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ABSTRACT
In this paper, we describe a simple language for parallel
programming. Its semantics is studied thoroughly. The de-
sirable properties of this language and its deficiencies are
exhibited by this theoretical study. Basic results on parallel
program schemata are given. We hope in this way to make
a case for more formal (i.e. mathematical) approach to the
design of languages for systems programming and the design
of operating systems.

There is a wide disagreement among systems designers as to
what are the best primitives for writing systems programs.
In this paper, we describe a simple language for parallel
programming and study its mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL
PROGRAMMING

The features of our mini-language are exhibited on the sam-
ple program S on Figure 1. The conventions are close to
Algol1 and we only insist upon the new features. The pro-
gram S consists of a set of declarations and a body. Variables
of type integer channel are declared at line (1), and for any
simple type σ (boolean, real, etc. . . ) we could have declared
a σ channel. Then processes f , g and h are declared, much
like procedures. Aside from usual parameters (passed by
value in this example, like INIT at line (3)), we can declare
in the heading of the process how it is linked to other pro-
cesses : at line (2) f is stated to communicate via two input
lines that can carry integers, and one similar output line.
The body of a process is an usual Algol program except for
invocation of wait until something on an input line (e.g. at
(4)) or send a variable on a line of compatible type (e.g. at
(5)). The process stays blocked on a wait until something is
being sent on this line by another process, but nothing can
prevent a process from performing a send on a line.
In others words, processes communicate via first-in first-out
(fifo) queues.
Calling instances of the processes is done in the body of the
main program at line (6) where the actual names of he chan-
nels are bound to the formal parameters of the processes.
The infix operator par initiates the concurrent activation of
the processes. Such a style of programming is close to may
systems using EVENT mechanisms ([1, 2, 3, 4]). A pictorial
representation of the program is the schema P on Figure 2,
where the nodes represent processes and the arcs communi-
cation channels between these processes.
What sort of things would we like to prove on a program
like S? Firstly, that all processes in S run forever. Secondly,

Begin
(1) In t eg e r channel X, Y, Z , T1 , T2 ;

(2 ) Process f ( i n t e r g e r in U,V; i n t e r g e r out W) ;
Begin i n t e g e r I ; l o g i c a l B;
B := true ;
Repeat Begin

(4 ) I := i f B then wait (U) e l s e wait (V) ;
(7 ) p r in t ( I ) ;
(5 ) send I on W;

B := not B;
End ;
End ;

Process g ( i n t e g e r in U ; i n t e g e r out V, W) ;
Begin i n t e g e r I ; l o g i c a l B;
B := true ;
Repeat Begin

I := wait (U) ;
i f B then send I on V e l s e send I on W :

B := not B;
End ;
End ;

(3 ) Process h( i n t e g e r in U; i n t e g e r out V;
i n t e g e r INIT ) ;

Begin i n t e g e r I ;
send INIT on V;
Repeat Begin

I := wait (U) ;
send I on V;

End ;
End ;

Comment : body o f mainprogram ;
(6 ) f (X,Y,Z) par g (X,T1 ,T2) par h(T1 ,Y, 0 )

par h(T2 , Z , 1 ) ;
End ;

Figure 1: Sample parallel program S.

more precisely, that S prints out (at line (7)) an alternating
sequence of 0’s and 1’s forever. Third, that if one of the pro-
cesses were to stop at some time for an extraneous reason,
the whole systems would stop.
The ability to state formally this kind of property of a paral-
lel program and to prove them within a formal logical frame-
work is the central motivation for the theoretical study of
the next sections.

2. PARALLEL COMPUTATION
Informally speaking, a parallel computation is organized in
the following way: some autonomous computing stations
are connected to each other in a network by communication
lines. Computing stations exchange information through
these lines. A given station computes on data coming along
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Figure 2: The schema P for the program S.

its input lines, using some memory of its own, to produce
output on some or all of its output lines. It is assumed that:

i) Communication lines are the only way by which com-
puting station may communicate.

ii) A communication line transmits information within an
unpredictable but finite amount of time.

