinearity can be a potential cause
for the whirling motions observed in real piano strings. Future
work will consider experimental validations of these findings.
The imperfections brought by the specific boundary conditions
of the piano string will also be studied in order to assess their
role in the appearance of double polarisation.
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