Restrictions are imposed on the behaviour of computing sta-
tions:

iii) At any given time, a computing station is either com-
puting or waiting for information on one of its input
lines.

iv) Each computing station follows a sequential program.
(We call here sequential program what is usually called
program elsewhere).

Remarks: first, since several computing stations may be
computing simultaneously, this model indeed exhibits some
form of parallelism. Second, restriction iii) means that a
computing station cannot be waiting on data coming from
one or another of its input lines, or alternatively that no two
computing stations are allowed to send data on the same
channel. Third, we do not restrict the computing stations
to have a finite memory.

The reader who is mathematically inclined wan think of set
of Turing machines connected via-one-way tapes, where each
machine can use its own working tape.
We formalize now the notion of parallel computation intro-
duced above.

2.1 Syntax
A parallel program schema is an oriented graph with labeled
nodes and edges, together with some supplementary edges
(see Figure 3): incoming edges with only end vertices, meant
to represent the input lines, and outcoming edges, with only
origin vertices, the output lines.

2.2 Semantics
2.2.1 Outline

Edges in a schema are thought of as pipes: each edge is able
to carry data of a given type D (e.g. : integer, boolean,
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Figure 3: A parallel program schema.
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Figure 4: The complete partial order Dω, when D =
{a1, a2}.

pointer, procedure, etc. . . ).
An observer placed on the line witnesses its traffic, a (pos-
sibly infinite) sequence of objects of type D: it is called the
history of the line. Since a computing station has its own
memory, it is not a partial function from the domains of the
inputs into the domain of the outputs, but rather a function
from the histories of its input line into the histories of its
output lines.

2.2.2 Sequence domains
Let Dω be the set of finite or denumerably infinite sequences
of elements over a set D. In Dω we include the empty se-
quence Λ. The relation ⊆ defined by X ⊆ Y iff X is an
initial segment of Y is a partial order on Dω. The min-
imal element of Dω is Λ. Any increasing chain ξ in Dω:
X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ · · · has a least upper bound which
we call lim

Dω
ξ. Hence, Dω is a complete partial order (c.p.o.).

2.2.3 Domain of interpretation
To each edge e in a schema, we associate a set De, the type
of the objects it may carry. The history of line e is then an
element of Dω

e .

2.2.4 Continuous mappings
A mapping f from a complete partial order A into a com-
plete partial order B is continuous iff, for any increasing
chain a of A

f(lim
A
a) = lim

B
f(a)



Note that a continuous mapping is also monotonic, i.e. x ⊆
y ⇒ f(x) ⊆ f(y). The following mappings: F (for first), R
(for remainder) and A (for Append) are examples of contin-
uous mappings:

• F : to any sequence x in Dω, F associates the (unit
length) sequence constituted of the leftmost element
of x.

• R: to any sequence x in Dω, R associates the sequence
of the right of its leftmost element.

• A: takes two arguments L1 and L2 in Dω to produce
the sequence: leftmost element of L1 followed by L2.

More precisely, F , R, and A obey the axioms∗:

1) R(Λ) = Λ, 2) A(Λ, X) = Λ

3) A(X,Λ) = F (X) 4) F (A(X,Y )) = F (X)

5) A(F (X), R(X)) = X 6) (X = Λ) ∨R(A(X,Y )) = Y

For properties such as deadlock, we shall need to talk for-
mally about the length of a sequence. An elegant way to
do so within our formalism is to take the integers with their
usual order and complete them with an extra element ∞ to
obtain the complete partial order IN (see Figure 5(a)).
The mapping length from Dω to IN which maps a sequence
into its length is continuous; note also that addition in IN is
continuous.
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Figure 5: Schema of c.p.o and computing station.

2.2.5 Computing stations
We are now ready to interpret the nodes in a parallel schema.
To each node with input lines carrying data in D1 × D2 ×
· · ·×Dn and producing data in D′1, D

′
2, · · · , D′p we associate

p continuous functions from Dω
1 ×Dω

2 × · · · ×Dω
n into (re-

spectively) D
′ω
1 , D

′ω
2 , · · · , D

′ω
p . For example, in Figure 5(b),

we specify two continuous functions f1 and f2 in order to
interpret node f :

f1 : Dω
1 ×Dω

2 ×Dω
3 → D

′ω
1

f2 : Dω
1 ×Dω

2 ×Dω
3 → D

′ω
2

Example 1. The process f of program S is associated
to the continuous function f in INω × INω → INω defined
recursively by:

f(U, V ) = A(F (U), A(F (V ), f(R(U), R(V )))).

∗In the original article the axiom 2) is false, the correct
axiom is A(Λ, X) = X.

The process g is associated to two functions, one per output
line, defined recursively by:

g1(U) = A(F (U), g1(R(R(U)))) and

g2(U) = A(F (R(U)), g2(R(R(U))))

Similarly the function h maps INω into INω:

h(U, x) = A({x}, U)

where x is in IN and the notation {x} means the unit length
sequence whose first element is x.

In theses examples, not much computation is actually per-
formed on this inputs, but an arbitrary amount of computa-
tion could be performed by a computing station, requiring
possibly an unbounded amount of memory. The restriction
of the interpretation of nodes to continuous functions can
be understood in concrete terms:

a) Monotonicity means that receiving more input at a
computing station can only provoke it to send more
output. Indeed this a crucial property since it allows
parallel operation: a machine need not have all of its
input to start computing, since future input concerns
only future output.

b) Furthermore continuity prevents any station from de-
ciding to send some output only after it has received
an infinite amount of input.

Any process written in the simple programming language
of Section 1 correspond to a set of continuous functions.
The recursive definition of these functions is obtained by
the usual method of McCarthy for converting flow-chart pro-
grams to recursive definitions.

3. FIXPOINT EQUATIONS
Rather than studying the behaviour of a complex machine,
we want to study the properties of the solution of a set
of equations. To each parallel program (i.e. interpreted
schema) we associate a set Σp of equations on sequence do-
mains in such a way that a set of sequences is a possible
solution of the system iff it is a possible set of histories for
the communication’s lines of the program:

i) To every line e, of type De, associate to a variable Xe

ranging over De.

ii) If X1, X2, · · · , Xn are the variables associated to the
input lines and i1, · · · , ik are the sequences fed as in-
puts on the lines include the equations:8><>:

X1 = i1
...

Xk = ik

iii) For each node f , interpreted with the functions f1, · · · , fp,
with input variables X1, · · · , Xn output X ′1, · · · , X ′p
include p equations in ΣP :8><>:

X′1 = f1(X1, · · · , Xn)
...

X′p = fp(X1, · · · , Xn)
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ΣP =

8>>>>>>>><>>>>>>>>:

X1 = i
X2 = f(X1, X3)
X5 = g1(X2)
X4 = g2(X2)
X7 = k1(X5)
X6 = k2(X5)
X8 = h2(X4, X6)
X3 = h1(X4, X6)

Figure 6: The program P and the associated system
ΣP .

Clearly, the histories of the lines of the program P have to
satisfy the system ΣP . ΣP is a set of fixpoint equations
over c.p.o.’s, where the operators are continuous. It is a
well-known mathematical result (see for example Milner [5])
that such a system admits a unique minimal solution. It
is outside the scope of this paper to show that this minimal
solution constitutes indeed the vector of histories of the com-
munication’s lines, given a suitable implementation. Such a
proof can be found in Cadiou [6] in a similar set up.

The first property of this minimal solution gives us access to
the most powerful rule of induction used in proving programs
correct (see Manna, Ness, Vuillemin [7]), i.e. Scott’s rule:

Property 1 (Kleene). The minimal solution
{Y (X1), Y (X2), · · · , Y (Xn)} of the system ΣP = {Xi =
τi(X1, · · · , Xn) | i ∈ [1, n]} where the τi are terms built out

of continuous operators is lim
i→+∞

(Xi
1, · · · , Xi

n) where

X0
i = Λ(i ∈ [1, n])

(Strictly speaking there might be n different Λ’s)

Xj+1
i = τi(X

j
1 , · · · , X

j
n) (i ∈ [1, n])

Scott’s induction rule in this case can be stated as follows, if
P is an admissible predicate (see Manna, Ness, Vuillemin [7]):

P(Λ, · · · ,Λ)

P(X1, · · · , Xn) ⊇ P(τ1(X1, · · · , Xn), · · · , τn(X1, · · · , Xn))

P(Y1(X1), · · · , Yn(Xn))

A property of a parallel program is stated as a relation be-
tween the input sequences and the output sequences or in
general between the histories of some communication lines.
Since we may use Scott’s rule, all the techniques for proving
properties of recursive programs studied in Vuillemin [8] are
available, in particular structural induction and recursion
induction.

Example 2. The system ΣS associated with program S
is:

ΣS =

8>>><>>>:
X = f(Y, Z)
Y = h(T1, 0)
Z = h(T2, 1)
T1 = g1(X)
T2 = g2(X)

where f, g1, g2 and h are given in 2.2.5.

As an illustration, let us prove that the history X which is
exactly what S prints out, is an infinite alternating sequence
of 0’s and 1’s. In other words, if X is the minimal fixpoint
of X = A({0}, A({1},X )) then X = X .

The system ΣS can be reduced to a single fixpoint equation:

X = f(h(g1(X), 0), h(g2(X, 1))) (1)

Using the definition of f and h, and the properties of F and
A we transform Equation (1) to

X = A({0}, A({1}, f(g1(X), g2(X)))) (2)

Lemma 1. For all U , U = f(g1(U), g2(U))

Proof. By structural induction. The Lemma is obvi-
ously true for Λ, and for any sequence of length 1. Assume
it is true for V , then:

f(g1(A({a}, A({b}, V ))), g2(A({a}, A({b}, V ))))

= A({a}, A({b}, f(g1(V ), g2(V )))

= A({a}, A({b}, V )) by induction hypothesis.

From Equation (2) and this Lemma above we deduce:

X ⊆ X

With this Lemma again it is trivial to see that X ⊆ X , which
is proves the result. Since the mapping length is continuous,
length(X ) is the minimal solution (in IN) of

length(X ) = 2 + length(X )

which is obviously∞. Hence T1 and T2 are infinite sequences
and so are Y and Z. We have thus answered the first two
questions raised in Section 1 about program S.

The simplicity of the program S and the proof produced
should not induce the reader into believing that only very
simple minded proofs are feasible. Milner and Weyrauch
[9] used the system LCF, based on Scott’s induction rule,
to check mechanically the complete proof of the correctness
of a small compiler, a very large proof indeed. LCF can be
readily used for our purposes and very large and trustworthy
proofs could be produced on this system.

Property 2 (Scott). The minimal solution of the ΣP

is a continuous function of the parameters of the system, in
particular the values of the input streams, or the operators
of the system.

In more concrete terms, Property 2 means that, in this
model of parallel computation:

1. Arbitrary interconnection of systems, as well as pro-
cesses, is legitimate. Hence, top-down design finds here
a mathematical justification since we can postpone the
decision to implement a given function by a single pro-
cess or a set of interconnected processes: this decision
will not introduce perturbations in the remainder of
the system.
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Figure 7: A recursive parallel schema.

2. A parallel program can be safely simulated on a se-
quential machine, provided the scheduling algorithm
is fair enough, i.e. it eventually attributes some more
computing time to a process which wants it. If this
algorithm is not fair however, the only thing that may
happen is for the parallel program to produce less out-
put than what could be expected. But what is pro-
duced is correct.

This remark and a simple argument on lengths answer the
last question about program S raised in the first section.

4. RECURSION
The parallel program introduced so far actually exhibit a
bounded parallelism: only a finite number of processes may
compute simultaneously. It is necessary and easy to intro-
duce the recursive parallel programs, where an unbounded
number of machines may compute in parallel.

A recursive parallel schema is a set F1, F2, · · · , F` of parallel
schematas in which some nodes may be labeled F1, F2, · · · ,
F`. If a parallel schema Fj has input lines labeled i1, i2, · · · , ip
and output lines o1, o2, · · · , og, then in each occurrence of Fj

the same labels must occur on its input and output lines. An
example is given on Figure 7.

(N.B.: this is a way to ensure that the parallel recursive
programs are syntactically well formed; it is sufficient for
our purposes although it may give several labels to an edge).
We construct now a set of fixpoint equations that contain
variables in two types: sequence domains, and continuous
mappings between sequence domains.

Example 3. To the schema on Figure 7 we associate the
system Σ

o = F (i) = g2(F (f(i,X)))

X = g1(F (f(i,X)))

where X and F are respectively an unknown sequence and
an unknown continuous mapping between sequence domains.
The continuous mappings from a c.p.o. into a c.p.o. with
the ordering:

f ⊆ g iff ∀xf(x) ⊆ g(x).

The existence of a minimal (now functional) solution is still
assured and Property 1 and Property 2 hold along with their

concrete interpretation. A little bit more care has to be ex-
erted to make sure that the implementation computes the
minimal fixpoint. The only problem is to know when to start
unfolding a recursive call to a process. The good strategy is
not to start when input is presented but when output is re-
quested. This rule is basically the delay rule of Vuillemin [8].

5. SCHEMATOLOGY
Structural properties of parallel programs are discovered
in studying parallel program schemata. For example we
can prove that the schemata on Figure 8 are equivalent,
i.e. whatever process f and g may be the two resulting pro-
grams will be equivalent.

f

gg

2

f

g2

Figure 8: Two equivalent schemata.

(Nota: these schemata are partially interpreted: the node
2 called a 2-plicator sends a copy of each input on each
output line. We allow such nodes in schemata because they
introduce no new fixpoint equations).
We state the main results (Courcelle, Kahn, Vuillemin [10]):

Theorem 1 : The equivalence of schemata containing un-
interpreted processes and n-duplicators is decidable.

Theorem 2 : There exists a unique minimal schema Ŝ
(i.e. containing a minimum number of process nodes)
equivalent to a given schema S.

Theorem 3 : The system of equations corresponding to
S containing the minimum number of equations are
obtained by taking minimal cuts of Ŝ.

The results concerning recursive parallel schemata are much
harder. Restricting ourselves to recursive processes with one
input and one output we know (Courcelle-Vuillemin [11]):

Theorem 4 : Equivalence of recursive parallel schemata is
decidable.

6. DISCUSSION AND CONCLUSION
The kind of parallel programming we have studied in this
paper is severely limited: it can produce only determinate
programs. We argue however that:

i) large parts of operating systems are written so as to
be determinate. The method of monitors advocated
by Hoare narrows down the possible locations of non-
determinacy.



ii) the primitives wait and send x on y that we studied are
not too far from reality as exemplified by [1, 3, 4].

iii) we do not think it is impossible to extend the theory
to non-determinate parallel programs, although how to
satisfactorily do so is far from obvious.

iv) the programming language we have introduced can be
extended by adding new primitive processes (i.e. that
cannot be programmed as processes with wait and send).
A typical such process is
WARN (integer in X,Y; logical out Z)

that sends a true value on its output line each time some
integer is received on either of its input lines. The only
condition to be verified by the new primitive processes,
and verified by WARN, is that the history of the out-
put line be a continuous function of the histories of the
input lines.

Looking now at the merits of our approach, we see the essen-
tial one as the eradication of the notion of state of a complex
system. More precisely, in Lauer [12] and Gilbert [13] for
example, a system is thought of as having a huge ”state vec-
tor” and making non-deterministic transitions from state to
state. This view leads to proofs growing exponentially with
the number of processes (we grow linearly) and is blind to the
structure of the system, making the proofs counter-intuitive.
Furthermore it cannot deal with an unbounded number of
processes, something we get almost ”for free”. Our proofs
can be checked mechanically in LCF [14], another non neg-
ligible advantage since they will often be tedious but without
great mathematical depth.

Our last conclusion is to recall a principle that has been
so often fruitful in Computer Science and that is central in
Scott’s theory of commutation: a good concept is one that
is closed

1. under arbitrary composition

2. under recursion.
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